用户名: 密码: 验证码:
两种叶菜镉、铅低积累品种筛选及其快速鉴别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以受重金属污染较为严重的芹菜(Apium graveolens L.))和油麦菜(Lactuca dolichophylla Kitam.)为研究对象,通过盆栽试验,研究了27个芹菜品种和28个油麦菜品种吸收积累Cd、Pb的品种间差异,对Cd、Pb的转运能力,茎叶积累Cd、Pb的稳定性及Cd+Pb-PSC的筛选(Pollution-safe cultivar,指在一定污染水平的土壤中作物可食部分吸收积累污染物含量符合食品安全标准、并且经过验证确认其污染物低量积累特性是稳定的一类品种,简称PSC)。以本研究和前期试验筛选到的不同蔬菜Cd积累典型品种为研究对象,研究了其市售种子中Cd含量和植物发育初期幼苗中NaCl提取态、稀HCl提取态Cd含量在同种蔬菜不同Cd积累能力品种间的差异。利用基因克隆和基因测序技术,研究了10个油麦菜Cd积累典型品种LdPCS1基因单核苷酸多态性(single nucleotide polymorphism, SNP)。在此基础上,探讨了叶用蔬菜Cd低积累基因型的快速筛选方法。主要研究结果如下:
     一、通过盆栽试验研究了3个土壤Cd含量(L :0.142 mg kg(-1),M:0.431 mg kg(-1);H:0.631 mg kg(-1))下27个芹菜品种对Cd积累的品种间差异,对供试芹菜品种茎叶生物量和Cd含量的二元方差分析表明,由品种、土壤Cd处理以及品种×土壤Cd处理间交互作用引起的茎叶生物量和Cd含量变异均达到极显著水平(p<0.01),茎叶Cd含量(基于鲜重)在品种间的变异范围分别为0.046 - 0.218 mg kg(-1)、0.270 - 0.633 mg kg(-1)和0.208 - 0.686 mg kg(-1),变异系数分别为26.9%、20.9%和24.5%。当土壤Cd含量为0.142mg kg(-1)时,有1个品种超出国际食品法典委员会(CAC)标准中叶菜Cd含量最高限值(0.2mg kg(-1) FW),超标率3.7%,当土壤Cd含量为0.431mg kg(-1)和0.631mg kg(-1)时,供试芹菜品种茎叶Cd含量全部超标。因此,当土壤Cd含量> 0.431mg kg(-1)时不存在Cd-PSC,说明芹菜是非常容易受Cd污染的蔬菜种类。而有8个品种(No.7、9、20、22、24、25、26、28)具有相对较低的茎叶Cd含量及较大的生物量,可作为典型Cd低积累品种。No.2可作为Cd高积累品种。
     二、通过盆栽试验研究了芹菜8个Cd低积累品种和1个Cd高积累品种(No.2)对Cd、Pb胁迫响应的品种间差异,对供试芹菜品种茎叶Cd、Pb含量的二元方差分析表明,由品种、Cd或Pb处理以及品种×Cd或品种×Pb处理的交互作用引起的变异均达到显著水平(p<0.05),在土壤Cd含量为0.35 mg kg(-1),Pb含量为49.89 mg kg(-1)时,5个品种(No.7、9、22、24、25)可作为Cd-PSCs、Pb-PSCs及Cd+Pb-PSCs。其中No.25在高Cd胁迫下(土壤Cd含量0.599~0.667 mg kg(-1)),其茎叶Cd含量仅是No.2(Cd高积累品种)茎叶Cd含量的41.93%~59.70%,其茎叶Pb含量在土壤Pb含量高达231 mg kg(-1)时能够接近CAC标准的Pb含量最大限值,可作为适合于农业推广的芹菜Cd+Pb-PSC品种,可有效降低Cd、Pb对芹菜的污染。
     三、通过盆栽试验研究了3个土壤Cd含量下(L :0.129 mg kg(-1),M:0.352 mg kg(-1);H:1.253 mg kg(-1))下28个油麦菜品种对Cd积累的品种间差异,对供试油麦菜品种茎叶生物量和Cd含量的二元方差分析表明,由品种、土壤Cd处理以及品种×土壤Cd处理间交互作用引起的茎叶生物量和Cd含量变异均达到极显著水平(p<0.01),茎叶Cd含量(基于鲜重)在品种间的变异范围分别为0.027 - 0.140 mg kg(-1)、0.084 - 0.400 mg kg(-1)和0.358 - 1.715 mg kg(-1),变异系数分别为38.5%、36.1%和46.5%。当土壤Cd含量为0.129mg kg(-1)时,供试油麦菜品种茎叶Cd含量全部符合国际食品法典委员会(CAC)标准中叶菜Cd含量最高限值(0.2mg kg(-1) FW)。当土壤Cd含量为0.352mg kg(-1)时,有13个品种的茎叶Cd含量低于0.2 mg kg(-1) FW,超标率为53.6%。当土壤Cd含量为1.253 mg kg(-1)时,供试油麦菜品种茎叶Cd含量全部超标。可见,当土壤Cd含量> 0.352mg kg(-1)时不存在Cd-PSC,6个品种(No.3、6、7、8、10、11)具有相对较低的茎叶Cd含量及较大的生物量,可作为Cd-PSCs,而No.19、23、24具有较高的茎叶Cd含量和较大的生物量,可作为Cd高积累品种用于后继研究。
     四、通过盆栽试验研究了油麦菜6个Cd低积累品种和1个Cd高积累品种(No.19)对Cd、Pb胁迫响应的品种间差异,对供试油麦菜品种茎叶Cd、Pb含量的二元方差分析表明,由品种、Cd或Pb处理以及品种×Cd或品种×Pb处理的交互作用引起的变异均达到极显著水平(p<0.01),在Cd含量小于0.352 mg kg(-1),Pb含量小于247 mg kg(-1)的Cd、Pb污染土壤中,品种No.7、11、8、10可以作为Cd+Pb-PSCs。
     五、分析了前期筛选得到的芹菜、油麦菜、蕹菜、苋菜、菜心Cd积累典型品种市售种子中Cd含量,结果表明,芹菜市售种子中Cd含量在Cd高积累和低积累品种间差异十分明显,且与盆栽试验中地上部Cd含量的品种间差异间有显著相关性,因此,市售种子中Cd含量可以用于芹菜Cd低积累品种的快速筛选。
     六、水培条件下对前期筛选得到的油麦菜、蕹菜、小白菜、菜心Cd积累典型品种发育初期幼苗中NaCl提取态和稀HCl提取态Cd含量研究发现,利用NaCl提取态Cd含量与稀HCl提取态Cd含量的比值作为衡量植物积累Cd能力的指标,对小白菜和蕹菜而言,能够十分有效地区分Cd低积累和高积累品种,对其他种类蔬菜有待进一步研究。七、对10个油麦菜Cd积累典型品种Cd积累相关基因LdPSC1的单核苷酸
     多态性(SNP)研究发现,Cd高积累品种与低积累品种间存在特异性的突变位点。中性检验结果显示Cd高积累品种与低积累品种间有分化的趋势,该基因在Cd胁迫下经历强烈的净化选择(negative selection)作用。研究结果为今后进一步探讨Cd低积累品种的分子标记方法,发展分子辅助育种技术提供理论依据。
This study take celery (Apium graveolens L.) and lettuce (Lactuca dolichophylla Kitam.) that are vulnerable to contamination by soil Cd and Pb as the object. Two pot experiments were conducted to investigate the variations, transfer potential, and stability of Cd and Pb accumulations in 27 celery genotypes and 28 lettuce genotypes respectively, and to screen for Cd+Pb-PSC (pollution-safe cultivar , which edible parts accumulate certain pollutant at low enough level for safe consumption while grown in contaminated soil). Using vegetable typical Cd accumulative genotypes that got from this study and preliminary experiments, variations of their Cd concentration of commercial seed, NaCl extractable or HCl extractable Cd concentration in their plant seedlings in early development were investigated. Using gene cloning and gene sequencing technology,the research of single nucleotide polymorphism in LdPCS1 gene in 10 typical Cd accumulative genotypes of lettuce were carried out. On this basis, we set up the rapid screening methods for low Cd accumulative genotype of leaf vegetables. Main results gained are summarized as follows: 1. In order to investigate the genotypic variations in accumulation of Cd in celery,
