用户名: 密码: 验证码:
DNAPLs污染含水层多相流模拟模型的替代模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油的开采、炼制、储运和使用的过程中,由于泄漏、偷排和意外事故等原因,使原油和各种石油类产品进入环境而造成污染。石油产品主要是由烷烃、环烷烃和芳香烃组成的混合物,具有致癌、致畸和致突变的潜在威胁,属有毒污染物,对人类和环境都具有巨大的危害。
     石油类污染物在水中的溶解度一般很小,进入地下环境后通常以非水相流体(NAPLs,Non-Aqueous Phase Liquids)的形式存在。重非水相流体(DNAPLs)具有高密度、低水溶性和高界面张力的特性,比轻非水相流体(LNAPLs)更难修复,像常用的抽出-处理技术对它都难以奏效,并且修复费用非常昂贵,单个污染场地的去除修复费用常常需要数亿美元。近年来出现的表面活性剂冲洗技术,也称为表面活性剂强化含水层修复技术(Surfactant Enhanced Aquifer Remediation, SEAR),是对抽出-处理技术的改进。表面活性剂对憎水性有机污染物具有增溶作用(Solubilization)和增流作用(Mobilization),能有效提高DNAPLs在水中的溶解性和迁移性,能使更多的自由相的DNAPLs进入水中,从而大幅度提高抽出-处理技术对于DNAPLs修复的有效性。
     目前,表面活性剂强化含水层修复技术(SEAR)尚处在发展阶段,影响SEAR修复效果和修复费用的因素非常复杂,包括抽、注水井的选位,抽、注水强度的大小与分配,表面活性剂的浓度等。因此,如何在现场调查的基础上,通过模拟模型和优化模型的合理运用,对修复工程方案进行优选,以提高修复效率并节省修复费用,是一个亟待解决且具有重要理论和实际意义的科学问题。
     而在运用模拟模型和优化模型的过程中,优化模型的迭代求解过程需要反复多次调用模拟模型(即对模拟模型进行求解),对于DNAPLs污染含水层多相流数值模拟模型而言,反复多次计算模拟模型会带来庞大的计算负荷,这会严重制约模拟模型和优化模型在DNAPLs污染含水层修复工程实际应用中的可行性。因此,建立合理有效的替代模型成为解决问题的可行途径。替代模型在功能上逼近模拟模型,在计算上则易于解算,大幅度地减少计算负荷。
     然而,替代模型的研究尚处于尝试探索阶段,其精度的好坏取决于采样方法和替代模型种类的研究选定。
     因此,本文针对表面活性剂强化的DNAPLs污染含水层修复问题,分别以假想DNAPLs污染含水层和实际污染场地DNAPLs污染含水层为例,开展了多相流模拟模型的替代模型理论和方法的创新性研究。
     首先在建立多相流数学模拟模型的基础上,分别运用蒙特卡罗采样方法和拉丁对偶变数复合采样方法在多相流模拟模型可控输入变量的可行域内采样,然后运转多相流模拟模型产生输入-输出样品数据集。对比分析了两种方法采样结果的采样效率和覆盖程度,同时为模拟模型的替代模型的建立准备数据样本。然后,基于由两种采样方法和模拟模型获得的输入-输出样品数据集,分别运用双响应面方法和径向基函数人工神经网络方法建立了多相流模拟模型的替代模型。最后,任意选取了一组新的抽注水方案,分别代入到多相流模拟模型和运用不同途径建立的替代模型中求解,并对计算结果进行了对比分析,从中遴选和总结出了合适的建立多相流模拟模型的替代模型的理论和方法。
     本文的研究取得的主要结论如下:
     ①对于同一种建模方法(双响应面方法或径向基函数人工神经网络方法),基于拉丁对偶变数复合采样建立的替代模型对模拟模型的逼近程度明显高于基于蒙特卡罗采样建立的替代模型对模拟模型的逼近程度。这是由于蒙特卡罗采样法是利用随机数从概率分布中采样的随机采样方法,它得出的样品完全随机出现,常常产生数据点偏聚的问题,抽取出的样品对总体覆盖程度不高;而拉丁对偶变数复合采样属于分层采样,它在保证采样效率的同时,得出的样品更加精确地反映了输入概率函数中值的分布,使样品空间的覆盖程度得到了保证,抽取的样品具有一定代表性。
     ②对于同一种采样方法(蒙特卡罗方法或拉丁对偶变数复合方法),运用径向基函数人工神经网络法建立的替代模型对模拟模型的逼近程度明显高于运用双响应面方法建立的替代模型对模拟模型的逼近程度。这是由于双响应面方法在使用前,都要事先对某问题的输入-输出函数关系类型有一个判断,然后才能确定建立何种形式的回归方程。但经判断后建立的回归方程作为替代模型,其对模拟模型的逼近程度仍然有限。而径向基函数神经网络通过不断调整输入样本的聚类中心和隐含层到输出层之间的权值,使网络的实际输出逐渐向希望输出逼近,最终使其有识别输入模式特征的能力。并且径向基函数人工神经网络收敛速度快,能够找到全局极小。
     ③通过综合对比分析,假想例子与实际例子的计算结果和结论得到了相互印证。运用两种采样方法结合两种建模方法所建立的替代模型在功能上都能逼近模拟模型,均具备了与模拟模型相近的输入输出关系。但是它们对原模拟模型的逼近程度仍有差别,按对模拟模型的逼近程度从低到高排序是:基于蒙特卡罗采样的双响应面模型、基于拉丁对偶变数复合采样的双响应面模型、基于蒙特卡罗采样的径向基函数人工神经网络模型、基于拉丁对偶变数复合采样的径向基函数人工神经网络模型。因此,针对DNAPLs污染含水层修复问题,运用拉丁对偶变数复合采样法结合径向基函数人工神经网络方法建立的多相流模拟模型的替代模型,是更为合理有效的替代模型。
Because of the petrol spilling, illegal disposal and contretemps, crude oil and various petroleum products enter into the environment, and cause environmental pollution. Petroleum products are mixtures mainly consist of alkanes, cycloalkanes and aromatic, have carcinogenic, teratogenic and mutagenic potential threats, and are toxic pollutants that are detrimental to human and the environment.
