用户名: 密码: 验证码:
杨凌城市污泥高效好氧堆肥研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
好氧堆肥是实现城市污泥无害化、减量化和资源化的有效方法,处理后的污泥进行土地利用是很有前景的一种处置方式。目前,污泥堆肥处理存在很多问题,主要包括:调理剂添加过多、堆肥效率低、能耗较大、堆肥产品质量不稳定、污泥堆肥施用量确定不科学等。本文主要研究了污泥堆肥中有机质、植物养分和重金属的变化规律,探讨了污泥堆肥合理通风量和科学施用量,取得了以下研究成果:
     1.以杨凌城市污泥为原料,以小麦秸秆和玉米秸秆为调理剂,设置4个处理,处理1调理剂为小麦秸秆糠(d<5mm),处理2调理剂为小麦秸秆段(3cm<d<5cm),处理3调理剂为玉米秸秆糠(d<5mm),处理4调理剂为玉米秸秆段(3cm<d<5cm),进行35d高温好氧堆肥。堆肥结束时,处理1~4有机质降解率分别达到31.30%、27.09%、54.87%和48.97%;DOC含量呈下降趋势;至堆肥结束时,处理1~4的DOC含量分别为9.48g·kg~(-1)、7.15g·kg~(-1)、9.10g·kg~(-1)和11.07g·kg~(-1);4个处理的腐殖质含量呈先下降后升高,之后趋于稳定,胡敏酸和富哩酸比值(H/F)逐渐升高,至堆肥结束时,处理1~4H/F分别为1.54、2.21、1.56和1.90;粗纤维降解缓慢,较难腐殖化。污泥和玉米秸秆糠混合堆肥效果最佳。
     2.将城市污泥和玉米秸秆按照(W/W,以干重计)0.5∶1、1∶1和2∶1的比例进行35d高温好氧堆肥,研究了堆肥过程中温度、有机碳(TOC)、C/N、总氮(TN)、速效磷、速效钾、腐殖酸(HAs)和种子发芽指数(GI)的变化规律。结果表明:3个处理堆体温度都能达到国家无害化标准;随着堆肥进行,有机碳和C/N逐渐下降,下降幅度与初始物料有机碳和C/N呈正相关;堆肥结束时,总氮和速效钾都有所增加;速效磷开始略有波动,最后呈增加趋势;腐殖酸(HAs)总量没有大幅增加;3个处理种子发芽指数都不断提高,至堆肥结束时均达到60%以上;堆肥产品的氮、磷、钾和腐殖酸含量随着污泥比例升高而增加。
     3.采用BCR连续提取法研究了玉米秸秆添加比例对污泥堆肥中Cu和Zn形态的影响。结果表明:重金属不同形态分配比例的变化能够准确反映重金属形态之间的转化规律;堆肥处理重金属总量不会变化,只是不稳定形态之间相互转化,Cu和Zn被大幅“浓缩”,玉米秸秆比例越大,“浓缩效应”越明显;玉米秸秆比例增加有助于酸溶态Cu向可氧化态转化,污泥堆肥中Cu主要以可还原态和可氧化态存在;堆肥处理可使Zn生物有效性和迁移性增加,Zn主要以酸溶态和可还原态存在;玉米秸秆添加比例越小,堆肥产品中Cu和Zn浓度越高,但对种子发芽指数没有明显影响,Cu和Zn对种子发芽指数不起决定作用。
     4.采用污泥和玉米秸秆进行了120d堆肥,分析了污泥堆肥中腐殖酸变化对Cu和Zn有效性的影响。结果表明:在堆肥初期,随着有机质降解,污泥结合的Cu和Zn被释放出来,水溶态Cu和Zn大幅增加;堆肥21d之后,水溶态Cu(主要是FA-Cu)和FA含量均逐渐降低;水溶态Zn(主要是Zn2+)一直呈增加趋势;Cu和HA的结合能力较强,堆肥处理对Cu的钝化效果很明显,至堆肥结束时,HA-Cu分配比例达到27.50%;Zn和HA的结合能力较弱,堆肥处理对其钝化效果有限,至堆肥结束时,HA-Zn分配比例达到3.33%;HA-Cu/HA-Zn从初始的1.29增加到2.73;适当延长堆肥时间有助于HA形成和钝化重金属。
     5.采用红外光谱、紫外—可见光谱、荧光光谱分析了120d污泥好氧堆肥过程中胡敏酸(HA)光谱特征变化。结果表明:随着堆肥进行,污泥堆肥中HA芳构化程度和稳定度明显提高,多糖、脂肪类成分减少,氧元素含量增加;HA荧光强度大幅减弱,主峰位置没有明显变化;HA紫外光谱比较简单,不适合作为污泥堆肥腐熟度的判断指标。堆肥63d之后,HA光谱特征变化较小,与堆体温度和GI变化趋势一致,可以将其作为堆肥腐熟度的辅助判断指标。
     6.根据不同学者的研究结果,讨论了通风控制对污泥好氧堆肥堆体温度变化的影响,分析了堆体温度变化曲线与合理通风量之间的关系。提出污泥好氧堆肥合理通风量及控制方式,指出在污泥好氧堆肥“起爆阶段”采用微量通风(0.01m_3·m~(-3)·min~(-1)),缓慢升温阶段通风量为0.02m_3·m~(-3)·min~(-1),快速升温期通风量为0.04m_3·m~(-3)·min~(-1),高温维持期通风量为0.17m_3·m~(-3)·min~(-1),降温期通风量为0.04m_3·m~(-3)·min~(-1)。通风控制采用温度反馈—时间联合控制方式,通风间隔为20min。
     7.根据重金属不同形态的环境风险引入毒性响应系数,确定污泥堆肥合理施用量。采用污染指数和地积累指数评价杨凌城市污泥堆肥受重金属污染的程度。初步确定杨凌城市污泥堆肥合理施用量为3.69t·hm-2·a~(-1),该方法突出了重金属形态的重要性,弥补了以往对重金属只进行总量控制的不足。评价结果显示,Cd是限制该地区污泥堆肥施用量的最主要元素。
Aerobic composting is an effective method to harmless treat, reduce and reuse sewage sludge, and sewage sludge compost for land use is a promising means of disposal. However, there are many problems of composting technology at present, including adding excess amendment, low composting efficiency, high energy consumption, unstable quality of compost and unscientific application rate of sewage sludge compost. This paper studied variations of organic matters, plant nutrients, and heavy metals during sewage sludge composting process, and discussed rational aeration rate at different stages during composting and rational application rate of sewage sludge compost. The main conclusions and innovations were following.