     a pot experiment was conducted on 27 celery cultivars under three soil Cd levels (L: 0.142 mg kg~(-1),M: 0.431 mg kg~(-1);H: 0.631 mg kg~(-1)). Results of two-way ANOVA for the variations of Cd concentrations and biomass in shoots showed that variations from genotypes, soil Cd and interaction of genotype×soil Cd were all significant (p < 0.01), the Cd concentration (Fresh basis)in the shoot ranged from 0.046 to 0.218 mg kg~(-1), 0.270 to 0.633 mg kg~(-1) and 0.208 to 0.686 mg kg~(-1), their coefficient of variation (CV) were 26.9%, 20.9% and 24.5% under soil Cd treatments L, M and H, respectively. In treatment L (soil Cd 0.142 mg kg~(-1)), except for one, shoot Cd concentrations in almost all tested cultivars in treatment L were lower than the ML of Cd allowed by CAC standards (0.2 mg kg~(-1) FW), 3.7% tested cultivars being higher than the limitation. However, none of the tested cultivars measured up to the standard in treatment M and treatment H (soil Cd 0.431 mg kg~(-1) and 0.631 mg kg~(-1), respectively). that was to say, there was no Cd-PSC among the tested cultivars when soil Cd concentration > 0.431 mg kg~(-1). This suggests that celery is a vegetable being easily polluted by Cd in soil. These eight genotypes (No.7、9、20、22、24、25、26、28) with lower shoot Cd concentrations and higher shoot biomass, could be treated as typical low-Cd accumulating cultivars. The genotype (No.2) could be treated as a typical high-Cd accumulating cultivar.
     2. The other pot experiment was carried out to study the differences of accumulation of Cd and Pb by these typical Cd accumulative cultivars. variations of Cd and Pb concentrations in shoot from genotypes, soil Cd or Pb level and genotype×soil Cd or Pb level were all significant at p < 0.05 level, In treatment LCdLPb (soil Cd 0.142 mg kg~(-1), Pb 49.89 mg kg~(-1)), five cultivars (No.7、9、22、24、25) can be used as Cd-PSCs, Pb-PSCs and Cd+Pb-PSCs. Among them, shoot Cd concentration of No.25 is only 41.93%~59.70% of No.2 under high Cd exposure (soil Cd 0.599~0.667 mg kg~(-1)), and shoot Pb concentration of No.25 near the ML for Pb allowed by the CAC standards. The genotype No.25 is identified as adoptable Cd+Pb-PSC which is worth to recommend to growers, and adopting PSC strategy could help reduce the risk of Cd, Pb pollution in celery.
     3. A pot experiment was carried out to investigate the genotypic variations in accumulation of Cd in lettuce under three soil Cd treatment (L: 0.129 mg kg~(-1),M: 0.352 mg kg~(-1);H: 1.253 mg kg~(-1)). Results of two-way ANOVA for the variations of Cd concentrations and biomass in shoots showed that variations from genotypes, soil Cd and interaction of genotype×soil Cd were all significant (p < 0.01), the Cd concentration (Fresh basis)in the shoot ranged from 0.027 to 0.140 mg kg~(-1), 0.084 to 0.400 mg kg~(-1) and 0.358 to 1.715 mg kg~(-1), their coefficient of variation (CV) were 38.5%, 36.1% and 46.5% under soil Cd treatments L, M and H, respectively. In treatment L (soil Cd 0.129 mg kg~(-1)), shoot Cd concentrations in all tested cultivars were lower than the ML of Cd allowed by CAC standards (0.2 mg kg~(-1) FW). Thirteen of the tested cultivars measured up to the standard in treatment M (soil Cd 0.352 mg kg~(-1)), 53.6% tested cultivars being higher than the limitation. However, none of the tested cultivars measured up to the standard in treatment treatment H (soil Cd 1.253 mg kg~(-1)). Thus, no Cd-PSC could be found when soil Cd concentration higher than 0.352 mg kg~(-1). only 6 cultivars(No.3、6、7、8、10、11)with lower shoot Cd concentrations and higher shoot biomasses, could be treated as Cd-PSCs, and 3 cultivars(No.19、23、24)with higher shoot Cd concentrations and higher shoot biomasses, could be treated as non-Cd-PSC in the follow-up study.
     4. The other pot experiment was carried out to study the variations of accumulation of Cd and Pb by six Cd-PSCs and one non-Cd-PSC. Variations of Cd and Pb concentrations in shoot from genotypes, soil Cd or Pb level and genotype×soil Cd or Pb level were all significant at p < 0.01 level, under lower 0.352 mg kg~(-1)soil Cd level and lower 247 mg kg~(-1)soil Pb level, 4 cultivars(No.7、8、10、11)could be treated as Cd+Pb-PSCs.