     The solubility of petroleum contamination is very small with water. The petroleum contamination usually exists in form of non-aqueous phase liquids (NAPLs). DNAPLs have high density, low water solubility and high interfacial tension properties. The remediation of DNAPLs is more difficult than LNAPLs, commonly used out– processing technology is difficult to control it effectively, and the cost of remediation of DNAPLs is very expensive. The cost of a single contaminated site often requires hundreds of millions of dollars. Surfactants flushing technology appearing in recent years is also called Surfactant Enhanced Aquifer Remediation (SEAR), which improves the out– processing technology. Surfactants have solubilization and mobilization for hydrophobic organic pollutants and can improve the solubility and migration of DNAPLs in water. So they allow for more freedom phase DNAPLs into the water and substantially increase the effectiveness of out– processing technology to repair DNAPLs.
     At present, Surfactant Enhanced Aquifer Remediation (SEAR) is still in development stage and factors effect restoration and repair costs, such as selected positions of pumping and injection wells and the concentration of surfactant are very complex.
     Therefore, process optimization design of aquifer remediation of contaminated site based on the field investigation, through the rational use of simulation model and optimization model is exigency and has important theoretical and practical significance, which can improve efficiency and reduce the cost of remediation.
     The application of simulation-optimization approaches for designing the optimal groundwater remediation systems is given more widespread attention. In the process of the use of simulation models and optimization models, the solution procedure of optimization model need repeated call for simulation model what can bring Huge computational burden for multiphase flow numerical simulation model of DNAPLs contaminated aquifer when simulation model calculation. This would seriously restrict the feasibility of the remediation application of simulation model and optimization model in DNAPLs contaminated aquifer. Therefore, the establishment of surrogate model which is reasonable and effective, so that its function can approximate numerical simulation model, and avoid repeated calls for simulation, and to shorten the computing time. It is a feasible way to solve the problem.
     However, the study of surrogate model is still in the exploratory and attempt stage, its accuracy is good or bad depending on the sampling method and the type of surrogate model.
     In this study, aiming at the problem of surfactant-enhanced DNAPLs contaminated aquifer remediation, taking the imaginary and real DNAPLs contaminated aquifers as the research object, it made a study of the theory and method of the surrogate model of Multiphase flow simulation model.
     First, a multiphase flow numerical simulation model of surfactant- enhanced DNAPLs contaminated aquifer was first building as the base. It was used to simulate the migrate law of water, surfactant and DNAPLs. Then study on using Monte Carlo sampling method and Latin antithetic variable composite sampling method for collecting input-output sample data of multiphase flow simulation model. And compared the results of efficiency and sampling coverage of two sampling methods. According to the input - output sample data sets got by two sampling methods, then building surrogate models of multiphase flow simulation model ---dual response surface model and radial basis function artificial neural network model. At last, choosing a new program to testing the level that surrogate model approximate the numerical simulation, and summed up the proper selection of the surrogate model of multiphase flow simulation model.
     Main conclusions obtained from the paper are as follows:
     ①For the same modeling approach(Dual response surface model and Radial basis function artificial neural network model), the approximation to the simulation model based on Latin antithetic variable composite sampling method higher than Monte Carlo sampling method. This is because the Monte Carlo sampling method is a random sampling method that samples from the probability distribution using random numbers. Its samples appear completely random, which often have the problem of segregation of data points, and the overall coverage of the extracted sample is not high; However, Latin dual variable composite sample is stratified sampling, whose samples reflect the value distribution of the input probability function when ensure the efficiency of sampling. So the coverage of the sample space is guaranteed and good representative samples are taken.
     ②For the same sampling method(Monte Carlo sampling method and Latin antithetic variable composite sampling method), the approximation to the simulation model based on Radial basis function artificial neural network higher than Dual response surface method. This is because before using the dual response surface method, it need to have a judge of the input - output function type of an issue and then to determine what form of regression equation established. However, the regression equation after judged is used as an alternative model, whose approximation of the simulation model is still limited. The radial basis function neural network makes actual output of the network gradually to approach to the desired output by continuously adjust the cluster centers of the input sample and weights between the hidden layers to output layer, and ultimately enable it to identify the characteristics of the input mode. And radial basis function artificial neural network converges fast and can find the global minimum.
     ③Through a comprehensive comparative analysis, the calculation results and conclusions of the imaginary and real examples have been confirmed with each other. The conclusion is that the four surrogate models all can approximate the simulation model, they all possess the similar input and output relationship with simulation model, but the degree of approximation to the simulation model still exist differences. The four surrogate models sorted by the degree of approximation to the simulation model from low to high is, Dual response surface model based on Monte Carlo sampling method, Dual response surface model based on Latin antithetic variable composite sampling method, Radial basis function artificial neural network model based on Monte Carlo sampling method and Radial basis function artificial neural network model based on Latin antithetic variable composite sampling method. Therefore, the final decision of the most suitable surrogate model of remediation of DNAPLs contaminated aquifer is radial basis function artificial neural network model based on Latin antithetic variable composite sampling method.
引文
Akhmatskaya E, Bou-Rabee N, Reich S, 2009. A comparison of generalized hybrid Monte Carlo methods with and without momentum flip [J]. Journal of Computational Physics, 288 (6):2256-2265.
