用户名: 密码: 验证码:
石墨烯复合结构的吸附和电催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SP2杂化的碳原子以六角形蜂窝状有序排列形成的二维结构被称为石墨烯。由于其独特的结构特征,石墨烯具有比其它碳类材料更优异的物理和化学性质。例如,单层石墨烯在可见光范围内对光的透过率超过97%,并具有很高的载流子迁移率,使其在透明导电薄膜方面具有广泛的应用空间。石墨烯还有非常大的比表面积,可作为载体支撑物有效地分散各种纳米材料和团簇结构,从而获得各种石墨烯-纳米颗粒和石墨烯-团簇的复合物。这些复合物不但拥有原先单体各自的物理化学特性,同时还具有特殊的增效协同作用,从而进一步拓宽了石墨烯及其复合体系的应用范围,有望在燃料电池的催化、水污染处理、光电探测、锂离子电池等诸多领域展现其迷人的色彩。因此,如何高效制备高质量的石墨烯,如何根据应用目标设计和合成具有集成和协同功能的复合结构,如何提升复合结构的性能等都是人们十分关注的问题。本论文侧重围绕石墨烯及其复合纳米结构的设计和制备及其在污染处理、催化反应的应用等方面开展相关应用基础研究,主要内容分述如下。
     在第一章中,我们简要介绍了石墨烯基本的物理和化学性质,总结和比较了石墨烯的各种制备方法及其利弊,同时也对石墨烯-纳米颗粒和石墨烯-团簇复合体系的研究现状做了概述。
     在第二章中,我们介绍了一种室温下利用锌粉绿色还原氧化石墨烯(GO)得到还原石墨烯(RGO)的新方法。我们对RGO的还原程度、结构和性质进行了系统的X射线衍射、紫外吸收光谱、拉曼光谱、透光率和电学特性等表征。结果表明:通过调控反应时间,RGO中的碳氧比可从原先的1.67上升到13.7;Zn粉还原的RGO比其它化学还原试剂制备的RGO具有更高的电导率,可达2.7×104s.m-1;厚度20nm的RGO薄膜在450nm到1500nm的波长范围内透光率保持在70%以上,且面电阻仅为2kΩ。这种还原方法价格便宜、环境友好且产量高,所制备的RGO透明导电薄膜有望在光伏、光电以及电化学等领域得到广泛应用。
     在第三章中,我们通过简便的化学方法制备了一系列具有不同配比的RGO-Fe3O4纳米复合结构。通过实时监控有机染料分子紫外吸收光谱强度的变化,系统地研究了该复合体系作为吸附剂对多种有机染料分子的吸附机理。结果表明,复合结构中RGO的表面以及Fe304纳米颗粒的磁性使得该复合结构不但对有机染料分子具有非常好的吸附能力,而且可在外磁场的作用下从水溶液中被快速地分离回收。通过简单的退火,复合结构显示出良好的再生作用,其吸附能力也没有明显降低。此外,该复合结构能够在不同的酸碱pH环境以及不同的浓度下,仍保持优良的吸附性能。在混有多种染料的溶液中,复合结构仍表现出与对单一染料分子相同的吸附能力。如此优异的性能使RGO-Fe3O4纳米复合结构材料有望作为一种很好的吸附除污剂,在水污染的治理过程中发挥作用。
     在第四章中,我们首次在水溶液中合成得到RGO-Pd团簇复合结构。TEM/HRTEM以及XRD表征表明复合结构中存在大小约为2nm的非晶相Pd金属团簇,这些团簇能够均匀分散在还原石墨烯的表面。通过对照实验,我们证明了氨水的螯合作用可以使氨分子与Pd2+形成络合物Pd(NH3)42+,借助电荷相互作用,这一络合物能够有效吸附在GO表面,并通过高压汞灯的照射还原形成RGO-Pd团簇复合结构。通过对甲酸的催化氧化实验,我们证明了RGO-Pd团簇复合结构不但比RGO-Pd纳米颗粒复合结构具有更强的催化活性,同时也具有更高的催化稳定性,这些结果表明石墨烯金属团簇复合结构有望作为新的催化剂,在燃料电池等领域得到应用。
Graphene, a kind of2-Dimentional nanostructure with sp2carbon atoms in a honeycomb lattice, has more exceptional physical and chemical properties than other carbon materials due to its unique structure. Due to its high transparency over97%in the visible range and ultrahigh carrier mobility, it is a very promising candidate for the transparent conductive films. The graphene is frequently used as a matrix for the nanocomposites, because it has large specific surface area to disperse different nanoparticles and clusters. The produced nanocomposites possess not only both functions of pure graphene and the nanoparticle/cluster, but also some extraordinary synergetic effects, which can probably be utilized widely for fuel cells, water pollutant removal, photodetector and lithium ion batteries. Despite of many remarkable progresses made on the graphene, there is plenty of room for the rational design and controllable synthesis of graphene and its nonocomposite, as well as the spread of their application. Hence, we focused on our attention to the design, synthesis and properties of the graphene and its nanocomposite. The main contents of the dissertation can be summarized as follows:
     In chapter one, we reviewed the structure, properties and the synthesis strategies of the graphene. The status of the graphene-nanoparticles and the graphene-cluster was also briefly introduced. The motivation of our research is outlined.
     In chapter two, we report a simple, eco-friendly, and high-efficient approach to synthesize reduced graphene oxide (RGO) nanosheets at room temperature based on Zn reduction of exfoliated GO. The evolution of GO to RGO has been characterized by X-ray diffraction, UV-vis absorption spectroscopy and Raman spectroscopy. The results of X-ray photoelectron spectroscopy reveal that the atomic ration of carbon to oxygen in the RGO can be tuned from1.67to13.7through controlling the reduction time. The electrical measurement shows the conductivity of the RGO to be2.7x104s.m-1, much larger than those previously obtained by chemical reduction through other reducing agents. More importantly, the sheet resistance of the RGO film with20nm thickness can be as low as2kΩ, while a high transparency over70%with a broad spectral range from450nm to1500nm can be retained, demonstrating that the produced thin RGO film can be used as a transparent electrode material in a variety of potential application fields such as optoelectronics, photovoltaics and electrochemistry.
     In chapter three, a function nanocomposites of RGO-Fe3O4nanoparticles has been chemically synthesized with tunable RGO/Fe3O4ratio. The adsorption behaviors of a series of dyes using these nanocomposites as the adsorbent are systematically investigated through real-time monitoring of the fingerprint spectral changes of the dyes. The results show that, benefiting both from the surface property of RGO and from the magnetic property of Fe3O4, the nanocomposites possess quite a good adsorption capacity to the dyes, and can be easily and rapidly extracted from water by magnetic attraction. Most importantly, it is found that by simply annealing in moderate conditions, this adsorbent can be easily and efficiently regenerated for reuse with hardly any compromise of the adsorption capacity. Furthermore, the adsorbability of this adsorbent shows satisfactory tolerance against the variations in both pH environment and dye concentration. Even when exposed to a multi dye cocktail, this adsorbent can work well without suppressing the adsorption capacity for each of the dyes, as compared with that measured separately. The RGO-Fe3O4nanocomposites with many excellent abilities can be as a promising candidate for highly-efficient dye pollutant removal.
     In chapter four, we, for the first time, reported the successful synthesis of RGO-Pd cluster nanocomposite in water solution. HRTEM/TEM and XRD measurements reveal that the nanocomposites contain amorphous Pd clusters with the size of2nm on the matrix of RGO. Based on the results of a serious of control experiments, we proposed the possible mechanism for the preparation of nanocomposite as following. The Pd2+is first coordinated by NH3effectively to form Pd(NH3)42+, and then the Pd(NH3)42+can adsorb onto the GO surface through opposite charges interaction, whereafter both GO and Pd2+will be reduced to form the RGO-Pd cluster nanocomposite under the irradiation of high pressure mercury lamp. Compared to the RGO-PdNPs, the RGO-Pd cluster nanocomposites holds higher catalytic activity and stability for the oxygen reduction reaction of formic acid under the same conditions, making the RGO-Pd cluster as a good new catalyst for fuel cell.
引文
[1]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004,306, 666-669.
    [2]http://info.jdpj.hc360.com/2011/07/05094710041.shtml.
    [3]J. B. Hou, Y. Y. Shao, M. W. Ellis, R. B. Moore, B. L. Yi, Graphene-based electrochemical energy conversion and storage:fuel cells, supercapacitors and lithium ion batteries. Physical Chemistry Chemical Physics 2011,13,15384-15402.