     5. Detected the seeds Cd concentration in typical Cd accumulation cultivars of celery, lettuce, water spinach, amaranth and Chinese flowering cabbage that screened in early experiments, the results show that, the significant differences were observed between low-Cd Cultivars and high-Cd cultivars of celery, and the seeds Cd concentration of the tested cultivars of celery was significantly correlated with those shoot Cd concentration in pot experiment. So we can use the seed Cd concentration to rapid identify the low-Cd cultivars of celery.
     6. Sequential extraction method was used to analyze and distinguish NaCl extractable forms and HCl extractable forms of Cd in seedlings of typical Cd accumulation cultivars of lettuce, water spinach, Chinese cabbage and Chinese flowering cabbage that screened in early experiments, exposed to Cd. The studies showed that, it can be very effective distinguish low-Cd and high-Cd accumulative cultivars for Chinese cabbage and water spinach by using the ratio value of NaCl extractable Cd : HCl extractable Cd. But for the other vegetable species, it should be studied further.
     7. In an effort to understand the single nucleotide polymorphisms (SNP) in LdPSC1 gene in 10 typical Cd accumulative cultivars of lettuce, we discovered the specific mutations existed between low-Cd cultivars and high-Cd cultivars in LdPSC1 gene. The test of departure of neutral mutation of nucleotide variation in LdPSC1 gene showed there was a tendency to divide in low-Cd cultivars and high-Cd cultivars, the LdPSC1 gene experiencing strong negative selection under Cd stress. The results could provide a theoretical basis for using the molecular markers in breeding of low-Cd cultivars.
引文
柴世伟,温琰茂,张云霓等.广州郊区农业土壤重金属含量与土壤性质的关系.农村生态环境, 2004, (2): 55-58.
    陈桂芬,黄武杰,张丽明等.南宁市菜地土壤及蔬菜重金属污染状况调查与评价.广西农业科学, 2004, (5): 389-392.
    代全林.玉米(Zea mays)对Cd、Pb胁迫响应的品种间差异及机理研究.博士论文.中山大学生命科学学院. 2005.
    丁爱芳,潘根兴.南京城郊零散菜地土壤与蔬菜重金属含量及健康风险分析.生态环境, 2003, (4): 409-411.
    顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展.应用基础与工程科学学报, 2003, 11(02): 143-151.
    胡培丽,岳秉飞.单核苷酸多态性的研究进展.实验动物科学与管理, 2006, 23(01): 36-38.
    胡小玲,张瑰,陈剑刚等.珠海市蔬菜重金属污染的调查研究.中国卫生检验杂志, 2008, 16(8): 980-981.
    黄白飞.蕹菜(Ipomoea aquatica Forsk.)镉、铅积累过程的生物化学和分子生物学机理研究.博士论文.中山大学生命科学学院. 2010.
    李传红,朱文转,谭镇.广东省惠州市蔬菜重金属污染状况研究.安徽农业科学, 2007, 35(5): 1448-1449.
    李锡香,朱德蔚,杜永臣等.黄瓜种质资源遗传多样性的RAPD鉴定与分类研究.植物遗传资源学报, 2004, 5(2): 147-152.
    李效尊,潘俊松,王刚等.黄瓜侧枝基因(lb)和全雌基因(f)的定位及RAPD遗传图谱的构建.自然科学进展, 2004, 14(11): 1225-1229.
    戴军,刘腾辉.广州菜地生态环境的污染特征.土壤通报, 1995, 26(3): 102-104.
    刘万清,贺林. SNP-为人类基因组描绘新的蓝图.遗传, 1998, 20(6): 38-40.
    刘杨,陈火英,魏毓棠等.番茄SSR遗传连锁图谱的构建及几个产量相关性状QTLs的定位.自然科学进展, 2005, 15(6): 748-752.
    娄虹,阮亚男,李其久等.单核苷酸多态性及其在作物遗传育种中的应用.辽宁大学学报(自然科学版), 2009, 36(3): 280-283.
    卢善玲,周根娣,汪雅谷.上海市农畜产品有害物质残留调查.上海农业学报, 1994, 10(2):45-48.
    罗怀容,施鹏,张亚平.单核苷酸多态性的研究技术.遗传, 2001, 23(5): 471-476.
    马往校,段敏,李岚.西安市蔬菜重金属污染调查.西北园艺, 1999, (6): 34-35.
    孟淑春,张海英,郑晓鹰等.大白菜基因组DNA的提取及AFLP反应体系的建立.分子植物育种, 2008, (2): 370-376.
    秦文淑.广州城区居民食用蔬菜重金属含量现状分析.广东轻工职业技术学院学报, 2010, 9(4): 17-21.
    沈靖.筛查未知SNPs的变性高效液相色谱(DHPLC)技术.国外医学.遗传学分册, 2001, 24(6): 341-344.
    唐书源,李传义,张鹏程等.重庆蔬菜的重金属污染调查.安全与环境学报, 2003, 3(6): 74-75.
    万敏,周卫,林葆.镉积累不同类型的小麦细胞镉的亚细胞和分子分布.中国农业科学, 2003, (6): 671-675.
    王坚,肖卫民.广州市郊蔬菜重金属污染的分析与防治.蔬菜, 2007, (5): 36-37.
    王建设,宋曙辉,唐晓伟等.甜瓜白粉病抗性基因的遗传与分子标记.华北农学报, 2005, (1): 89-92.
    王俊丽.叶用蔬菜对Cd胁迫响应的种间和品种间差异及其机理研究.博士论文.中山大学生命科学学院. 2006.
    魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨.生态学杂志, 2004, (1): 65-72.
    夏运生,万洪富,杨国义等.东莞市不同区域菜地土壤重金属污染状况研究.生态环境, 2004, (2): 170-172.
    杨国义,罗薇,高家俊等.广东省典型区域蔬菜重金属含量特征与污染评价.土壤通报, 2008, (1): 133-136.
    杨昭庆,洪坤学.单核苷酸多态性的研究进展.国外医学遗传学分册, 2000, 23(01): 4-8.
    余江,黄志勇,陈兰.福建省部分菜园土壤及蔬菜重金属含量的测量及污染评价.土壤通报, 2010, 41(4): 985-989.
    曾思坚.珠江三角洲经济区农业生态环境现状与对策.热带亚热带土壤科学,1995, 4(4): 242-245.
    曾希柏,苏世鸣,马世铭等.我国农田生态系统重金属的循环与调控.应用生态学报, 2010 , 21(09): 2418-2426.
    张洪映.小麦抗旱相关基因TaPK7的克隆、功能验证与单核苷酸多态性分析,西北农林科技大学硕士学位论文2008.
    张玉星,马艳芝,赵国芳.简单重复序列间扩增分子标记技术及其应用.生物技术通报, 2009, (9): 54-56.
    周东美,郝秀珍,薛艳等.污染土壤的修复技术研究进展.生态环境, 2004, (2): 234-242.