    Andricevic R, Kitanidis P K, 1990. Optimization of the pumping schedule in aquifer remediation under uncertainty [J]. Water Resources Research, 26:875-885.
    Atanassov E, Dimov I T, 2008. What Monte Carlo models can do and cannot do efficiently [J]. Applied Mathematical Modelling, 32(8):1477-1500.
    Benghanem M, Mellit A, 2010. Radial Basis Function Network-based prediction of global solar radiation data: Application for sizing of a stand-alone photovoltaic system at AI-Madinah, Saudi Arabia [J]. Energy, 35(9):3751-3762.
    Bernardez L A, Therrien R, Lefebvre R, Martel R, 2009. Simulating the injection of micellar solutions to recover diesel in a sand column [J]. Journal of Contaminant Hydrology, 103 (3-4):99-108.
    Blasone R, Madsen H, Rosbjerg D, 2008. Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling [J].Journal of Hydrology, 353:18-32.
    Bolognesi A, Carlo A D, Lugli P, Conte G, 2003. Large drift-diffusion and Monte Carlo modeling of organic semiconductor devices [J]. Synthetic Metals, 138(1-2):95-100.
    Boyd J P, 2010a. Error saturation in Gaussian radial basis functions on a finite interval [J]. Journal of Computational and Applied Mathematics, 234(5):1435-1441.
    Boyd J P, 2010b. Six strategies for defeating the Runge Phenomenon in Gaussian radial basis functions on a finite interval [J]. Computers & Mathematics with Applications, 60(12): 3108-3122.
    Boyle P, Broadie M, Glasserman P,1997. Monte Carlo methods for security pricing [J]. Journal of Economic Dynamics and Control, 21(8-9):1267-1321.
    Brooks R H, Corey A T, 1964. Hydraulic properties of porous media. Colorado State University, Fort Collins, 1-27.
    Brown C L, Pope G A, Abriola L M, et al.,1994. Simulation of surfactant enhanced aquifer remediation [J]. Water Resources Research,30(11):2959-2978.
    Brunetti R, Jacoboni C,1998. Analysis of quantum features in transport theory from a quantum Monte Carlo approach[J]. Solid-State Electronics, 31(3-4):527-530.
    Buvat I, Lazaro D, 2006. Monte Carlo simulations in emission tomography and GATE: An overview [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 569(2):323-329.
    Camp M V, Walraevens K, 2009. Pumping test interpretation by combination of Latin hypercube parameter sampling and analytical models [J]. Computers & Geosciences, 35(10):2065-2073.
    Campagnolo J F, Akgerman A, 1995. Modeling of soil vapor extraction(SVE) systems-Part 2. Biodegradation aspects of soil vapor extraction [J]. Waste Management, 15(5-6):391-397.
    Cavallotti C, Barbato A and Veneroni A, 2004. A combined three-dimensional kinetic Monte Carlo and quantum chemistry study of the CVD of Si on Si(1 0 0) surfaces [J]. Journal of Crystal Growth, 266(1-3):371-380.
    Ceccarell M, Hounsou J T, 1996. Sequence recognition with radial basis function networks: experiments with spoken digits [J]. Neurocomputing, 11(1):75-88.
    Chen Y, Liou K N, 2006. A Monte Carlo method for 3D thermal infrared radiative transfer [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 101(1):166-178.
    Chen H H, Chang L C, Shan C H, et al., 2009. Joint Impact of Scaling and Hysteresis on NAPL Flow Simulation [J]. Environmental Modeling and Assessment,14(6):715-728.
    Chu H J, Lin Y P, Jang C S, et al., 2010. Delineating the hazard zone of multiple soil pollutants by multivariate indicator kriging and conditioned Latin hypercube sampling [J]. Geoderma, 158(3-5):242-251.
    Chu M, Kitanidis P K, McCarty P L, 2007. Dependence of lumped mass transfer coefficient on scale and reactions kinetics for biologically enhanced NAPL dissolution [J]. Advances in Water Resources, 30(6-7):1618-1629.
    Chung E S, Lee L S, 2009. Prioritization of water management for sustainability using hydrologic simulation model and multicriteria decision making techniques [J]. Journal of Environmental Management, 90(3):1502-1511.
    Cooper G S, Peralta R C, Kaluarachchi J J, 1998. Optimizing separate phase light hydrocarbon recovery from contaminated unconfined aquifers [J]. Advances in Water Resources, 21(5): 339-350.
    Coppola E, Poulton M, Charles E, et al., 2003. Application of Artificial Neural Networks to Complex Groundwater Management Problems [J]. Natural Resources Research, 12(4): 303-320.
    Coulon F, Orsi R, Turner C, et al., 2009. Understanding the fate and transport of petroleum hydrocarbons from coal tar within gasholders[J]. Environment International, 35(2):248-252. Da? ?dris, Y?lmaz Dereli, 2008. Numerical solutions of Kdv equation using radial basis functions [J]. Applied Mathematical Modelling, 32(4):535-546.
    Daliakopoulos L N, Coulibaly P, Tsanis I K, 2005. Groundwater level forecasting using artificial neural networks[J]. Journal of Hydrology, 309(1-4):229-240.
    de Blanc P C,1998. Development and demonstration of a biodegradation model for non-aqueous phase liquids in groundwater [D]. The University of Texas at Austin, USA.
    Dekker T J, Abriola L M, 2000. The influence of field-scale heterogeneity on the surfactant- enhanced remediation of entrapped nonaqueous phase liquids[J]. Journal of Contaminant Hydrology, 42(2-4):219-251.