    [4]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Fine structure constant defines visual transparency of graphene. Science 2008, 320,1308-1308.
    [5]S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters 2008,100.
    [6]M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff, Graphene-Based Ultracapacitors. Nano Letters 2008,8,3498-3502.
    [7]Z. X. Haiyan Sun, and Chao Gao, Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels. Adv. Mater.2013, DOI:10.1002/adma.201204576.
    [8]A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene. Nano Letters 2008,8,902-907.
    [9]C. Lee, X. D. Wei, J. W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008,321,385-388.
    [10]K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America 2005,102,10451-10453.
    [11]K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, A roadmap for graphene. Nature 2012,490,192-200.
    [12]C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physical Chemistry B 2004,108,19912-19916.
    [13]J. Hass, R. Feng, T. Li, X. Li, Z. Zong, W. A. de Heer, P. N. First, E. H. Conrad, C. A. Jeffrey, C. Berger, Highly ordered graphene for two dimensional electronics. Applied Physics Letters 2006,89.
    [14]A. Ouerghi, M. G. Silly, M. Marangolo, C. Mathieu, M. Eddrief, M. Picher, F. Sirotti, S. El Moussaoui, R. Belkhou, Large-Area and High-Quality Epitaxial Graphene on Off-Axis SiC Wafers. Acs Nano 2012,6,6075-6082.
    [15]S. K. Srivastava, A. K. Shukla, V. Vankar, V. Kumar, Growth, structure and field emission characteristics of petal like carbon nano-structured thin films. Thin Solid Films 2005,492, 124-130.
    [16]X. S. Li, W. W. Cai, L. Colombo, R. S. Ruoff, Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters 2009,9,4268-4272.
    [17]L. Colombo, X. S. Li, B. Y. Han, C. Magnuson, W. W. Cai, Y. W. Zhu, R. S. Ruoff, Growth kinetics and defects of CVD graphene on Cu. Graphene, Ge/Iii-V, and Emerging Materials for Post-Cmos Applications 2 2010,28,109-114.
    [18]X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009,324,1312-1314.
    [19]K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009,457,706-710.
    [20]H. Wang, G. Z. Wang, P. F. Bao, S. L. Yang, W. Zhu, X. Xie, W. J. Zhang, Controllable Synthesis of Submillimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation (vol 134, pg 3627,2012). Journal of the American Chemical Society 2012, 134,18476-18476.
    [21]P. Y. Teng, C. C. Lu, K. Akiyama-Hasegawa, Y. C. Lin, C. H. Yeh, K. Suenaga, P. W. Chiu, Remote Catalyzation for Direct Formation of Graphene Layers on Oxides. Nano Letters 2012,12,1379-1384.
    [22]Z. Y. Zeng, Z. Y. Yin, X. Huang, H. Li, Q. Y. He, G. Lu, F. Boey, H. Zhang, Single-Layer Semiconducting Nanosheets:High-Yield Preparation and Device Fabrication. Angewandte Chemie-International Edition 2011,50,11093-11097.
    [23]I. Janowska, K. Chizari, O. Ersen, S. Zafeiratos, D. Soubane, V. Da Costa, V. Speisser, C. Boeglin, M. Houlle, D. Begin, D. Plee, M. J. Ledoux, C. Pham-Huu, Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano Res 2010,3,126-137.
    [24]X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang, H. J. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnology 2008,3, 538-542.
    [25]H. Huang, Y. Xia, X. Y. Tao, J. Du, J. W. Fang, Y. P. Gan, W. K. Zhang, Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation-expansion-microexplosion mechanism. Journal of Materials Chemistry 2012,22, 10452-10456.
    [26]L. L. Zhang, R. Zhou, X. S. Zhao, Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry 2010,20,5983-5992.
    [27]W. S. Hummers, R. E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958,80,1339-1339.
    [28]D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, Improved Synthesis of Graphene Oxide. Acs Nano 2010,4, 4806-4814.
    [29]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007,45,1558-1565.
    [30]V. C. Tung, M. J. Allen, Y. Yang, R. B. Kaner, High-throughput solution processing of large-scale graphene. Nature Nanotechnology 2009,4,25-29.
    [31]Y. Si, E. T. Samulski, Synthesis of water soluble graphene. Nano Letters 2008,8, 1679-1682.
    [32]N. Mohanty, A. Nagaraja, J. Armesto, V. Berry, High-Throughput, Ultrafast Synthesis of Solution-Dispersed Graphene via a Facile Hydride Chemistry. Small 2010,6,226-231.
    [33]J. L. Zhang, H. J. Yang, G. X. Shen, P. Cheng, J. Y. Zhang, S. W. Guo, Reduction of graphene oxide via L-ascorbic acid. Chemical Communications 2010,46,1112-1114.
    [34]S. F. Pei, J. P. Zhao, J. H. Du, W. C. Ren, H. M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48,4466-4474.
    [35]G. X. Wang, J. Yang, J. Park, X. L. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. Journal of Physical Chemistry C 2008,112,8192-8195.
    [36]Z. J. Fan, W. Kai, J. Yan, T. Wei, L. J. Zhi, J. Feng, Y. M. Ren, L. P. Song, F. Wei, Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide. Acs Nano 2011, 5,191-198.
    [37]X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, F. B. Zhang, Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions:A Green Route to Graphene Preparation. Advanced Materials 2008,20,4490-4493.
    [38]T. N. Zhou, F. Chen, K. Liu, H. Deng, Q. Zhang, J. W. Feng, Q. A. Fu, A simple and etticient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite. Nanotechnology 2011,22.
    [39]W. F. Chen, L. F. Yan, P. R. Bangal, Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds. Journal of Physical Chemistry C 2010,114, 19885-19890.
    [40]Y. H. Ding, P. Zhang, Q. Zhuo, H. M. Ren, Z. M. Yang, Y. Jiang, A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology 2011,22.
    [41]G. Williams, B. Seger, P. V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. Acs Nano 2008,2,1487-1491.
    [42]G. Williams, P. V. Kamat, Graphene-Semiconductor Nanocomposites:Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide. Langmuir 2009,25,13869-13873.
    [43]X. M. Ma, Z. N. Liu, C. C. Qiu, T. Chen, H. Y. Ma, Simultaneous determination of hydroquinone and catechol based on glassy carbon electrode modified with gold-graphene nanocomposite. Microchimica Acta 2013,180,461-468.
    [44]X. K. Kong, Q. W. Chen, Z. Y. Sun, Enhanced SERS of the complex substrate using Au supported on graphene with pyridine and R6G as the probe molecules. Chemical Physics Letters 2013,564,54-59.
    [45]S. J. Xu, L. Yong, P. Y. Wu, One-Pot, Green, Rapid Synthesis of Flowerlike Gold Nanoparticles/Reduced Graphene Oxide Composite with Regenerated Silk Fibroin As Efficient Oxygen Reduction Electrocatalysts. Acs Applied Materials & Interfaces 2013,5,654-662.
    [46]S. J. Wang, Y. W. Zhang, H. L. Ma, Q. L. Zhang, W. G. Xu, J. Peng, J. Q. Li, Z. Z. Yu, M. L. Zhai, Ionic-liquid-assisted facile synthesis of silver nanoparticle-reduced graphene oxide hybrids by gamma irradiation. Carbon 2013,55,245-252.
    [47]S. Murphy, L. B. Huang, P. V. Kamat, Reduced Graphene Oxide-Silver Nanoparticle Composite as an Active SERS Material. Journal of Physical Chemistry C 2013,117, 4740-4747.
    [48]J. Chen, H. Bi, S. R. Sun, Y. F. Tang, W. Zhao, T. Q. Lin, D. Y. Wan, F. Q. Huang, X. D. Zhou, X. M. Xie, M. H. Jiang, Highly Conductive and Flexible Paper of 1D Silver-Nanowire-Doped Graphene. Acs Applied Materials & Interfaces 2013,5,1408-1413.
    [49]J. H. Gao, N. Ishida, S. Isaacson, D. Fujita, Controllable growth of single-layer graphene on a Pd(111) substrate (vol 50, pg 1674,2010). Carbon 2012,50,2375-2375.
    [50]M. G. Chung, D. H. Kim, D. K. Seo, T. Kim, H. U. Im, H. M. Lee, J. B. Yoo, S. H. Hong, T. J. Kang, Y. H. Kim, Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sensors and Actuators B-Chemical 2012,169,387-392.