    周延清.生物遗传标记与应用.北京:化学工业出版社2008.
    朱芳,方炜,杨中艺.番茄吸收和积累Cd能力的品种间差异.生态学报, 2006, 26(12): 4071-4081.
    庄飞云,陈劲枫, Wolucau J等.甜瓜属人工异源四倍体与栽培黄瓜渐渗杂交及其后代遗传变异研究.园艺学报, 2006, (2): 266-271.
    AE N, ARAO T. Utilization of rice plants for phytoremediation in heavy metal polluted soils. Farming Jpn, 2002, 36: 16-21.
    Arao T, Ishikawa S. Genotypic differences in cadmium concentration and distribution of soybean and rice. Japan Agricultural Research Quarterly, 2006, 40(1): 21-30.
    Archambault D J, Marentes E, Buckley W, et al. A rapid, seedling-based bioassay for identifying low cadmium-accumulating individuals of Durum wheat. Euphytica, 2001, 117(2): 175-182-182.
    Becker J, Vos P, Kuiper M, et al. Combined mapping of AFLP and RFLP markers in barley. Molecular and General Genetics, 1995, 249(1): 65-73-73.
    Bell J, Tanhuanp?? P, Kalendar R, et al. A major gene for grain cadmium accumulation in oat (Avena sativa L.). Genome, 2007, 50(6): 588-594.
    Chaney R L, Malik M, Li Y M, et al. Phytoremediation of soil metals. Current Opinion in Biotechnology, 1997, 8(3): 279-284.
    Chen F, Dong J, Wang F, et al. Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere, 2007, 67(10): 2082-2088.
    Chen H M, Zheng C R, Tu C, et al. Heavy metal pollution in soil in China: Status and countermeasures. Ambio, 1999, 28: 130-134.
    Cie(?)liński G, Rees K C J, Huang P M, et al. Cadmium uptake and bioaccumulation in selected cultivars of durum wheat and flax as affected by soil type. Plant and Soil, 1996, 182(1): 115-124-124.
    Clarke J M, McCaig T N, DePauw R M, et al. Strongfield durum wheat. Crop Science, 2005, 85(3): 651-654.
    Clemens S, Palmgren M G, Kramer U. A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science, 2002, 7(7): 309-315.
    Cobbett C, Goldsbrough P. PHYTOCHELATINS AND METALLOTHIONEINS: Roles in Heavy Metal Detoxification and Homeostasis. Annual Review of Plant Biology, 2002, 53(1): 159-182.
    Cooper D N, Smith B A, Cooke H J, et al. An estimate of unique DNA sequence heterozygosity in the human genome. Human Genetics, 1985, 69(3): 201-205-205.
    CRCSLM, CSIRO (1999). Managing cadmium in potatoes for quality produce, Compiled by Cooperative research center for soil & land management and CSIRO land and water.
    Florijn P J, Beusichem M L. Uptake and distribution of cadmium in maize inbred lines. Plant and Soil, 1993, 150(1): 25-32-32.
    Gasic K, Korban S. Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta, 2007, 225(5): 1277-1285-1285.
    Gilsinger J, Kong L, Shen X, et al. DNA markers associated with low Fusarium head blight incidence and narrow flower opening in wheat. Theoretical and Applied Genetics, 2005, 110(7): 1218-1225-1225.
    Goff S A, Ricke D, Lan T, et al. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. japonica). Science, 2002, 296(5565): 92 -100.
    Grant C A, Clarke J M, Duguid S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the Total Environment, 2008, 390(2-3): 301-310.
    Gupta P K, Roy J K, Prasad M. Single nucleotide polymorphisms: A new paradigm for molecular marker technology and DNA polymorphism detection withemphasis on their use in plants. Current Science, 2001, 80(4): 524-535.
    Halushka M K, Fan J, Bentley K, et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genetics, 1999, 22(3): 239-247.
    He J Y, Zhu C, Ren Y F, et al. Uptake, subcellular distribution and chemical forms of cadmium in wild-type and mutant rice. PEDOSPHERE, 2008, 18(3): 371-377.
    Hocking P J, McLaughlin M J. Genotypic variation in cadmium accumulation by seed of linseed, and comparison with seeds of some other crop species. Australian Journal of Agricultural Research, 2000, 51(4): 427-433.
    Kim D, Bovet L, Maeshima M, et al. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. The Plant Journal, 2007, 50(2): 207-218.
    Kota R, Varshney R K, Thiel T, et al. Generation and Comparison of EST-Derived SSRs and SNPs in Barley (Hordeum Vulgare L.). Hereditas, 2001, 135(2-3): 145-151.
    Kr(?)mer U. Metal Hyperaccumulation in Plants. Annual Review of Plant Biology, 2010, 61(1): 517-534.
    Kurz H, Schulz R, Romheld V. Selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants. J. Plant Nutr. Soil Sci., 1999, 162: 323-328.
    Lander E S. The New Genomics: Global Views of Biology Science, 1996, 274(5287): 536 -539.
    Liu J G, Zhu Q S, Zhang Z J, et al. Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. Journal Of The Science Of Food And Agriculture, 2005, 85(1): 147-153.
    Liu W T, Zhou Q X, Sun Y B, et al. Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety. Environmental Pollution, 2009, 157(6): 1961-1967.
    Liu W, Li P J, Qi X M, et al. DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere, 2005, 61(2): 158-167.
    Martinoia E, Klein M, Geisler M, et al. Multifunctionality of plant ABC transporters - more than just detoxifiers. Planta, 2002, 214(3): 345-355-355.
    McCouch S R, Kochert G, Yu Z H, et al. Molecular mapping of rice chromosomes.Theoretical and Applied Genetics, 1988, 76(6): 815-829-829.
    McLaughlin M J, Parker D R, Clarke J M. Metals and micronutrients - food safety issues. Field Crops Research, 1999, 60(1-2): 143-163.
    McLaughlin M J, Williams C M, McKay A, et al. Effect of cultivar on uptake of cadmium by potato tubers. Australian Journal of Agricultural Research, 1994, 45(7): 1483-1495.
    Murphy A, Zhou J, Goldsbrough P B, et al. Purification and Immunological Identification of Metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiology, 1997, 113(4): 1293 -1301.
    Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 1988, 333(6169): 134-139.
    Penner G A, Clarke J M, Bezte L J, et al. Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome, 1995, 38: 543-7.
    Pilon-Smits E. Phytoremediation. Annual Review of Plant Biology, 2005, 56: 15-39.
    Pomponi M, Censi V, Di Girolamo V, et al. Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd(2+) tolerance and accumulation but not translocation to the shoot. Planta, 2006, 223(2): 180-190-190.