    Delshad M, Pope G A, Sepehrnoori K., 1996. A compositional simulator for modeling surfactantenhanced aquifer remediation, 1. Formulation [J]. Journal of Contaminant Hydrology. 4(23): 303-327.
    Deng J, 2006. Structural reliability analysis for implicit performance function using radial basis function network [J]. International Journal of Solids and Structures, 43(11-12):3255-3291.
    Densmore J D, Larsen E W, 2003. Variational variance reduction for particle transport eigenvalue calculations using Monte Carlo adjoint simulation [J]. Journal of Computational Physics, 192(2):387-405.
    Densmore J D, Urbatsch T J, Evan T M, Buksas M W,2007. A hybrid transport-diffusion method for Monte Carlo radiative-transfer simulations [J]. Journal of Computational Physics, 222 (2):485-503.
    Dimov I T, Alexandrov V N, 1998. A new highly convergent Monte Carlo method for matrix computations [J]. Mathematics and Computers in Simulation, 47(2-5):165-181.
    Dimov I T, Papancheva R Y, 2003. Green’s function Monte Carlo algorithms for elliptic problems [J]. Mathematics and Computers in Simulation, 63(6):587-604.
    Ding K Q, Zhou Z G, Liu C T, 1998. Latin hypercube sampling used in the calculation of the fracture probability [J]. Reliability Engineering and System Safety, 59(2):239-242.
    Du H P, Zhang N, 2008. Time series prediction using evolving radial basis functionnetworks with new encoding scheme [J]. Neurocomputing, 71(7-9):1388-1400.
    Dybowski R, 1998. Classification of incomplete feature vectors by radial basis function networks [J]. Pattern Recognition Letters, 19(14):1257-1264.
    Eymet V, Fournier R, Blanco S, Dufresne J L, 2005. A boundary-based net-exchange Monte Carlo method for absorbing and scattering thick media [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 91(1):27-46.
    Fetter C W, 1999. Contaminant hydrogeology (second edition) [D]. Macmillan Publishing Company, New York, 1-500.
    Field J A, Sawyer T E, 2000. High-performance liquid chromatography–diode array detection of trichloroethene and aromatic and aliphatic anionic surfactants used for surfactant-enhanced aquifer remediation [J]. Journal of Chromatography A, 893(2):253-260.
    Fortin J, Jury W A, Anderson M A, 1997. Enhanced removal of trapped nonaqueous phase liquids from saturated soil using surfactant solutions [J]. Journal of Contaminant Hydrology, 24 (3-4):247-267.
    Franklin J B, Geller J T, Harris J M,2006. A survey of the geophysical properties of chlorinated DNAPLs [J]. Journal of Applied Geophysics, 59(3):177-189.
    Gaganis P, Karapanagioti H K, Burganos V N, 2002. Modeling multi-component NAPL transport in the unsaturated zone with the constituent averaging technique [J]. Advances in Water Resources, 25(7):723-732.
    García V, Landaburu-Aguirre J, Pongrácz E, et al., 2009. Dehydration of water/dichloromethane /n-butanol mixtures by pervaporation; optimisation and modelling by response surfacemethodology [J]. Journal of Membrane Science, 338(1-2):111-118.
    Gardner R P, Liu L Y, 2000. Monte Carlo simulation for IRRMA [J]. Applied Radiation and Isotopes, 53(4-5):837-855.
    Giesl P, 2008. Construction of a local and global Lyapunov function for discrete dynamical systems using radial basis functions [J]. Journal of Approximation Theory, 153(2):184-211.
    Griesheimer D P, Martin W R, Holloway J P, 2006. Convergence properties of Monte Carlo functional expansion tallies [J]. Journal of Computational Physics, 211(1):129-153.
    Hammersley J M, Morton K W, 1956. A new Monte Carlo technique: antithetic Variates [M]. Proc. Cambridge. phil. Soc., 449.
    Hansen C W, Helton J C., Sallaberry C J, 2010. Use of Replicated Latin Hypercube Sampling to Estimate Sampling Variance in Uncertainty and Sensitivity Analysis Results for the Geologic Disposal of Radioactive Waste [J]. Procedia-Social and Behavioral Sciences, 2(6):7674-7675.
    Harpham C, Dawson C W, 2006.The effect of different basis functions on a radial basis function network for time series prediction: A comparative study [J]. Neurocomputing, 69(16-18): 2161-2170.
    He L, Huang G H , Zeng G M, et al.,2008a. An integrated simulation, inference, and optimization method for identifying groundwater remediation strategies at petroleum-contaminated aquifers in western Canada [J]. Water Research, 42(10-11):2629-2639.
    He L, Huang G H, Lu H W, 2008b. A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty [J]. Advances in Water Resources, 31(12):1622-1635.
    He L, Huang G H, Lu H W, et al., 2008c. Optimization of surfactant-enhanced aquifer remediation for a laboratory BTEX system under parameter uncertainty [J]. Environmental Science & Technology, 42(6):2009-2014.
    He L, Huang G H, Zeng G M, Lu H W, 2008d. Wavelet-based multiresolution analysis for data cleaning and its application to water quality management systems [J]. Expert Systems with Applications, 35(3):1301-1310.
    He L, Huang G H, Lu H W, 2009a. A coupled simulation-optimization approach for groundwater remediation design under uncertainty: An application to a petroleum-contaminated site [J]. Environmental Pollution, 157(8-9):2485-2492.
    He L, Huang G H, Zeng G M, 2009b. Identifying optimal regional solid waste management strategies through an inexact integer programming model containing infinite objectives and constraints [J]. Waste Management, 29(1):21-31.
    He L, Huang G H , Lu H W,2010. A stochastic optimization model under modeling uncertainty and parameter certainty for groundwater remediation design-Part 1.Model development [J]. Journal of Hazardous Materials, 176(1-3):521-526.