    [51]V. Sridhar, H. J. Kim, J. H. Jung, C. Lee, S. Park, I. K. Oh, Defect-Engineered Three-Dimensional Graphene-Nanotube-Palladium Nanostructures with Ultrahigh Capacitance. Acs Nano 2012,6,10562-10570.
    [52]Y. Y. Zhao, Y. K. Zhou, B. Xiong, J. Wang, X. Chen, R. O'Hayre, Z. P. Shao, Facile single-step preparation of Pt/N-graphene catalysts with improved methanol electrooxidation activity. Journal of Solid State Electrochemistry 2013,17,1089-1098.
    [53]Y. N. Tang, Z. X. Yang, X. Q. Dai, D. W. Ma, Z. M. Fu, Formation, Stabilities, and Electronic and Catalytic Performance of Platinum Catalyst Supported on Non-Metal-Doped Graphene. Journal of Physical Chemistry C 2013,117,5258-5268.
    [54]S. H. Cho, H. N. Yang, D. C. Lee, S. H. Park, W. J. Kim, Electrochemical properties of Pt/graphene intercalated by carbon black and its application in polymer electrolyte membrane fuel cell. Journal of Power Sources 2013,225,200-206.
    [55]H. Sharma, A. K. Shukla, V. D. Vankar, Influence of Fe nanoparticles diameters on the structure and electron emission studies of carbon nanotubes and multilayer graphene. Materials Chemistry and Physics 2013,137,802-810.
    [56]Z. Y. Wang, J. R. Xiao, M. Li, Adsorption of transition metal atoms (Co and Ni) on zigzag graphene nanoribbon. Applied Physics a-Materials Science & Processing 2013,110, 235-239.
    [57]I. N. Kholmanov, S. H. Domingues, H. Chou, X. H. Wang, C. Tan, J. Y. Kim, H. F. Li, R. Piner, A. J. G. Zarbin, R. S. Ruoff, Reduced Graphene Oxide/Copper Nanowire Hybrid Films as High-Performance Transparent Electrodes. Acs Nano 2013,7,1811-1816.
    [58]Y. P. He, J. B. Zheng, One-pot ultrasonic-electrodeposition of copper-graphene nanoflowers in Ethaline for glucose sensing. Anal Methods-Uk 2013,5,767-772.
    [59]K. Zhang, X. Shi, J. K. Kim, J. S. Lee, J. H. Park, Inverse opal structured alpha-Fe2O3 on graphene thin films:enhanced photo-assisted water splitting. Nanoscale 2013,5,1939-1944.
    [60]X. Huo, J. Liu, B. D. Wang, H. L. Zhang, Z. Y. Yang, X. G. She, P. X. Xi, A one-step method to produce graphene-Fe3O4 composites and their excellent catalytic activities for three-component coupling of aldehyde, alkyne and amine. J Mater Chem A 2013,1,651-656.
    [61]W. J. Zhang, X. H. Shi, Y. X. Zhang, W. Gu, B. Y. Li, Y. Z. Xian, Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions.J Mater Chem A 2013,1,1745-1753.
    [62]B. Wang, Y. Wang, J. Park, H. Ahn, G. X. Wang, In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance. Journal of Alloys and Compounds 2011,509,7778-7783.
    [63]Y. Y. Liang, Y. G. Li, H. L. Wang, J. G. Zhou, J. Wang, T. Regier, H. J. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials 2011,10,780-786.
    [64]H. Kim, D. H. Seo, S. W. Kim, J. Kim, K. Kang, Highly reversible Co304/graphene hybrid anode for lithium rechargeable batteries. Carbon 2011,49,326-332.
    [65]S. Liu, J. Q. Tian, L. Wang, Y. L. Luo, X. P. Sun, One-pot synthesis of CuO nanoflower-decorated reduced graphene oxide and its application to photocatalytic degradation of dyes. Catal Sci Technol 2012,2,339-344.
    [66]Y. J. Mai, X. L. Wang, J. Y. Xiang, Y. Q. Qiao, D. Zhang, C. D. Gu, J. P. Tu, CuO/graphene composite as anode materials for lithium-ion batteries. Electrochimica Acta 2011, 56,2306-2311.
    [67]X. Y. Yan, X. L. Tong, Y. F. Zhang, X. D. Han, Y. Y. Wang, G. Q. Jin, Y. Qin, X. Y. Guo, Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction. Chemical Communications 2012,48,1892-1894.
    [68]S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C. H. Sow, Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor. Journal of the American Chemical Society 2012,134, 4905-4917.
    [69]T. Ghosh, J. H. Lee, Z. D. Meng, K. Ullah, C. Y. Park, V. Nikam, W. C. Oh, Graphene oxide based CdSe photocatalysts:Synthesis, characterization and comparative photocatalytic efficiency of rhodamine B and industrial dye. Materials Research Bulletin 2013,48,1268-1274.
    [70]K. H. Yu, G. H. Lu, S. Mao, K. H. Chen, H. Kim, Z. H. Wen, J. H. Chen, Selective Deposition of CdSe Nanoparticles on Reduced Graphene Oxide to Understand Photoinduced Charge Transfer in Hybrid Nanostructures. Acs Applied Materials & Interfaces 2011,3, 2703-2709.
    [71]S. R. Sun, L. A. Gao, Y. Q. Liu, J. Sun, Assembly of CdSe nanoparticles on graphene for low-temperature fabrication of quantum dot sensitized solar cell. Applied Physics Letters 2011,98.
    [72]S. Ghosh, T. Pal, D. Joung, S. I. Khondaker, One pot synthesis of RGO/PbS nanocomposite and its near infrared photoresponse study. Applied Physics a-Materials Science & Processing 2012,107,995-1001.
    [73]D. Y. Zhang, L. Gan, Y. Cao, Q. Wang, L. M. Qi, X. F. Guo, Understanding Charge Transfer at PbS-Decorated Graphene Surfaces toward a Tunable Photosensor. Advanced Materials 2012,24,2715-2720.
    [74]Z. Chen, N. Zhang, Y. J. Xu, Synthesis of graphene-ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion. Crystengcomm 2013,15,3022-3030.
    [75]T. Hu, X. Sun, H. T. Sun, M. P. Yu, F. Y. Lu, C. S. Liu, J. Lian, Flexible free-standing graphene-TiO2 hybrid paper for use as lithium ion battery anode materials. Carbon 2013,51, 322-326.
    [76]D. Zhang, F. X. Xie, P. Lin, W. C. H. Choy, Al-TiO2 Composite-Modified Single-Layer Graphene as an Efficient Transparent Cathode for Organic Solar Cells. Acs Nano 2013,7, 1740-1747.
    [77]J. Y. Lei, X. F. Lu, W. Wang, X. J. Bian, Y. P. Xue, C. Wang, L. J. Li, Fabrication of MnO2/graphene oxide composite nanosheets and their application in hydrazine detection. Rsc Adv 2012,2,2541-2544.
    [78]B. Zhao, J. S. Song, P. Liu, W. W. Xu, T. Fang, Z. Jiao, H. J. Zhang, Y. Jiang, Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. Journal of Materials Chemistry 2011,21,18792-18798.
    [79]X. J. Zhu, H. L. Dai, J. Hu, L. Ding, L. Jiang, Reduced graphene oxide-nickel oxide composite as high performance electrode materials for supercapacitors. Journal of Power Sources 2012,203,243-249.
    [80]X. H. Xia, J. P. Tu, Y. J. Mai, R. Chen, X. L. Wang, C. D. Gu, X. B. Zhao, Graphene Sheet/Porous NiO Hybrid Film for Supercapacitor Applications. Chemistry-a European Journal 2011,77,10898-10905.
    [81]J. H. Li, Y. M. Li, X. J. Lv, J. Lu, Preparation of SnQ(2)-Nanocrystal/Graphene-Nanosheets Composites and Their Lithium Storage Ability. Journal of Physical Chemistry C 2010,114,21770-21774.
    [82]I. Honma, S. M. Paek, E. Yoo, Enhanced Cyclic Performance and Lithium Storage Capacity of SnO(2)/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Letters 2009,9,72-75.
    [83]J. S. Chen, S. J. Ding, D. Y. Luan, F. Y. C. Boey, X. W. Lou, SnO(2) nanosheets grown on graphene sheets with enhanced lithium storage properties. Chemical Communications 2011,47, 7155-7157.
    [84]X. Y. Yang, X. Y. Zhang, Z. F. Liu, Y. F. Ma, Y. Huang, Y. Chen, High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. Journal of Physical Chemistry C 2008,112,17554-17558.