    Ponomarenko J V, Orlova G V, Merkulova T I, et al. rSNP_Guide: An integrated database-tools system for studying SNPs and site-directed mutations in transcription factor binding sites. Human Mutation, 2002, 20(4): 239-248.
    Rauser W. Structure and function of metal chelators produced by plants. Cell Biochemistry and Biophysics, 1999, 31(1): 19-48-48.
    Reich D E, Schaffner S F, Daly M J, et al. Human genome sequence variation and the influence of gene history, mutation and recombination. Nature Genetics, 2002, 32(1): 135-142.
    Riesen O, Feller U. Redistribution of Nickel, Cobalt, Manganese, Zinc, and Cadmium via the Phloem in Young and Maturing Wheat. Journal of Plant Nutrition, 2005, 28(3): 421-430.
    Salt D E, Smith R D, Raskin I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49: 643–68.
    Shen L X, Basilion J P, Stanton V P. Single-nucleotide polymorphisms can cause different structural folds of mRNA. Proceedings of the National Academy of Sciences, 1999, 96(14): 7871 -7876.
    Stolt J P, Sneller F E C, Bryngelsson T, et al. Phytochelatin and cadmium accumulation in wheat. Environmental and Experimental Botany, 2003, 49(1): 21-28.
    Sugiyama M, Ae N, Arao T. Role of roots in differences in seed cadmium concentration among soybean cultivars-proof by grafting experiment. Plant and Soil 2007, 295(1-2): 1-11.
    Ueno D, Kono I, Yokosho K, et al. A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytologist, 2009, 182(3): 644-653.
    Wang J L, Fang W, Yang Z Y, et al. Inter- and intraspecific variations of cadmium accumulation of 13 leafy vegetable species in a greenhouse experiment. Journal of Agricultural And Food Chemistry, 2007, 55(22): 9118-9123.
    Wong S C, Li X D, Zhang G, et al. Heavy metals in agricultural soils of the Pearl River Delta, South China. Environmental Pollution, 2002, 119(1): 33-44.
    Xin J, Huang B, Yang Z, et al. Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures. Journal of Hazardous Materials, 2010, 175(1-3): 468-476.
    Yang W, Bai X, Kabelka E, et al. Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Molecular Breeding, 2004, 14(1): 21-34-34.
    Yu H, Wang J L, Fang W, et al. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Science of the Total Environment, 2006, 370(2-3): 302-309.
    Zhang G, Fukami M, Sekimoto H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Research, 2002, 77(2-3): 93-98.
    Zhang H, Xu W, Dai W, et al. Functional characterization of cadmium-responsive garlic gene AsMT2b: A new member of metallothionein family. Chinese Science Bulletin, 2006, 51(4): 409-416-416.
    Zhu Y, Yu H, Wang J L, et al. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with cd alone and with multiple metals (Cd, Pb, and Zn). Journal of Agricultural and Food Chemistry, 2007, 55(3): 1045-1052.
    王冬卿.甘蓝型油菜(Brassica napus L.)品种间及品种内Cd积累差异研究.硕士论文.中山大学生命科学学院. 2007.
    王俊丽.叶用蔬菜对Cd胁迫响应的种间和品种间差异及其机理研究.博士论文.中山大学生命科学学院. 2006.
    吴启堂,陈卢,王广寿.水稻不同品种对Cd吸收累积的差异和机理研究.生态学报, 1999, 19(1): 104-107.
    许世卫.我国粮食安全目标及风险分析.农业经济问题, 2009, (5): 12-16+110.
    于辉.水稻(Oriza sativa L.)对重金属镉胁迫响应的品种间差异及机理研究.博士论文.中山大学生命科学学院. 2006.
    中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社, 1978.
    周轶慧.苋菜对重金属Cd、Pb积累的基因型差异及其机理研究.博士论文.中山大学生命科学学院. 2010.
    Adriano D C. Cadmium. Trace elements in the terrestrial environment. D. C. Adriano. New York: Springer, 1986. 106-155.
    Amacher M, Ed. Nickel, cadmium, and lead. In Methods of Soil Analysis. Inc., Part 3. Chemical Methods. Madison: WI, Soil Science Society of America, American Society of Agronomy, 2001.
    Clarke J M, Leisle D, Kopytko G L. Inheritance of Cadmium Concentration in Five Durum Wheat Crosses. Crop Science, 1997, 37(6): 1722-1726.
    Grant C A, Clarke J M, Duguid S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the Total Environment, 2008, 390(2-3): 301-310.
    Gupta N, Khan D K, Santra S C. An assessment of heavy metal contamination in vegetables grown in wastewater-irrigated areas of Titagarh, West Bengal, India. Bulletin of Environmental Contamination and Toxicology, 2008, 80(2): 115-118.
    Hong C L, Jia Y B, Yang X E, et al. Assessing Lead Thresholds for Phytotoxicity and Potential Dietary Toxicity in Selected Vegetable Crops. Bull Environ Contam Toxicol, 2008, 80: 356–361.
    Huang B F, Xin J L, Yang Z Y, et al. Suppression Subtractive Hybridization (SSH)-Based Method for Estimating Cd-Induced Differences in Gene Expression at Cultivar Level and Identification of Genes Induced by Cd in Two Water Spinach Cultivars. Journal of Agricultural And Food Chemistry, 2009, 57(19): 8950-8962.
    Huang Y Z, Hu Y, Liu Y X. Combined toxicity of copper and cadmium to six rice genotypes (Oryza sativa L.). Journal of Environmental Sciences-China, 2009, 21(5): 647-653.
    JECFA, 2003. Safety evaluation of certain food additives and contaminants. WHO food Additives Series, Geneva, Summary available at: http://www.inchem.org/documents/jecfa/jecmono/v52je22.htm.
    Kurz H, Schulz R, Romheld V. Selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants. J. Plant Nutr. Soil Sci., 1999, 162: 323-328.
    Lai H Y, Chen Z S. The influence of EDTA application on the interactions of cadmium, zinc, and lead and their uptake of rainbow pink (Dianthus chinensis). Journal of Hazardous Materials, 2006, 137(3): 1710-1718.
    Li Y M, Chaney R L, Schneiter A A, et al. Combining Ability and Heterosis Estimates for Kernel Cadmium Level in Sunflower. Crop Science, 1995, 35(4): 1015-1019.
    Li Y M, Chaney R, Schneiter A, et al. Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax. Euphytica, 1997, 94(1): 23-30.
    Lin Q, Chen Y X,Chen H M, et al. Chemical behavior of Cd in rice rhizosphere. Chemosphere, 2003, 50(6): 755-761.