    Helmig R, 1997. Multiphase Flow and Transport Processes in the Subsurface-A Contribution to the Modeling of Hydrosystems [M]. Berlin:Springer-Verlag.
    Hess S, Train K E, Polak J W, 2006. On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice [J]. Transportation Research Part B, 40(2):147-163.
    Hier C K, Sonnenborg T O, Jensen K H, Gudbjerg J, 2009. Model analysis of mechanisms controlling pneumatic soil vapor extraction [J]. Journal of Contaminant Hydrology, 103 (3-4):82-98.
    Holzmann M, Pierleon, Ceperley D M,2005. Coupled Electron–Ion Monte Carlo calculations of atomic hydrogen [J]. Computer Physics Communications, 169(1-3):421-425.
    Hora S T, Helton J C, 2003. A distribution-free test for the relationship between model input and output when using Latin hypercube sampling [J]. Reliability Engineering and System Safety, 79(3):333-339.
    Hossain F, Anagnostou E N, Bagtzoglou A C, 2006. On Latin Hypercube sampling for efficient uncertainty estimation of satellite rainfall observations in flood prediction [J]. Computers & Geosciences, 32(6):776-792.
    Huang G H, Lu H W, He L, Zeng G M, 2009. An inexact dynamic optimization model for municipal solid waste management in association with greenhouse gas emission control[J]. Journal of Environmental Management, 90(1):396-409.
    Huang Y F, Li J B, Huang G H, et al., 2003. Integrated simulation optimization approach for real-time dynamic modeling and process control of surfactant-enhanced remediation at petroleum-contaminated sites [J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 7(2):95-105.
    Huber R, Helmig R, 1999. Multiphase flow in heterogeneous porous media: a classical finite element method versus an implicit pressure explicit saturation based mixed finite element finite volume approach [J]. International Journal for Numerical Methods in Fluids, 29(8): 899-920.
    Huntington D E, Lyrintzist C S, 1998. Improvements to and limitations of Latin hypercube sampling [J]. Probabilistic Engineering Mechanics, 13(4):245-253.
    Isambert A, Brualla L, Benkebil M, Lefkopoulos D, 2010. Determination of the optimal statistical uncertainty to perform electron-beam Monte Carlo absorbed dose estimation in the target volume [J]. Cancer/Radiothérapie, 14(2):89-95.
    Jacoboni C, Bertoni A, Bordone P, Brunetti R, 2001. Wigner-function formulation for quantum transport in semiconductors: theory and Monte Carlo approach [J]. Mathematics and Computers in Simulation, 55(1-3):57-68.
    Jancin M, Ebaugh W F, 2002. Shallow lateral DNAPL migration within slightly dipping limestone, southwestern Kentucky [J]. Engineering Geology, 65(2-3):141-149.
    Johnson V M, Rogers L L, 2000. Accuracy of neural network approximators in simulation- optimization [J]. Journal of Water Resources Planning and Management , 126(2):48-56.
    Johnson J D, Helton J C, Davis F J, 2005. A comparison of uncertainty and sensitivity analysisresults obtained with random and Latin hypercube sampling[J]. Reliability Engineering and System Safety, 89(3):305-330.
    Johnston C D, Rayner J L, Patterson B M, Davis G B, 1998. Volatilisation and biodegradation during air sparging of dissolved BTEX-contaminated groundwater [J]. Journal of Contaminant Hydrology, 33(3-4):377-404.
    Kastner M, 2010. Monte Carlo methods in statistical physics: Mathematical foundations and strategies [J]. Communications in Nonlinear Science and Numerical Simulation, 15(6): 1589-1602.
    Kaye A J, Cho J, Basu N B, 2008. Laboratory investigation of flux reduction from dense non-aqueous phase liquid (DNAPL) partial source zone remediation by enhanced dissolution [J]. Journal of Contaminant Hydrology, 102(1-2):17-28.
    Kennedy A D,1999. The Hybrid Monte Carlo algorithm on parallel computers [J]. Parallel Computing, 25(10-11):1311-1339.
    Kennedy A D, Brian P ,2001. Cost of the generalised hybrid Monte Carlo algorithm for free field theory [J]. Nuclear Physics B, 607(3):456-510.
    Kokshenev I, Braga A P, 2010. An efficient multi-objective learning algorithm for RBF neural network[J]. Neurocomputing, 73(16-18):2799-2808.
    Kuczera G, Parent E, 1998. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm [J]. Journal of Hydrology, 211:69-85.
    Kueper B H, McWhorter D B, 1991. The Behavior of Dense, Non-aqueous Phase Liquids in Fractured Clay and Rock [J]. Ground Water, 29(5):716-728.
    Kumari S, Nirala A K, 2011. Study of light propagation in human, rabbit and rat liver tissue by Monte Carlo simulation [J]. Optik-International Journal for Light and Electron Optics, 122(9): 807-810.
    Kweon K E, Lee J H, Ko Y D, et al., 2007. Neural network based modeling of HfO2 thin film characteristics using Latin Hypercube Sampling [J]. Expert Systems with Applications, 32(2): 358-363.
    Lee Y C, Kwon T S, Yang J S, Yang J W, 2007. Remediation of groundwater contaminated with DNAPLs by biodegradable oil emulsion [J]. Journal of Hazardous Materials, 140(1-2): 340-345.
    Li L, Benson C H, Lawson E M, 2006. Modeling porosity reductions caused by mineral fouling in continuous-wall permeable reactive barriers [J]. Journal of Contaminant Hydrology, 83(1-2): 89-121.
    Li Z, Wang Y L, Li J, et al., 2010. Dual response surface-optimized synthesis of L-menthyl conjugated linoleate in solvent-free system by Candida rugosa lipase [J]. Bioresource Technology, 101(4):1305-1309.