    [85]X. Y. Yang, X. Y. Zhang, Y. F. Ma, Y. Huang, Y. S. Wang, Y. S. Chen, Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry 2009,19,2710-2714.
    [86]X. Y. Yang, Y. S. Wang, X. Huang, Y. F. Ma, Y. Huang, R. C. Yang, H. Q. Duan, Y. S. Chen, Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. Journal of Materials Chemistry 2011,21,3448-3454.
    [87]L. M. Zhang, J. G. Xia, Q. H. Zhao, L. W. Liu, Z. J. Zhang, Functional Graphene Oxide as a Nanocarrier for Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs. Small 2010,6,537-544.
    [88]K. Zhang, L. Mao, L. L. Zhang, H. S. O. Chan, X. S. Zhao, J. S. Wu, Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. Journal of Materials Chemistry 2011,21,7302-7307.
    [89]J. J. Yoo, K. Balakrishnan, J. S. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. M. Reddy, J. Yu, R. Vajtai, P. M. Ajayan, Ultrathin Planar Graphene Supercapacitors. Nano Letters 2011,11,1423-1427.
    [90]J. P. Zheng, T. R. Jow, High energy and high power density electrochemical capacitors. Journal of Power Sources 1996,62,155-159.
    [91]S. C. Pang, M. A. Anderson, T. W. Chapman, Novel electrode materials for thin-film ultracapacitors:Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. Journal of the Electrochemical Society 2000,147,444-450.
    [92]B. Wang, J. S. Chen, Z. Y. Wang, S. Madhavi, X. W. Lou, Green Synthesis of NiO Nanobelts with Exceptional Pseudo-Capacitive Properties. Adv Energy Mater 2012,2,1188-1192.
    [93]K. R. Prasad, N. Miura, Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors. Electrochemistry Communications 2004,6,849-852.
    [94]H. L. Wang, H. S. Casalongue, Y. Y. Liang, H. J. Dai, Ni(OH)(2) Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. Journal of the American Chemical Society 2010,132,7472-7477.
    [95]X. C. Dong, X. W. Wang, L. Wang, H. Song, X. G Li, L. H. Wang, M. B. Chan-Park, C. M. Li, P. Chen, Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode. Carbon 2012,50,4865-4870.
    [96]S. Chen, J. W. Zhu, X. D. Wu, Q. F. Han, X. Wang, Graphene Oxide-MnO2 Nanocomposites for Supercapacitors. Acs Nano 2010,4,2822-2830.
    [97]Z. S. Wu, W. C. Ren, D. W. Wang, F. Li, B. L. Liu, H. M. Cheng, High-Energy MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors. Acs Nano 2010,4, 5835-5842.
    [98]L. Y. Yuan, X. H. Lu, X. Xiao, T. Zhai, J. J. Dai, F. C. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, C. G. Hu, Y. X. Tong, J. Zhou, Z. L. Wang, Flexible Solid-State Supercapacitors Based on Carbon Nanoparticles/MnO2 Nanorods Hybrid Structure. Acs Nano 2012,6,656-661.
    [99]J. R. Dahn, T. Zheng, Y. H. Liu, J. S. Xue, Mechanisms for Lithium Insertion in Carbonaceous Materials. Science 1995,270,590-593.
    [100]K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo, A Mechanism of Lithium Storage in Disordered Carbons. Science 1994,264,556-558.
    [101]E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters 2008,8, 2277-2282.
    [102]S. M. Paek, E. Yoo, I. Honma, Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Letters 2009,9,12-15.
    [103]G. M. Zhou, D. W. Wang, F. Li, L. L. Zhang, N. Li, Z. S. Wu, L. Wen, G. Q. Lu, H. M. Cheng, Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chemistry of Materials 2010,22,5306-5313.
    [104]L. Q. Tao, J. T. Zai, K. X. Wang, H. J. Zhang, M. Xu, J. Shen, Y. Z. Su, X. F. Qian, Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. Journal of Power Sources 2012,202,230-235.
    [105]L. Li, Z. P. Guo, A. J. Du, H. K. Liu, Rapid microwave-assisted synthesis of Mn3O4-graphene nanocomposite and its lithium storage properties. Journal of Materials Chemistry 2012,22,3600-3605.
    [106]X. M. Chen, G. H. Wu, J. M. Chen, X. Chen, Z. X. Xie, X. R. Wang, Synthesis of "Clean" and Well-Dispersive Pd Nanoparticles with Excellent Electrocatalytic Property on Graphene Oxide. Journal of the American Chemical Society 2011,133,3693-3695.
    [107]J. Yang, C. G Tian, L. Wang, H. G Fu, An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. Journal of Materials Chemistry 2011,21,3384-3390.
    [108]W. Qian, R. Hao, J. Zhou, M. Eastman, B. A. Manhat, Q. Sun, A. M. Goforth, J. Jiao, Exfoliated graphene-supported Pt and Pt-based alloys as electrocatalysts for direct methanol fuel cells. Carbon 2013,52,595-604.
    [109]H. J. Huang, X. Wang, Pd nanoparticles supported on low-defect graphene sheets:for use as high-performance electrocatalysts for formic acid and methanol oxidation. Journal of Materials Chemistry 2012,22,22533-22541.
    [110]J. M. Herrmann, Heterogeneous photocatalysis:fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today 1999,53,115-129.
    [111]H. D. Muller, Steinbac.F, Decomposition of Isopropyl Alcohol Photosensitized by Zinc Oxide. Nature 1970,225,728-&.
    [112]S. R. Morrison, T. Freund, Chemical Role of Holes and Electrons in Zno Photocatalysis. Journal of Chemical Physics 1967,47,1543-&.
    [113]Y. Y. Liang, H. L. Wang, H. S. Casalongue, Z. Chen, H. J. Dai, TiO2 Nanocrystals Grown on Graphene as Advanced Photocatalytic Hybrid Materials. Nano Res 2010,3,701-705.
    [114]Y. H. Ng, I. V. Lightcap, K. Goodwin, M. Matsumura, P. V. Kamat, To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films? JPhys Chem Lett 2010,1,2222-2227.
    [115]Y. S. Fu, X. Wang, Magnetically Separable ZnFe2O4-Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation. Industrial & Engineering Chemistry Research 2011,50,7210-7218.
    [116]L. Ren, X. Qi, Y. D. Liu, Z. Y. Huang, X. L. Wei, J. Li, L. W. Yang, J. X. Zhong, Upconversion-P25-graphene composite as an advanced sunlight driven photocatalytic hybrid material. Journal of Materials Chemistry 2012,22,11765-11771.
    [117]Z. G. Geng, Y. Lin, X. X. Yu, Q. H. Shen, L. Ma, Z. Y. Li, N. Pan, X. P. Wang, Highly efficient dye adsorption and removal:a functional hybrid of reduced graphene oxide-Fe304 nanoparticles as an easily regenerative adsorbent. Journal of Materials Chemistry 2012,22, 3527-3535.
    [118]X. Yang, C. L. Chen, J. X. Li, G. X. Zhao, X. M. Ren, X. K. Wang, Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. Rsc Adv 2012,2,8821-8826.
    [119]S. Shin, J. Jang, Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions. Chemical Communications 2007,4230-4232.
    [120]Y. Lin, Z. G Geng, H. B. Cai, L. Ma, J. Chen, J. Zeng, N. Pan, X. P. Wang, Ternary Graphene-TiO2-Fe3O4 Nanocomposite as a Recollectable Photocatalyst with Enhanced Durability. European Journal of Inorganic Chemistry 2012,4439-4444.
    [121]I. Fampiou, A. Ramasubramaniam, Binding of Pt Nanoclusters to Point Defects in Graphene:Adsorption, Morphology, and Electronic Structure. Journal of Physical Chemistry C 2012,116,6543-6555.
    [122]I. Cabria, M. J. Lopez, S. Fraile, J. A. Alonso, Adsorption and Dissociation of Molecular Hydrogen on Palladium Clusters Supported on Graphene. Journal of Physical Chemistry C 2012,116,21179-21189.
    [123]N. K. Jena, K. R. S. Chandrakumar, S. K. Ghosh, Water dissociation on a gold cluster: the effect of carbon nanostructures as a substrate. Rsc Adv 2012,2,10262-10267.
    [124]R. Chadha, N. Biswas, G. B. Markad, S. K. Haram, T. Mukherjee, S. Kapoor, Interaction of reduced graphene oxide with free radicals and silver clusters. Chemical Physics Letters 2012,529,54-58.