    Lindsay W L, Norvell W A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 1978, 42: 421-428.
    Liu J G, Zhu Q S, Zhang Z J, et al. Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. Journal of The Science of Food and Agriculture, 2005, 85(1): 147-153.
    Liu J N, Zhou Q X, Sun T, et al. Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics. Journal of Hazardous Materials, 2008, 151(1): 261-267.
    Liu W T, Zhou Q X, An J, et al. Variations in cadmium accumulation among Chinesecabbage cultivars and screening for Cd-safe cultivars. Journal of Hazardous Materials, 2010, 173(1-3): 737-743.
    Liu W T, Zhou Q X, Sun Y B, et al. Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety. Environmental Pollution, 2009, 157(6): 1961-1967.
    McLaughlin M J, Parker D R, Clarke J M. Metals and micronutrients - food safety issues. Field Crops Research, 1999, 60(1-2): 143-163.
    Penner G A, Clarke J M, Bezte L J, et al. Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome, 1995, 38: 543-7.
    Singh A, Sharma R K, Agrawal M, et al. Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India. Tropical Ecology, 2010, 51(2S): 375-387.
    Ueno D, Kono I, Yokosho K, et al. A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytologist, 2009, 182(3): 644-653.
    Wang J L, Fang W, Yang Z Y, et al. Inter- and intraspecific variations of cadmium accumulation of 13 leafy vegetable species in a greenhouse experiment. Journal Of Agricultural And Food Chemistry, 2007, 55(22): 9118-9123.
    Xin J, Huang B, Yang Z, et al. Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures. Journal of Hazardous Materials, 2010, 175(1-3): 468-476.
    Yu H, Wang J L, Fang W, et al. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Science Of The Total Environment, 2006, 370(2-3): 302-309.
    Zeng X B, Li L F, Mei X R. Heavy Metal Content in Chinese Vegetable Plantation Land Soils and Related Source Analysis. Agricultural Sciences in China, 2008, 7(9): 1115-1126.
    Zhu Y, Yu H, Wang J L, et al. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with cd alone and with multiple metals (Cd, Pb, and Zn). Journal of Agricultural and Food Chemistry, 2007, 55(3): 1045-1052.
    于辉.水稻(Oriza sativa L.)对重金属镉胁迫响应的品种间差异及机理研究.博士论文.中山大学生命科学学院. 2006.
    周轶慧.苋菜对重金属Cd、Pb积累的基因型差异及其机理研究.博士论文.中山大学生命科学学院. 2010.
    Adriano D C. Cadmium. Trace elements in the terrestrial environment. D. C. Adriano. New York: Springer, 1986. 106-155.
    Angelova V, Ivanova R, Todorov G, et al. Heavy metal uptake by rape. Communications In Soil Science And Plant Analysis, 2008, 39(3-4): 344-357.
    Grant C A, Clarke J M, Duguid S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the Total Environment, 2008, 390(2-3): 301-310.
    Huang B F, Xin J L, Yang Z Y, et al. Suppression Subtractive Hybridization (SSH)-Based Method for Estimating Cd-Induced Differences in Gene Expression at Cultivar Level and Identification of Genes Induced by Cd in Two Water Spinach Cultivars. Journal of Agricultural and Food Chemistry, 2009, 57(19): 8950-8962.
    JECFA, 2003. Safety evaluation of certain food additives and contaminants. WHO food Additives Series, Geneva, Summary available at: http://www.inchem.org/documents/jecfa/jecmono/v52je22.htm.
    Liu W T, Zhou Q X, Sun Y B, et al. Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety. Environmental Pollution, 2009, 157(6): 1961-1967.
    Puschenreiter M, Horak O, Friesl W, et al. Low-cost agricultural measures to reduce heavy metal transfer into the food chain - a review. Plant Soil and Environment, 2005, 51(1): 1-11.
    Qadir S, Qureshi M I, Javed S, et al. Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Science, 2004, 167(5): 1171-1181.
    Ueno D, Kono I, Yokosho K, et al. A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytologist, 2009, 182(3):644-653.
    Wang J L, Fang W, Yang Z Y, et al. Inter- and intraspecific variations of cadmium accumulation of 13 leafy vegetable species in a greenhouse experiment. Journal of Agricultural And Food Chemistry, 2007, 55(22): 9118-9123.
    Xin J, Huang B, Yang Z, et al. Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures. Journal of Hazardous Materials, 2010, 175(1-3): 468-476.
    Yu H, Wang J L, Fang W, et al. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Science of the Total Environment, 2006, 370(2-3): 302-309.
    Zeng X B, Li L F, Mei X R. Heavy Metal Content in Chinese Vegetable Plantation Land Soils and Related Source Analysis. Agricultural Sciences in China, 2008, 7(9): 1115-1126.
    Zhang K, Wang J, Yang Z, et al. Genotypic Variations in Cadmium and Lead Accumulations of Celery (Apium graveolens L.) and Screening for Low Cd and Pb Accumulative Cultivars. Frontiers of Environmental Science & Engineering in China, 2011. (accepted)
    Zhao F J, McGrath S P. Biofortification and phytoremediation. Current Opinion In Plant Biology, 2009, 12(3): 373-380.
    黄白飞.蕹菜(Ipomoea aquatica Forsk.)镉、铅积累过程的生物化学和分子生物学机理研究.博士论文.中山大学生命科学学院. 2010.
    廖斌,邓冬梅,杨兵等.铜在鸭跖草细胞内的分布和化学形态研究.中山大学学报(自然科学版), 2004, (02): 72-75.
    秦建桥,夏北成,赵鹏等.镉在五节芒(Miscanthus floridulus)不同种群细胞中的分布及化学形态.生态环境学报, 2009, (3): 817-823.
    秦天才,吴玉树,王焕校.镉、铅及其相互作用对小白菜生理生化特性的影响.生态学报, 1994, (01): 46-50.
    王俊丽.叶用蔬菜对Cd胁迫响应的种间和品种间差异及其机理研究.博士论文.中山大学生命科学学院. 2006.
    王学锋,杨艳琴.重金属镉锌铜在蔬菜体内的形态分布研究.环境科学与技术, 2005, 28(01): 34-36.
    邬飞波,张国平.不同镉水平下大麦幼苗生长和镉及养分吸收的品种间差异.应用生态学报, 2002, (12): 1595-1599.
    许嘉琳,鲍子平,杨居荣等.农作物体内铅、镉、铜的化学形态研究.应用生态学报, 1991, (3): 244-248.
    于辉.水稻(Oriza sativa L.)对重金属镉胁迫响应的品种间差异及机理研究.博士论文.中山大学生命科学学院. 2006.