    Liang H L, Falta R W, 2008. Modeling field-scale cosolvent flooding for DNAPL source zone remediation [J]. Journal of Contaminant Hydrology, 96(1-4):1-16.
    Lin J Y, Wang X Q, 2008. New Brownian bridge construction in quasi-Monte Carlo methods for computational finance [J]. Journal of Complexity, 24(2):109-133.
    Loop C M, White W B, 2001. A Conceptual Model for DNAPL Transport in Karst Ground Water Basins [J]. Ground Water, 39(1):119-127.
    Luengo J, García S, Herrera F, 2010. A study on the use of imputation methods for experimentation with Radial Basis Function Network classifiers handling missing attribute values: The good synergy between RBFNs and EventCovering method [J]. Neural Networks, 23(3):406-418.
    Magoulès F, Diago L A, Hagiwara I, 2007. Efficient preconditioning for image reconstruction with radial basis functions [J]. Advances in Engineering Software, 38(5):320-327.
    Mayer A, Endres K L, 2007. Simultaneous optimization of dense non-aqueous phase liquid (DNAPL) source and contaminant plume remediation [J]. Journal of Contaminant Hydrology, 91(3-4):288-311.
    Minsker B S, Shoemaker C A, 1998. Dynamic Optimal Control of IN-Situ Bioremediation of Ground Water [J]. Journal of Water Resources Planting and Management, 124(3): 149-161.
    Navarro F F, Martínez C H, Ramírez M C, et al., 2011. Evolutionary q-Gaussian Radial Basis Function Neural Network to determine the microbial growth/no growth interface of Staphylococcus aureus [J]. Applied Soft Computing, 11(3):3012-3020.
    Nedaie H A, Mosleh-Shirazi M A, Shariary M, et al., 2006. Monte Carlo study of electron dose distributions produced by the elekta precise linear accelerator [J]. Reports of Practical Oncology & Radiotherapy, 11(6):287-292.
    Nelson R C, Pope G A, 1978. Phase relationships in chemical flooding [J]. Society of Petroleum Engineers Journal, 18(5):325-338.
    Olsson A, Sandberg G, Dahlblom O, 2003. On Latin hypercube sampling for structural reliability analysis [J]. Structural Safety, 25(1):47-68.
    Oostrom M, Hofstee C, Walker R C, Dane J H, 1999a. Movement and remediation of trichloroethylene in a saturated heterogeneous porous medium 1. Spill behavior and initial dissolution [J]. Journal of Contaminant Hydrology, 37(1-2):159-178.
    Oostrom M, Hofstee C, Walker R C, Dane J H, 1999b. Movement and remediation of trichloroethylene in a saturated, heterogeneous porous medium2. Pump-and-treat and surfactant flushing [J]. Journal of Contaminant Hydrology, 37(1-2):179-197.
    Ouyang Y, Cho J S, Mansell R S, 2002. Simulated formation and flow of microemulsions during surfactant flushing of contaminated soil [J]. Water Research, 36(1): 33-40.
    Pan C, Dalla E, Franzosi D, Miller C T, 2007. Pore-scale simulation of entrapped non-aqueous phase liquid dissolution [J]. Advances in Water Resources, 30(3):623-640.
    Parker J C, Lenhard R J, Kuppusamy T, 1987. A parametric model for constitutive properties governing multiphase flow in porous media [J]. Water Resources Research, 23(4): 618-624.
    Pennell K D, Jin M, Pope G A, et al., 1996. Surfactant enhanced remediation of soil columnscontaminated by residual tetrachloroethylene [J]. Journal of Contaminant Hydrology, 16(1): 35-53.
    Parker B L, Gillham R W, Cherry J A, 1994. Diffusive Disappearance of Immiscible-Phase Organic Liquids in Fractured Geologic Media [J]. Ground Water, 32(5):805-820.
    Qin X S, Huang G H, Chakma A, et al., 2007. Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL- contaminated sites [J]. Science of the Total Environment, 381(1-3):17-37.
    Qin X S, Huang G H, He L, 2009. Simulation and optimization technologies for petroleum waste management and remediation process control [J]. Journal of Environmental Management, 90(1):54-76.
    Rahbeh M E, Mohtar RH, 2007. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction [J]. Journal of Hazardous Materials, 143(1-2): 156-170.
    Regis R G, Shoemaker C A, 2007. Parallel radial basis function methods for the global optimization of expensive functions [J]. European Journal of Operational Research, 182(2):514-535.
    Regis R G, 2011. Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions [J]. Computers & Operations Research, 38(5):837-853.
    Roeder E, Falta R W, 2001. Modeling unstable alcohol flooding of DNAPL-contaminated columns[J]. Advances in Water Resources, 24(7):803-819.
    Rogers L L, Dowla F U, 1995.Optimal field-scale groundwater remediation using neural networks and the genetic algorithm [J]. Environment Science Technology, 29(5):1145-1155.
    Sandborg M, Dance D R, Persliden J, Carlsson G A, 1994. A Monte Carlo program for the calculation of contrast, noise and absorbed dose in diagnostic radiology [J]. Computer Methods and Programs in Biomedicine, 42(3):167-180.
    Schaerlaekens J, Mertens J, Linden J V, et al., 2006. A multi-objective optimization framework for surfactant-enhanced remediation of DNAPL contaminations [J]. Journal of Contaminant Hydrology, 86(3-4):176-194.
    Shook G M, Pope G A, Kostarelos K, 1998. Prediction and minimization of vertical migration of DNAPLS using surfactant enhanced aquifer remediation at neutral buoyancy [J]. Journal of Contaminant Hydrology, 34(4):396-382.