    [1]K. Badeker, concerning the electricity conductibility and the thermoelectric energy of several heavy metaibonds. Ann Phys 1907,22,749-766.
    [2]http://xjs.fl 39.com/in/detail/948529.html.
    [3]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Fine structure constant defines visual transparency of graphene. Science 2008, 320,1308-1308.
    [4]S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters 2008,100.
    [5]G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology 2008,3,270-274.
    [6]Y. F. Xu, G. K. Long, L. Huang, Y. Huang, X. J. Wan, Y. F. Ma, Y. S. Chen, Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon 2010, 48,3308-3311.
    [7]J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Applied Physics Letters 2008,92.
    [8]Z. Y. Yin, S. Y. Sun, T. Salim, S. X. Wu, X. A. Huang, Q. Y. He, Y. M. Lam, H. Zhang, Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. Acs Nano 2010,4,5263-5268.
    [9]J. X. Geng, L. J. Liu, S. B. Yang, S. C. Youn, D. W. Kim, J. S. Lee, J. K. Choi, H. T. Jung, A Simple Approach for Preparing Transparent Conductive Graphene Films Using the Controlled Chemical Reduction of Exfoliated Graphene Oxide in an Aqueous Suspension. Journal of Physical Chemistry C 2010,114,14433-14440.
    [10]D. Sui, Y. Huang, L. Huang, J. J. Liang, Y. F. Ma, Y. S. Chen, Flexible and Transparent Electrothermal Film Heaters Based on Graphene Materials. Small 2011,7,3186-3192.
    [11]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004,306, 666-669.
    [12]X. K. Lu, M. F. Yu, H. Huang, R. S. Ruoff, Tailoring graphite with the goal of achieving single sheets. Nanotechnology 1999,10,269-272.
    [13]K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009,457,706-710.
    [14]H. Wang, G. Z. Wang, P. F. Bao, S. L. Yang, W. Zhu, X. Xie, W. J. Zhang, Controllable Synthesis of Submillimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation (vol 134, pg 3627,2012). Journal of the American Chemical Society 2012, 134,18476-18476.
    [15]J. Hwang, M. Kim, D. Campbell, H. A. Alsalman, J. Y. Kwak, S. Shivaraman, A. R. Woll, A. K. Singh, R. G. Hennig, S. Gorantla, M. H. Rummeli, M. G. Spencer, van der Waals Epitaxial Growth of Graphene on Sapphire by Chemical Vapor Deposition without a Metal Catalyst. Acs Nano 2013,7,385-395.
    [16]R. S. Weatherup, B. Dlubak, S. Hofmann, Kinetic Control of Catalytic CVD for High-Quality Graphene at Low Temperatures. Acs Nano 2012,6,9996-10003.
    [17]J. Hwang, M. Kim, V. B. Shields, M. G. Spencer, CVD growth of SiC on sapphire substrate and graphene formation from the epitaxial SiC. Journal of Crystal Growth 2013,366, 26-30.
    [18]E. Velez-Fort, C. Mathieu, E. Pallecchi, M. Pigneur, M. G Silly, R. Belkhou, M. Marangolo, A. Shukla, F. Sirotti, A. Ouerghi, Epitaxial Graphene on 4H-SiC(0001) Grown under Nitrogen Flux:Evidence of Low Nitrogen Doping and High Charge Transfer. Acs Nano 2012,6, 10893-10900.
    [19]T. Gao, Y. B. Gao, C. Z. Chang, Y. B. Chen, M. X. Liu, S. B. Xie, K. He, X. C. Ma, Y. F. Zhang, Z. F. Liu, Atomic-Scale Morphology and Electronic Structure of Manganese Atomic Layers Underneath Epitaxial Graphene on SiC(0001). Acs Nano 2012,6,6562-6568.
    [20]M. Choucair, P. Thordarson, J. A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotechnology 2009,4,30-33.
    [21]W. W. Liu, J. N. Wang, Direct exfoliation of graphene in organic solvents with addition of NaOH. Chemical Communications 2011,47,6888-6890.
    [22]X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G L. Zhang, F. B. Zhang, Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions:A Green Route to Graphene Preparation. Advanced Materials 2008,20,4490-4493.
    [23]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007,45,1558-1565.
    [24]V. C. Tung, M. J. Allen, Y. Yang, R. B. Kaner, High-throughput solution processing of large-scale graphene. Nature Nanotechnology 2009,4,25-29.
    [25]Y. Si, E. T. Samulski, Synthesis of water soluble graphene. Nano Letters 2008,8, 1679-1682.
    [26]J. L. Zhang, H. J. Yang, G. X. Shen, P. Cheng, J. Y. Zhang, S. W. Guo, Reduction of graphene oxide via L-ascorbic acid. Chemical Communications 2010,46,1112-1114.
    [27]N. Mohanty, A. Nagaraja, J. Armesto, V. Berry, High-Throughput, Ultrafast Synthesis of Solution-Dispersed Graphene via a Facile Hydride Chemistry. Small 2010,6,226-231.
    [28]S. F. Pei, J. P. Zhao, J. H. Du, W. C. Ren, H. M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48,4466-4474.
    [29]Z. J. Fan, W. Kai, J. Yan, T. Wei, L. J. Zhi, J. Feng, Y. M. Ren, L. P. Song, F. Wei, Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide. Acs Nano 2011, 5,191-198.
    [30]G X. Wang, J. Yang, J. Park, X. L. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. Journal of Physical Chemistry C 2008,112,8192-8195.
    [31]S. L. Mu, The electrocatalytic oxidative polymerization of o-phenylenediamine by reduced graphene oxide and properties of poly(o-phenylenediamine). Electrochimica Acta 2011, 56,3764-3772.
    [32]W. F. Chen, L. F. Yan, P. R. Bangal, Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds. Journal of Physical Chemistry C 2010,114, 19885-19890.
    [33]T. N. Zhou, F. Chen, K. Liu, H. Deng, Q. Zhang, J. W. Feng, Q. A. Fu, A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite. Nanotechnology 2011,22.
    [34]D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, Improved Synthesis of Graphene Oxide. Acs Nano 2010,4, 4806-4814.
    [35]B. F. Machado, P. Serp, Graphene-based materials for catalysis. Catal Sci Technol 2012, 2,54-75.
    [36]Y. H. Ding, P. Zhang, Q. Zhuo, H. M. Ren, Z. M. Yang, Y. Jiang, A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology 2011,22.
    [37]J. I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J. M. D. Tascon, Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide. Langmuir 2009,25,5957-5968.
    [38]H. L. Guo, X. F. Wang, Q. Y. Qian, F. B. Wang, X. H. Xia, A Green Approach to the Synthesis of Graphene Nanosheets. Acs Nano 2009,3,2653-2659.
    [39]A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, B. F. Sels, Bandgap opening in oxygen plasma-treated graphene. Nanotechnology 2010,21.
    [40]L. G Cancado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, A. Jorio, Influence of the atomic structure on the Raman spectra of graphite edges. Physical Review Letters 2004,93.
    [41]M. Zhou, Y. L. Wang, Y. M. Zhai, J. F. Zhai, W. Ren, F. A. Wang, S. J. Dong, Controlled Synthesis of Large-Area and Patterned Blectrochemically Reduced Graphene Oxide Films. Chemistry-a European Journal 2009,15,6116-6120.
    [42]D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G Evmenenko, S. T. Nguyen, R. S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 2007, 448,457-460.
    [43]H. Chen, M. B. Muller, K. J. Gilmore, G. G Wallace, D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper. Advanced Materials 2008,20,3557-+.
    [44]Z. Geng, Y. Lin, X. Yu, Q. Shen, L. Ma, Z. Li, N. Pan, X. Wang, Highly efficient dye adsorption and removal:a functional hybrid of reduced graphene oxide-Fe3O4 nanoparticles as an easily regenerative adsorbent. Journal of Materials Chemistry 2012,22,3527-3535.
    [45]X. X. Yu, H. B. Cai, W. H. Zhang, X. J. Li, N. Pan, Y. Luo, X. P. Wang, J. G Hou, Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets. Acs Nano 2011,5,952-958.
    [1]http://www.cnki.com.cn/Article/CJFDTotal-SCNJ200502002.htm.
    [2]http://news.sohu.com/s2013/waterpollution.
    [3]X. Yang, C. Chen, J. Li, G. Zhao, X. Ren, X. Wang, Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RscAdv 2012,2,8821-8826.
    [4]X. L. Yu, S. R. Tong, M. F. Ge, J. C. Zuo, C. Y. Cao, W. G. Song, One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal. J Mater Chem A 2013, 1,959-965.