    周小勇,仇荣亮,胡鹏杰等.镉和铅对长柔毛委陵菜体内锌的亚细胞分布和化学形态的影响.环境科学, 2008, 29(07): 2028-2036.
    周轶慧.苋菜对重金属Cd、Pb积累的基因型差异及其机理研究.博士论文.中山大学生命科学学院. 2010.
    Baker A J M. Metal Tolerance. New Phytologist, 1987, 106(1): 93-111.
    Cie?liński G, Rees K C J, Huang P M, et al. Cadmium uptake and bioaccumulation in selected cultivars of durum wheat and flax as affected by soil type. Plant and Soil, 1996, 182(1): 115-124-124.
    Di Salvatore M, Carafa A M, Carratu G. Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growthsubstrates. Chemosphere, 2008, 73(9): 1461-1464.
    Fargasova A. Toxicity comparison of some possible toxic metals (Cd, Cu, Pb, Se, Zn) on young seedlings of Sinapis alba L. Plant Soil and Environment, 2004, 50(1): 33-38.
    Grant C A, Clarke J M, Duguid S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation. Science Of The Total Environment, 2008, 390(2-3): 301-310.
    Li Y M, Chaney R L, Schneiter A A, et al. Combining Ability and Heterosis Estimates for Kernel Cadmium Level in Sunflower. Crop Science, 1995, 35(4): 1015-1019.
    Marquard R V, Bohm H, Freidt W. Untersuchungenüber Cadmiumgehalte in Leinsaat (Linum usitatissimum L.). Fat Science and Technology, 1990, 92: 468-472.
    McLaughlin M J, Parker D R, Clarke J M. Metals and micronutrients - food safety issues. Field Crops Research, 1999, 60(1-2): 143-163.
    Rauser W. Structure and function of metal chelators produced by plants. Cell Biochemistry and Biophysics, 1999, 31(1): 19-48-48.
    Salt D E, Smith R D, Raskin I. PHYTOREMEDIATION. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49: 643–68.
    Soudek P, Katru(?)ákováA, Sedlá(?)ek L, et al. Effect of Heavy Metals on Inhibition of Root Elongation in 23 Cultivars of Flax (Linum usitatissimum L.). Archives of Environmental Contamination and Toxicology, 2010, 59(2): 194-203-203.
    Wu F, Dong J, Qian Q Q, et al. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere, 2005, 60(10): 1437-1446.
    倪文娟.菜心(Brassica parachinensis)镉积累相关基因SNP分子标记研究.硕士论文.中山大学生命科学学院. 2010.
    李慧,丛郁,常有宏.番茄植物络合素合酶基因全长cDNA的克隆及其表达特点. 江苏农业学报, 2010,(01): 136-142.
    李慧,丛郁,王宏伟等.豆梨植物络合素合酶PcPCS1基因克隆及其表达分析.园艺学报, 2010,(06): 880-890.
    Cobbett C, Goldsbrough P. PHYTOCHELATINS AND METALLOTHIONEINS: Roles in Heavy Metal Detoxification and Homeostasis. Annual Review Of Plant Biology, 2002, 53(1): 159-182.
    Drabkova L, Kirschner J, Vlcek C. Comparison of seven DNA extraction and amplification protocols in historical herbarium specimens of Juncaceae. Plant Molecular Biology Reporter, 2002, 20(2): 161-175.
    Fay J C, Wyckoff G J, Wu C I. Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature, 2002, 415(6875): 1024-1026.
    Fu Y X, Li W H. Statistical Tests of Neutrality of Mutations. Genetics, 1993, 133(3): 693 -709.
    Grant C A, Clarke J M, Duguid S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of The Total Environment, 2008, 390(2-3): 301-310.
    He Z, Li J, Zhang H, et al. Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in Lactuca sativa. Plant Science, 2005, 168(2): 309-318.
    Jukes T H. The neutral theory of molecular evolution. Genetics, 2000, 154(3): 956-958.
    Li W. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. Journal of Molecular Evolution, 1993, 36(1): 96-99-99.
    Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25(11): 1451 -1452.
    Nei M, Takahata N. Effective population size, genetic diversity, and coalescence time in subdivided populations. Journal of Molecular Evolution, 1993, 37(3): 240-244-244.
    Nielsen R. Molecular Signatures of Natures of Natural Selection. Annual Review of Genetics, 2005, 39(1): 197-218.
    Sabeti P C, Reich D E, Higgins J M, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature, 2002, 419(6909): 832-837.
    Tajima F. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics, 1989, 123(3): 585 -595.
    Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596 -1599.
    Ueno D, Kono I, Yokosho K, et al. A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytologist, 2009, 182(3): 644-653.
    Willems G, Frérot H, Gennen J, et al. Quantitative trait loci analysis of mineral element concentrations in an Arabidopsis halleri×Arabidopsis lyrata petraea F2 progeny grown on cadmium-contaminated soil. New Phytologist, 2010, 187(2): 368-379.
    包广宇.单核苷酸多态性的研究进展及其应用.国外医学.遗传学分册, 2003, (01):7-10.
    陈瑛,李廷强,杨肖娥等.不同品种小白菜对镉的吸收积累差异.应用生态学报, 2009, (3): 736-740.
    韩梅,李发生,卢桂兰等.外源Cd胁迫对不同类型土壤中蔬菜生长的影响及其残留效应.农业环境科学学报, 2004, 23(02):213-216.
    黄白飞.蕹菜(Ipomoea aquatica Forsk.)镉、铅积累过程的生物化学和分子生物学机理研究.博士论文.中山大学生命科学学院. 2010.
    杨居荣,贺建群,黄翌等.农作物Cd耐性的种内和种间差异Ⅱ.种内差.应用生态学报, 1995, 6(supp.): 132-136.
    廖斌,邓冬梅,杨兵等.铜在鸭跖草细胞内的分布和化学形态研究.中山大学学报(自然科学版), 2004, 43(02): 72-75.
    倪文娟.菜心(Brassica parachinensis)镉积累相关基因SNP分子标记研究.硕士论文.中山大学生命科学学院. 2010.
    邱丘.菜心Cd积累的品种间差异及Cd污染控制方法研究.博士论文.中山大学生命科学学院. 2011.
    孙兆海,郑春荣,周东美等.土壤Cd污染对青菜和蕹菜生长及Cd含量的影响.农业环境科学学报, 2005, 24(03): 417-420.
    王冬卿.甘蓝型油菜(Brassica napus L.)品种间及品种内Cd积累差异研究.硕士论文.中山大学生命科学学院. 2007.
    王俊丽.叶用蔬菜对Cd胁迫响应的种间和品种间差异及其机理研究.博士论文.中山大学生命科学学院. 2006.