    Sleep B E, Sykes J F, 1989. Modeling the transport of volatile organics in variably saturated media [J]. Water Resources Research, 25(1):81-92.
    Steefel C I, Carroll S, Zhao P H, et al., 2003. Cesium migration in Hanford sediment: a multisite cation exchange model based on laboratory transport experiments [J]. Journal of Contaminant Hydrology, 67(1-4):219-246.
    Touzik A, Hermann H, Wetzig K, 2003. General-purpose distributed software for Monte Carlosimulations in materials design [J]. Computational Materials Science, 28(2):134-154.
    Tsai Y J, 2008. Air distribution and size changes in the remediated zone after air sparging for soil particle movement [J]. Journal of Hazardous Materials,158(2-3):438-444.
    Valdés J L, Biscay R, Jimenez J C,1999. Geometric selection of centers for radial basis function approximations involved in intensive computer simulations[J]. Mathematics and Computers in Simulation, 48(3):295-306.
    Van Genuchten, M T , 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil science society of America journal, (44): 892-989.
    VanderKwaak J E, Sudicky E A, 1995. Dissolution of non-aqueous-phase liquids and aqueous-phase contaminant transport in discretely-fractured porous media [J]. Journal of Contaminant Hydrology, 23(1-2):45-68.
    Wang L H, Jacques S L, Zheng L Q,1995. MCML—Monte Carlo modeling of light transport in multi-layered tissues [J]. Computer Methods and Programs in Biomedicine, 47(2):131-146.
    Wang J G, Liu G R, 2002. On the optimal shape parameters of radial basis functions used for 2-D meshless methods [J]. Computer Methods in Applied Mechanics and Engineering, 191(23-24): 2611-2630.
    Wirthensohn T, Schoeberl P, Ghosh U, Fuchs W, 2009. Pilot plant experiences using physical and biological treatment steps for the remediation of groundwater from a former MGP site [J]. Journal of Hazardous Materials, 163:(1):43-52.
    Xu C G, He H S, Hu Y M, et al., 2005. Latin hypercube sampling and geostatistical modeling of spatial uncertainty in a spatially explicit forest landscape model simulation [J]. Ecological Modeling, 185(2-4):255-269.
    Yan S Q, Minsker B, 2006. Optimal groundwater remediation design using an adaptive neural network genetic algorithm [J]. Water Resources Research, 42(5):W05407.
    Yao D Z, 2002. High-resolution EEG mapping: a radial-basis function based approach to the scalp Laplacian estimate[J]. Clinical Neurophysiology, 113(6):956-967.
    Yeniay O, Unal R, Lepsch R A, 2006. Using dual response surfaces to reduce variability in launch vehicle design: A case study [J]. Reliability Engineering and System Safety, 91(4):407-412.
    Yoon J H, 2004. On the stationary Lp-approximation power to derivatives by radial basis function interpolation [J]. Applied Mathematics and Computation, 150(3):875-887.
    Yoon H, Jun S C, Hyun Y J, et al., 2011. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer [J]. Journal of Hydrology, 396(1-2):128-138.
    Yuan C, Chiang T C,2007. The mechanisms of arsenic removal from soil by electrokinetic process coupled with iron permeable reaction barrier [J]. Chemosphere, 67(8):1533-1542.
    Zhang J, Gicquel O, Veynante D, Taine J, 2009. Monte Carlo method of radiative transfer applied to a turbulent flame modeling with LES Modélisation du rayonnement par Monte Carlo appliquée dans les flammes turbulentes simulées par LES [J]. Comptes Rendus Mécanique,337(6-7):539-549.
    Zhang X D, Huang G H, Lin Q G, Yu H, 2009. Petroleum-contaminated groundwater remediation systems design: A data envelopment analysis based approach [J]. Expert Systems with Applications, 36(3):5666-5672.
    Zhong L, Mayer A S, Pope G A, 2003. The effects of surfactant formulation on nonequilibrium NAPL solubilization [J]. Journal of contaminant hydrology, (60): 55-75.
    曹衍龙,金岳辉,2000.基于双响应面法的公差设计研究[J].工程设计,3:42-44.
    陈明华,任哲,周本达,2009.拉丁超立方体抽样遗传算法求解图的二划分问题[J].控制理论与应用,8(26):927-930.
    陈月明,1989.油藏数值模拟基础[M].东营:石油大学出版社,1-29.
    崔庆安,何桢,崔楠,2008.基于SVM的RSM模型拟合方法研究[J].管理科学学报,1(11):31-41.
    崔学慧,2006.地下水系统中多相流数值模拟[D].中国地质大学(北京)博士学位论文.
    董恩国,张蕾,孙奇涵,2009.基于双响应面法的行星齿轮机构稳健设计研究[J].机械传动,33(2):35-38.
    郝中军,扈晓翔,2009.基于拉丁超立方抽样的导弹快速精度分析与误差补偿方法[J].兵工自动化,28(6):23-25.
    韩冰,2006.地下水有机污染场地健康风险评价[D].中国地质大学(北京)博士学位论文.
    韩延成,高学平,2007.基于RBF人工神经网络的下游常水位自适应渠道输水控制研究[J].西北农林科技大学学报(自然科学版),35(8):202-206.
    何飞,燕永利,张家明,石东峰,2008.土壤含水层NAPLs污染修复技术的研究进展[J].油气田环境保护,18(3):46-50.
    何文双,2006.硝基苯污染地下水的修复技术研究[D].吉林大学硕士学位论文.
    胡黎明,邢巍巍,吴照群,2007.多孔介质中非水相流体运移的数值模拟[J].岩土力学,28(5):951-955.