    [5]http://www.chinairr.org/data/D13/201303/16-125659.html.
    [6]http://www.pvc123.com/news/yjyanliao.html.
    [7]M. A. Al-Ghouti, M. A. M. Khraisheh, S. J. Allen, M. N. Ahmad, The removal of dyes from textile wastewater:a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J Environ Manage 2003,69,229-238.
    [8]Y. Lin, Z. Geng, H. Cai, L. Ma, J. Chen, J. Zeng, N. Pan, X. Wang, Ternary Graphene-TiO2-Fe3O4 Nanocomposite as a Recollectable Photocatalyst with Enhanced Durability. European Journal of Inorganic Chemistry 2012,4439-4444.
    [9]B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Highly Efficient, Solar Active, and Reusable Photocatalyst:Zr-Loaded Ag-ZnO for Reactive Red 120 Dye Degradation with Synergistic Effect and Dye-Sensitized Mechanism. Langmuir 2013,29,939-949.
    [10]X. H. Zhang, U. Veikko, J. Mao, P. Cai, T. Y. Peng, Visible-Light-Induced Photocatalytic Hydrogen Production over Binuclear RuII-Bipyridyl Dye-Sensitized TiO2 without Noble Metal Loading. Chemistry-a European Journal 2012,18, 12103-12111.
    [11]S. Bai, X. P. Shen, X. Zhong, Y. Liu, G X. Zhu, X. Xu, K. M. Chen, One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon 2012,50,2337-2346.
    [12]X. H. Xue, X. S. He, Y. H. Zhao, Adsorptive properties of acid-heat activated rectorite for Rhodamine B removal:equilibrium, kinetic studies. Desalin Water Treat 2012,37,259-267.
    [13]X. Y. Li, S. Y. Song, X. Wang, D. P. Liu, H. J. Zhang, Self-assembled 3D flower-like hierarchical Fe3O4/KxMnO2 core-shell architectures and their application for removal of dye pollutants. Crystengcomm 2012,14,2866-2870.
    [14]J. Anandkumar, B. Mandal, Adsorption of chromium(VI) and Rhodamine B by surface modified tannery waste:Kinetic, mechanistic and thermodynamic studies. Journal of Hazardous Materials 2011,186,1088-1096.
    [15]P. Ravichandran, A. Sowmya, S. Meenakshi, Equilibrium and Kinetic Studies on the Removal of Basic Violet 10 from Aqueous Solutions Using Activated Carbons Prepared from Industrial Wastes. Bioremediat J 2012,16,86-96.
    [16]V. K. Gupta, R. Jain, M. N. Siddiqui, T. A. Saleh, S. Agarwal, S. Malati, D. Pathak, Equilibrium and Thermodynamic Studies on the Adsorption of the Dye Rhodamine-B onto Mustard Cake and Activated Carbon. J Chem Eng Data 2010,55, 5225-5229.
    [17]L. Li, S. X. Liu, T. Zhu, Application of activated carbon derived from scrap tires for adsorption of Rhodamine B. Journal of Environmental Sciences-China 2010, 22,1273-1280.
    [18]W. Q. Cai, J. G. Yu, M. Jaroniec, Template-free synthesis of hierarchical spindle-like gamma-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water. Journal of Materials Chemistry 2010,20, 4587-4594.
    [19]P. A. Raut, M. Dutta, S. Sengupta, J. K. Basu, Alumina-carbon composite as an effective adsorbent for removal of Methylene Blue and Alizarin Red-s from aqueous solution. Indian Journal of Chemical Technology 2013,20,15-20.
    [20]W. C. Hao, Y. Xi, J. W. Hu, T. M. Wang, Y. Du, X. L. Wang, Magnetic properties and microstructures of iron oxide@mesoporous silica core-shell composite for applications in magnetic dye separation. Journal of Applied Physics 2012,111.
    [21]P. V. Messina, P. C. Schulz, Adsorption of reactive dyes on titania-silica mesoporous materials. Journal of Colloid and Interface Science 2006,299,305-320.
    [22]T. A. Khan, S. Dahiya, I. Ali, Use of kaolinite as adsorbent:Equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution. Appl Clay Sci 2012,69,58-66.
    [23]J. N. Ganguli, S. Agarwal, Removal of a Basic Dye from Aqueous Solution by a Natural Kaolinitic Clay-Adsorption and Kinetic Studies. Adsorption Science & Technology 2012,30,171-182.
    [24]J. P. Zhao, W. C. Ren, H. M. Cheng, Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. Journal of Materials Chemistry 2012,22,20197-20202.
    [25]A. Debrassi, T. Baccarin, C. A. Demarchi, N. Nedelko, A. Slawska-Waniewska, P. Dluzewski, M. Bilska, C. A. Rodrigues, Adsorption of Remazol Red 198 onto magnetic N-lauryl chitosan particles:equilibrium, kinetics, reuse and factorial design. Environmental Science and Pollution Research 2012,19, 1594-1604.
    [26]M. Chen, T. Shang, W. Fang, G. W. Diao, Study on adsorption and desorption properties of the starch grafted p-tert-butyl-calix[n]arene for butyl Rhodamine B solution. Journal of Hazardous Materials 2011,185,914-921.
    [27]C. K. Lee, S. S. Liu, L. C. Juang, C. C. Wang, K. S. Lin, M. D. Lyu, Application of MCM-41 for dyes removal from wastewater. Journal of Hazardous Materials 2007,147,997-1005.
    [28]C. Kannan, K. Muthuraja, M. R. Devi, Hazardous dyes removal from aqueous solution over mesoporous aluminophosphate with textural porosity by adsorption. Journal of Hazardous Materials 2013,244,10-20.
    [29]P. L. Liu, Y. P. Xu, P. Zheng, H. W. Tong, Y. X. Liu, Z. G. Zha, Q. D. Su, S. M. Liu, Mesoporous Silica-coated Magnetic Nanoparticles for Mixed Hemimicelles Solid-phase Extraction of Phthalate Esters in Environmental Water Samples with Liquid Chromatographic Analysis. Journal of the Chinese Chemical Society 2013,60, 53-62.
    [30]C. T. Weber, E. L. Foletto, L. Meili, Removal of Tannery Dye from Aqueous Solution Using Papaya Seed as an Efficient Natural Biosorbent. Water Air Soil Poll 2013,224.
    [31]L. Zhou, C. Gao, W. J. Xu, Magnetic Dendritic Materials for Highly Efficient Adsorption of Dyes and Drugs. Acs Applied Materials & Interfaces 2010,2, 1483-1491.
    [32]G. D. Sheng, Y. M. Li, X. Yang, X. M. Ren, S. T. Yang, J. Hu, X. K. Wang, Efficient removal of arsenate by versatile magnetic graphene oxide composites. Rsc Adv 2012,2,12400-12407.
    [33]F. Z. Mou, J. G. Guan, H. R. Ma, L. L. Xu, W. D. Shi, Magnetic Iron Oxide Chestnutlike Hierarchical Nanostructures:Preparation and Their Excellent Arsenic Removal Capabilities. Acs Applied Materials & Interfaces 2012,4,3987-3993.
    [34]H. Parham, B. Zargar, R. Shiralipour, Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole. Journal of Hazardous Materials 2012,205,94-100.
    [35]Y. Y. Wang, B. Li, L. M. Zhang, P. Li, L. L. Wang, J. Zhang, Multifunctional Magnetic Mesoporous Silica Nanocomposites with Improved Sensing Performance and Effective Removal Ability toward Hg(II). Langmuir 2012,28,1657-1662.
    [36]X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du, H. Li, Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles. Chemical Engineering Journal 2012,184,132-140.
    [37]Y C. Sharma, V. Srivastava, V. K. Singh, S. N. Kaul, C. H. Weng, Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environmental Technology 2009,30,583-609.
    [38]L. L. Fan, C. N. Luo, M. Sun, H. M. Qiu, Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal. Journal of Materials Chemistry 2012,22,24577-24583.
    [39]X. Yang, C. L. Chen, J. X. Li, G. X. Zhao, X. M. Ren, X. K. Wang, Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. Rsc Adv 2012,2,8821-8826.
    [40]J. F. Liu, Z. S. Zhao, G. B. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science & Technology 2008,42,6949-6954.
    [41]A. R. Mandavian, M. A. S. Mirrahimi, Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chemical Engineering Journal 2010,159,264-271.