    辛俊亮.蕹菜(Ipomoea aquatica Forsk.)品种对镉铅胁迫响应及镉含量性状的遗传分析研究.博士论文.中山大学生命科学学院. 2010.
    许嘉琳,鲍子平,杨居荣等.农作物体内铅、镉、铜的化学形态研究.应用生态学报, 1991, (3): 244-248.
    于辉.水稻(Oriza sativa L.)对重金属镉胁迫响应的品种间差异及机理研究.博士论文.中山大学生命科学学院. 2006.
    周后德.单核苷酸多态性的研究进展.国外医学.生理.病理科学与临床分册, 2003, (05): 444-447.
    周小勇,仇荣亮,胡鹏杰等.镉和铅对长柔毛委陵菜体内锌的亚细胞分布和化学形态的影响.环境科学, 2008, 29(07): 2028-2036.
    周延清.生物遗传标记与应用.北京:化学工业出版社2008.
    周轶慧.苋菜对重金属Cd、Pb积累的基因型差异及其机理研究.博士论文.中山大学生命科学学院. 2010.
    Angelova V, Ivanova R, Todorov G, et al. Heavy metal uptake by rape. Communications in Soil Science And Plant Analysis, 2008, 39(3-4): 344-357.
    Archambault D J, Marentes E, Buckley W, et al. A rapid, seedling-based bioassay for identifying low cadmium-accumulating individuals of Durum wheat (Triticum turgidum L.). Euphytica, 2001, 117(2): 175-182-182.
    Chen F, Dong J, Wang F, et al. Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere, 2007, 67(10): 2082-2088.
    Di Salvatore M, Carafa A M, Carratu G. Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates. Chemosphere, 2008, 73(9): 1461-1464.
    Florijn P J, Beusichem M L. Uptake and distribution of cadmium in maize inbred lines. Plant and Soil, 1993, 150(1): 25-32-32.
    Grant C A, Clarke J M, Duguid S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the Total Environment, 2008, 390(2-3): 301-310.
    Grant C A, Dribnenki J C P, Bailey L D. Cadmium and zinc concentrations and ratios in seed and tissue of solin (cv LinolaTM 947) and flax (cvs McGregor and Vimy) as affected by nitrogen and phosphorus fertiliser and Provide (Penicillium bilaji). Journal of the Science of Food and Agriculture, 2000, 80(12): 1735-1743.
    Huang B F, Xin J L, Yang Z Y, et al. Suppression Subtractive Hybridization (SSH)-Based Method for Estimating Cd-Induced Differences in Gene Expression at Cultivar Level and Identification of Genes Induced by Cd in Two Water Spinach Cultivars. Journal of Agricultural and Food Chemistry,2009, 57(19): 8950-8962.
    Kurz H, Schulz R, Romheld V. Selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants. J. Plant Nutr. Soil Sci., 1999, 162: 323-328.
    Lai H Y, Chen Z S. The influence of EDTA application on the interactions of cadmium, zinc, and lead and their uptake of rainbow pink (Dianthus chinensis). Journal Of Hazardous Materials, 2006, 137(3): 1710-1718.
    Lin Q, Chen Y X, Chen H M, et al. Chemical behavior of Cd in rice rhizosphere. Chemosphere, 2003, 50(6): 755-761.
    Liu J G, Zhu Q S, Zhang Z J, et al. Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. Journal Of The Science Of Food And Agriculture, 2005, 85(1): 147-153.
    Liu J N, Zhou Q X, Sun T, et al. Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics. Journal Of Hazardous Materials, 2008, 151(1): 261-267.
    Liu W T, Zhou Q X, Sun Y B, et al. Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety. Environmental Pollution, 2009, 157(6): 1961-1967.
    Liu W, Zhou Q, Zhang Y, et al. Lead accumulation in different Chinese cabbage cultivars and screening for pollution-safe cultivars. Journal of Environmental Management, 2010, 91(3): 781-788.
    McLaughlin M J, Parker D R, Clarke J M. Metals and micronutrients - food safety issues. Field Crops Research, 1999, 60(1-2): 143-163.
    Ni W Z, Long X X, Yang X E. Studies on the criteria of cadmium pollution in growth media of vegetable crops based on the hygienic limit of cadmium in food. Journal of Plant Nutrition, 2002, 25(5): 957-968.
    Puschenreiter M, Horak O, Friesl W, et al. Low-cost agricultural measures to reduce heavy metal transfer into the food chain - a review. Plant Soil and Environment, 2005, 51(1): 1-11.
    Ueno D, Kono I, Yokosho K, et al. A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytologist, 2009, 182(3): 644-653.
    Wang J L, Fang W, Yang Z Y, et al. Inter- and intraspecific variations of cadmium accumulation of 13 leafy vegetable species in a greenhouse experiment.Journal Of Agricultural And Food Chemistry, 2007, 55(22): 9118-9123.
    Wang J L, Yuan J G, Yang Z Y, et al. Variation in Cadmium Accumulation among 30 Cultivars and Cadmium Subcellular Distribution in 2 Selected Cultivars of Water Spinach (Ipomoea aquatica Forsk.). Journal of Agricultural and Food Chemistry, 2009, 57(19): 8942-8949.
    Willems G, Frérot H, Gennen J, et al. Quantitative trait loci analysis of mineral element concentrations in an Arabidopsis halleri×Arabidopsis lyrata petraea F2 progeny grown on cadmium-contaminated soil. New Phytologist, 2010, 187(2): 368-379.
    Wu F B, Zhang G. Genotypic Differences in Effect of Cd on Growth and Mineral Concentrations in Barley Seedlings. Bulletin of Environmental Contamination And Toxicology, 2002, 69(2): 219-227-227.
    Xin J, Huang B, Yang Z, et al. Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures. Journal of Hazardous Materials, 2010, 175(1-3): 468-476.
    Yu H, Wang J L, Fang W, et al. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Science of The Total Environment, 2006, 370(2-3): 302-309.
    Zeng X B, Li L F, Mei X R. Heavy Metal Content in Chinese Vegetable Plantation Land Soils and Related Source Analysis. Agricultural Sciences in China, 2008, 7(9): 1115-1126.
    Zhang G, Fukami M, Sekimoto H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Research, 2002, 77(2-3): 93-98.
    Zhao F J, McGrath S P. Biofortification and phytoremediation. Current Opinion in Plant Biology, 2009, 12(3): 373-380.
    Zhu Y, Yu H, Wang J L, et al. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with cd alone and with multiple metals (Cd, Pb, and Zn). Journal of Agricultural and Food Chemistry, 2007, 55(3): 1045-1052.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700