    黄国如,胡和平,田富强,2003.用径向基函数神经网络模型预报感潮河段洪水位[J].水科学进展,14(2):158-162.
    靳彦欣,林承焰,贺晓燕,王慧芳,2004.油藏数值模拟在剩余油预测中的不确定性分析[J].石油大学学报(自然科学版),28(3):22-26.
    蓝俊康,2006.污染场地修复技术的种类[J].四川环境,25(3):90-94.
    李隋,2008.表面活性剂强化抽取处理修复DNAPL污染含水层的实验研究——以硝基苯为例[D].吉林大学博士学位论文.
    李玉强,崔振山,陈军,阮雪榆,张冬娟,2006.基于双响应面模型的6σ稳健设计[J].机械强度,28(5):690-694.
    刘洁雪,2008.基于响应面法的集装箱船优化设计研究[D].天津大学硕士学位论文.
    刘晓丽,梁冰,薛强,2003.地下水环境中有机污染物迁移转化动力学模型的研究[J].工程勘察,1:24-28.
    卢文喜,1995.地下水模拟预报过程中降水量的预报[J].勘察科学技术,4:8-10.
    卢文喜,1999.地下水系统的模拟预测和优化管理[M].北京:科学出版社.
    卢文喜,祝廷成,1998.应用人工神经网络评价湖泊的富营养化[J].应用生态学报,9(6):645-650.
    史红星,2001.石油类污染物在黄土高原地区环境中迁移转化规律的研究[D].西安建筑科技大学硕士学位论文.
    施小清,吴吉春,姜蓓蕾,方瑞,孙媛媛,2009.基于LHS方法的地下水流模型不确定性分析[J].水文地质工程地质,2:1-5.
    宋汉周,Woodbury A D,2000.TCE运移的计算机模拟——某碳酸盐岩含水层中地下水有机污染及其去除研究之二[J].河海大学学报,28(3):14-19.
    谭红君,2009.应用蒙特卡罗抽样法的无线传感器自定位信息融合技术[J].中国新技术新产品,18:33-34.
    王丹,2009.地下水石油污染物运移的数值模拟——以保定某炼油厂为例[D].青岛大学硕士学位论文.
    王东,陈建康,王启智,李艳玲,2008.基于条件与对偶抽样的MonteCarlo结构可靠度分析[J].中国农村水利水电,5:66-70.
    王洪涛,周抚生,宫辉力,2000.数值模拟在评价含油污水对地下水污染中的应用[J].北京大学学报(自然科学版),36(6):865-872.
    王锐,2004.非水相流体在土壤中运移规律研究[D].西北农林科技大学硕士学位论文.
    王云峰,李虎成,李志新,2007.RBF神经网络在黄河口水沙通量研究中的应用[J].中国水运,10(7):88-90.
    韦庆,卢文喜,田竹君,2004.运用蒙特卡罗方法预报年降水量研究[J].干旱区资源与环境,18(4):144-146.
    吴佳燕,李郝林,2010.基于响应面法的主轴系统热特性有限元模型参数修正[J].机械设计与研究,26(4):21-24.
    吴立人,1992.对偶变数抽样方法应用研究[J].航天控制,4:23-27.
    吴照群,2008.非水相流体在土体中运移的数值模拟[D].清华大学硕士学位论文.
    邢巍巍,2005.LNAPLs在土体中的运移特性研究[D].清华大学硕士毕业论文.
    薛强,2003a.石油污染物在地下环境系统中运移的多相流模型研究[D].辽宁工程技术大学博士学位论文.
    薛强,梁冰,刘晓丽,2003b.有机污染物运移的动力学预测模型及模型参数分析[J].工程勘察,6:17-20.
    薛强,梁冰,冯夏庭,刘建军,2005.石油污染物在地下环境系统中运移的多相流数值模型[J].化工学报,56(5):920-924.
    杨建强,罗先香,2001.地下水动态预测的径向基函数法[J].水文,4:1-4.
    杨艳慧,刘东,贺子延,罗子健,2009.基于响应面法(RSM)的锻造预成形多目标优化设计[J].稀有金属材料与工程,38(6):1020-1024.
    易立新,徐鹤,2009.地下水数值模拟:GMS应用基础实例[M].北京:化学工业出版社,1-174.
    于晗,钟志勇,黄杰波,张建华,2009.采用拉丁超立方采样的电力系统概率潮流计算方法[J].电力系统自动化,33(21):32-35.
    张富仓,康绍忠,2007.非水相流体在多孔介质中迁移的研究进展[J].土壤学报,44(4):744-751.
    张润楚,王兆军,1994.关于计算机试验的理论和数据分析[J].应用概率统计,10(4): 420-435.
    张文静,2007.佳木斯地区地下水、土中硝基苯迁移转化机理及其模拟预测[D].吉林大学博士学位论文.
    张学润,2006.渗流带中油类污染物的迁移转化模型及数值模拟[D].吉林大学硕士学位论文.
    赵勇胜,2007.地下水污染场地污染的控制与修复[J].吉林大学学报(地球科学版),37(2):303-310.
    郑德凤,赵勇胜,王本德,2002.轻非水相液体在地下环境中的运移特征与模拟预测研究[D].水科学进展,13(3):321-324.
    郑西来,荆静,席临萍,1998.包气带中原油的迁移和降解研究[J].水文地质工程地质,1:35-38.
    支银芳,陈家军,杨官光,等,2006.表面活性剂冲洗法治理非水相流体污染多相流研究进展.环境污染治理技术与设计,7(3):25-29.
    周渊,1997.关于蒙特卡罗模拟抽样方法的研究[J].强度与环境,3:14-18.
    朱雪强,韩宝平,尹儿琴,2005.地下水DNAPLs污染的研究进展[J].四川环境,24(2):65-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700