    [42]S. H. Xuan, F. Wang, J. M. Y. Lai, K. W. Y. Sham, Y. X. J. Wang, S. F. Lee, J. C. Yu, C. H. K. Cheng, K. C. F. Leung, Synthesis of Biocompatible, Mesoporous Fe3O4 Nano/Microspheres with Large Surface Area for Magnetic Resonance Imaging and Therapeutic Applications. Acs Applied Materials & Interfaces 2011,3,237-244.
    [43]G. M. Zhou, D. W. Wang, F. Li, L. L. Zhang, N. Li, Z. S. Wu, L. Wen, G. Q. Lu, H. M. Cheng, Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chemistry of Materials 2010,22,5306-5313.
    [44]M. Zhang, D. N. Lei, X. M. Yin, L. B. Chen, Q. H. Li, Y. G. Wang, T. H. Wang, Magnetite/graphene composites:microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. Journal of Materials Chemistry 2010,20,5538-5543.
    [45]H. P. Cong, J. J. He, Y. Lu, S. H. Yu, Water-Soluble Magnetic-Functionalized Reduced Graphene Oxide Sheets:In situ Synthesis and Magnetic Resonance Imaging Applications. Small 2010,6,169-173.
    [46]L. L. Ren, S. Huang, W. Fan, T. X. Liu, One-step preparation of hierarchical superparamagnetic iron oxide/graphene composites via hydrothermal method. Applied Surface Science 2011,258,1132-1138.
    [47]X. B. Luo, C. C. Wang, S. L. Luo, R. Z. Dong, X. M. Tu, G. S. Zeng, Adsorption of As (III) and As (V) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nanocomposites. Chemical Engineering Journal 2012,187, 45-52.
    [4.8]H. S. Yin, Y. L. Zhou, Q. A. Ma, S. Y. Ai, Q. P. Chen, L. S. Zhu, Electrocatalytic oxidation behavior of guanosine at graphene, chitosan and Fe3O4 nanoparticles modified glassy carbon electrode and its determination. Talanta 2010, 82,1193-1199.
    [49]Y. Ye, T. Kong, X. Yu, Y. Wu, K. Zhang, X. Wang, Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta 2012,89, 417-421.
    [50]J. J. Liang, Y. F. Xu, D. Sui, L. Zhang, Y. Huang, Y. F. Ma, F. F. Li, Y. S. Chen, Flexible, Magnetic, and Electrically Conductive Graphene/Fe3O4 Paper and Its Application For Magnetic-Controlled Switches. Journal of Physical Chemistry C 2010,114,17465-17471.
    [51]X. Y. Yang, Y. S. Wang, X. Huang, Y. F. Ma, Y. Huang, R. C. Yang, H. Q. Duan, Y. S. Chen, Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. Journal of Materials Chemistry 2011, 21,3448-3454.
    [52]X. Y. Yang, X. Y. Zhang, Y. F. Ma, Y. Huang, Y. S. Wang, Y. S. Chen, Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry 2009,19,2710-2714.
    [53]X. Y. Yang, X. Y. Zhang, Z. F. Liu, Y. F. Ma, Y. Huang, Y. Chen, High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. Journal of Physical Chemistry C 2008,112,17554-17558.
    [54]V. Chandra, J. Park, Y. Chun, J. W. Lee, I. C. Hwang, K. S. Kim, Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. Acs Nano 2010,4,3979-3986.
    [55]S. Shin, J. Jang, Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions. Chemical Communications 2007,4230-4232.
    [56]D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009,458,872-U5.
    [57]D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, Improved Synthesis of Graphene Oxide. Acs Nano 2010,4,4806-4814.
    [58]Z. G. Geng, G. H. Zhang, Y. Lin, X. X. Yu, W. Z. Ren, Y. K. Wu, N. Pan, X. P. Wang, A Green and Mild Approach of Synthesis of Highly-Conductive Graphene Film by Zn Reduction of Exfoliated Graphite Oxide. Chinese Journal of Chemical Physics 2012,25,494-500.
    [59]J. L. Zhang, H. J. Yang, G. X. Shen, P. Cheng, J. Y. Zhang, S. W. Guo, Reduction of graphene oxide via L-ascorbic acid. Chemical Communications 2010,46, 1112-1114.
    [60]S. F. Pei, J. P. Zhao, J. H. Du, W. C. Ren, H. M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010,48,4466-4474.
    [61]J. P. Zhao, S. F. Pei, W. C. Ren, L. B. Gao, H. M. Cheng, Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films. Acs Nano 2010,4,5245-5252.
    [62]X. G. Mei, J. Y. Ouyang, Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 2011,49,5389-5397.
    [63]J. X. Geng, L. J. Liu, S. B. Yang, S. C. Youn, D. W. Kim, J. S. Lee, J. K. Choi, H. T. Jung, A Simple Approach for Preparing Transparent Conductive Graphene Films Using the Controlled Chemical Reduction of Exfoliated Graphene Oxide in an Aqueous Suspension. Journal of Physical Chemistry C 2010,114,14433-14440.
    [64]G. Z. Kyzas, M. Kostoglou, N. K. Lazaridis, Relating Interactions of Dye Molecules with Chitosan to Adsorption Kinetic Data. Langmuir 2010,26,9617-9626.
    [65]Z. Y. Yin, S. Y. Sun, T. Salim, S. X. Wu, X. A. Huang, Q. Y. He, Y. M. Lam, H. Zhang, Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. Acs Nano 2010,4,5263-5268.
    [66]J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Applied Physics Letters 2008,92.
    [67]Y. F. Xu, G. K. Long, L. Huang, Y. Huang, X. J. Wan, Y. F. Ma, Y. S. Chen, Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon 2010,48,3308-3311.
    [68]Y. S. Ho, G McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research 2000,34,735-742.
    [69]S. A. Wasay, M. J. Haron, A. Uchiumi, S. Tokunaga, Removal of arsenite and arsenate ions from aqueous solution by basic yttrium carbonate. Water Research 1996,30,1143-1148.
    [70]H. M. H. Gad, A. A. El-Sayed, Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. Journal of Hazardous Materials 2009,168,1070-1081.
    [1]http://baike.baidu.com/view/1202.htm.
    [2]D. H. Ye, Z. G. Zhan, A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells. Journal of Power Sources 2013,231,285-292.
    [3]W. Yaipimai, R. Pornprasertsuk, Fabrication of Pt, Pt-Cu, and Pt-Sn nanofibers for direct ethanol protonic ceramic fuel cell application. Journal of Materials Science 2013,48,4059-4072.
    [4]J. Xuan, H. Z. Wang, D. Y. C. Leung, M. K. H. Leung, H. Xu, L. Zhang, Y. Shen, Theoretical Graetz-Damkohler modeling of an air-breathing microfluidic fuel cell. Journal of Power Sources 2013,231,1-5.
    [5]J. J. Ge, Y. W. Zhang, C. P. Liu, T. H. Lu, J. H. Liao, W. Xing, Hydrogen Vanadate as an Effective Stabilizer of Pd Nanocatalysts for Formic Acid Electroxidation. Journal of Physical Chemistry C 2008,112,17214-17218.
    [6]M. S. Yalfani, S. Contreras, F. Medina, J. Sueiras, Direct generation of hydrogen peroxide from formic acid and O(2) using heterogeneous Pd/gamma-Al(2)O(3) catalysts. Chemical Communications 2008,3885-3887.
    [7]S. D. Yang, X. G. Zhang, H. Y. Mi, X. G. Ye, Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid. Journal of Power Sources 2008,175,26-32.
    [8]Y. J. Huang, J. H. Liao, C. P. Liu, T. H. Lu, W. Xing, The size-controlled synthesis of Pd/C catalysts by different solvents for formic acid electrooxidation. Nanotechnology 2009,20.
    [9]S. Yang, H. Lee, Atomically Dispersed Platinum on Gold Nano-Octahedra with High Catalytic Activity on Formic Acid Oxidation. Acs Catal 2013,5,437-443.
    [10]Y. Kim, H. J. Kim, Y. S. Kim, S. M. Choi, M. H. Seo, W. B. Kim, Shape-and Composition-Sensitive Activity of Pt and PtAu Catalysts for Formic Acid Electrooxidation. Journal of'Physical Chemistry C 2012,116,18093-18100.
    [11]L. Ma, C. M. Wang, M. Gong, L. W. Liao, R. Long, J. G. Wang, D. Wu, W. Zhong, M. J. Kim, Y. X. Chen, Y. Xie, Y. J. Xiong, Control Over the Branched Structures of Platinum Nanocrystals for Electrocatalytic Applications. Acs Nano 2012,6,9797-9806.
    [12]H. J. Yin, H. J. Tang, D. Wang, Y. Gao, Z. Y. Tang, Facile Synthesis of Surfactant-Free Au Cluster/Graphene Hybrids for High-Performance Oxygen Reduction Reaction. Acs Nano 2012, 6,8288-8297.
    [13]W. Chen, Y. W. Tang, J. C. Bao, Y. Gao, C. P. Liu, W. Xing, T. H. Lu, Study of carbon-supported Au catalyst as the cathodic catalyst in a direct formic acid fuel cell prepared using a polyvinyl alcohol protection method. Journal of Power Sources 2007,167,315-318.
    [14]M. Y. Duan, R. Liang, N. Tian, Y. J. Li, E. S. Yeung, Self-assembly of Au-Pt core-shell nanoparticles for effective enhancement of methanol electrooxidation. Electrochimica Acta 2013, 87,432-437.
    [15]N. M. Markovic, R. R. Adzic, B. D. Cahan, E. B. Yeager, Structural Effects in Electrocatalysis-Oxygen Reduction on Platinum Low-Index Single-Crystal Surfaces in Perchloric-Acid Solutions. Journal of Electroanalytical Chemistry 1994,377,249-259.
    [16]Y. Xu, Y. Q. Yuan, A. J. Ma, X. Wu, Y. Liu, B. Zhang, Composition-Tunable Pt-Co Alloy Nanoparticle Networks:Facile Room-Temperature Synthesis and Supportless Electrocatalytic Applications. Chemphyschem 2012,13,2601-2609.
    [17]J. H. Jang, C. Pak, Y. U. Kwon, Ultrasound-assisted polyol synthesis and electrocatalytic characterization of PdxCo alloy and core-shell nanoparticles. Journal of Power Sources 2012,201, 179-183.
    [18]D. D. Tu, B. Wu, B. X. Wang, C. Deng, Y. Gao, A highly active carbon-supported PdSn catalyst for formic acid electrooxidation. Applied Catalysis B-Environmental 2011,103,163-168.
    [19]C. B. Molina, L. Calvo, M. A. Gilarranz, J. A. Casas, J. J. Rodriguez, Hydrodechlorination of 4-chlorophenol in aqueous phase with Pt-Al pillared clays using formic acid as hydrogen source. Appl Clay Sci 2009,45,206-212.
    [20]Z. Yin, W. Zhou, Y. J. Gao, D. Ma, C. J. Kiely, X. H. Bao, Supported Pd-Cu Bimetallic Nanoparticles That Have High Activity for the Electrochemical Oxidation of Methanol. Chemistry-a European Journal 2012,18,4887-4893.
    [21]Y. W. Lee, B. Y. Kim, K. H. Lee, W. J. Song, G Z. Cao, K. W. Park, Synthesis of Monodispersed Pt-Ni Alloy Nanodendrites and Their Electrochemical Properties. International Journal of Electrochemical Science 2013,8,2305-2312.
    [22]W. Chen, J. M. Kim, S. H. Sun, S. W. Chen, Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid. Langmuir 2007,23,11303-11310.
    [23]D. Xu, Z. P. Liu, H. Z. Yang, Q. S. Liu, J. Zhang, J. Y. Fang, S. Z. Zou, K. Sun, Solution-Based Evolution and Enhanced Methanol Oxidation Activity of Monodisperse Platinum-Copper Nanocubes. Angewandte Chemie-International Edition 2009,48,4217-4221.
    [24]M. L. Pang, J. Y. Hu, H. C. Zeng, Synthesis, Morphological Control, and Antibacterial Properties of Hollow/Solid Ag2S/Ag Heterodimers. Journal of the American Chemical Society 2010,132,10771-10785.
    [25]H. J. Lee, S. E. Habas, G. A. Somorjai, P. D. Yang, Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. Journal of the American Chemical Society 2008,130,5406-+.
    [26]C. Bock, C. Paquet, M. Couillard, G. A. Botton, B. R. MacDougall, Size-selected synthesis of PtRu nano-catalysts:Reaction and size control mechanism. Journal of the American Chemical Society 2004,126,8028-8037.
    [27]W. P. Zhou, A. Lewera, R. Larsen, R. I. Masel, P. S. Bagus, A. Wieckowski, Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. Journal of Physical Chemistry B 2006,110,13393-13398.
    [28]S. U. Son, Y. Jang, K. Y. Yoon, E. Kang, T. Hyeon, Facile synthesis of various phosphine-stabilized monodisperse palladium nanoparticles through the understanding of coordination chemistry of the nanoparticles. Nano Letters 2004,4,1147-1151.
    [29]M. P. Pileni, The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Materials 2003,2,145-150.
    [30]S. Z. Wang, L. Kuai, Y. C. Huang, X. Yu, Y. D. Liu, W. Z. Li, L. Chen, B. Y. Geng, A Highly Efficient, Clean-Surface, Porous Platinum Electrocatalyst and the Inhibition Effect of Surfactants on Catalytic Activity. Chemistry-a European Journal 2013,19,240-248.
    [31]Z. L. Hu, Y. F. Chen, H. Chen, Comparative study on the formation mechanism of graphene oxide-derived carbon/Pd composites. Micro & Nano Letters 2011,6,709-712.
    [32]T. Jin, S. J. Guo, J. L. Zuo, S. H. Sun, Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid. Nanoscale 2013,5,160-163.
    [33]Y. J. Wang X, Yin H, Song R, Tang Z., "Raisin Bun"-Like Nanocomposites of Palladium Clusters and Porphyrin for Superior Formic Acid Oxidation. Adv. Mater.2013, DOI; 10.1002/adma.201205168.
    [34]D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 2008,3,101-105.
    [35]Y. Zhou, Q. L. Bao, L. A. L. Tang, Y. L. Zhong, K. P. Loh, Hydrothermal Dehydration for the "Green" Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chemistry of Materials 2009,21,2950-2956.
    [36]H. L. Guo, X. F. Wang, Q. Y. Qian, F. B. Wang, X. H. Xia, A Green Approach to the Synthesis of Graphene Nanosheets. Acs Nano 2009,3,2653-2659.
    [37]Z. G. Geng, G. H. Zhang, Y. Lin, X. X. Yu, W. Z. Ren, Y. K. Wu, N. Pan, X. P. Wang, A Green and Mild Approach of Synthesis of Highly-Conductive Graphene Film by Zn Reduction of Exfoliated Graphite Oxide. Chinese Journal of Chemical Physics 2012,25,494-500.
    [38]P. B. Liu, Y Huang, L. Wang, A facile synthesis of reduced graphene oxide with Zn powder under acidic condition. Materials Letters 2013,91,125-128.
    [39]Y. H. Ding, P. Zhang, Q. Zhuo, H. M. Ren, Z. M. Yang, Y. Jiang, A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology 2011,22.
    [40]Y. Matsumoto, M. Morita, S. Y, Kim, Y. Watanabe, M. Koinuma, S. Ida, Photoreduction of Graphene Oxide Nanosheet by UV-light Illumination under H-2. Chemistry Letters 2010,39, 750-752.
    [41]Z. G. Geng, Y. Lin, X. X. Yu, Q. H. Shen, L. Ma, Z. Y. Li, N. Pan, X. P. Wang, Highly efficient dye adsorption and removal:a functional hybrid of reduced graphene oxide-Fe304 nanoparticles as an easily regenerative adsorbent. Journal of Materials Chemistry 2012,22, 3527-3535.
    [42]Y. Li, X. B. Fan, J. J. Qi, J. Y. Ji, S. L. Wang, G L. Zhang, F. B. Zhang, Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction. Nano Res 2010,3, 429-437.
    [43]Y. M. Zhang, X. Yuan, Y. Wang, Y. Chen, One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline. Journal of Materials Chemistry 2012,22,7245-7251.
    [44]X. M. Chen, G. H. Wu, J. M. Chen, X. Chen, Z. X. Xie, X. R. Wang, Synthesis of "Clean" and Well-Dispersive Pd Nanoparticles with Excellent Electrocatalytic Property on Graphene Oxide. Journal of the American Chemical Society 2011,133,3693-3695.
    [45]D. S. Yuan, X. L. Yuan, W. J. Zou, F. L. Zeng, X. J. Huang, S. L. Zhou, Synthesis of graphitic mesoporous carbon from sucrose as a catalyst support for ethanol electro-oxidation. Journal of Materials Chemistry 2012,22,17820-17826.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700