     1. Aerobic co-composting of sewage sludge mixed with wheat straw and maize straw, lasting35d, was carried out. Wheat straw bran (d<5mm), wheat straw chip (3cm     2. The objective of this study was to investigate the influence of the proportion of maize straw on the quality of sewage sludge compost. Sewage sludge mixed with maize straw at three different ratios (0.5:1,1:1,2:1,W/W, dry weight) was aerobically composted for35d. Temperature, organic carbon (TOC), C/N, nitrogen (TN), rapidly available P, rapidly available K, humic acids (HAs) and germination index (GI) were examined and analysed during composting process. The pile temperature of all treatments could reach the national harmless treatment standards. TOC and C/N decreased gradually, and the decreases were positively correlated to TOC and C/N of the initial materials. At the end of composting, TN and rapidly available K increased, HAs didn't increase significantly, GI of all treatments increased to more than60%. Rapidly available P fluctuated in the beginning, and then increased. The results showed that higher ratio of sewage sludge could produce better compost which had a higher lever of N, P, K, and HAs.
     3. BCR (European Community Bureau of Reference) sequential extraction method was used to investigate the effects of different ratios of maize straw to sewage sludge on speciation of Cu and Zn during composting process. The distribution ratios of different forms of Cu and Zn could reflect the transformation of heavy metals between the mobile fractions (acid-soluble fraction, reducible fraction, oxidizable fraction). The concentrations of Cu and Zn in the composted mixture increased, however, the absolute content of Cu and Zn remained stable after composting process. It was found that the heavy metals were only transformed between the mobile fractions, the distributions ratio of residual fractions remained stable. The concentration factors of Cu and Zn increased with the ratios of maize straw to sewage sludge. Higher proportion of maize straw might contribute to the transformation of acid-soluble fraction of Cu to oxidizable fraction. Cu was mainly found in reducible fraction and oxidizable fraction. The mobility and bioavailability of Zn increased during the composting process. Zn mainly existed in acid-soluble fraction and reducible fraction. The lower ratio of maize straw, the higher concentrations of Cu and Zn in the compost product, but Cu and Zn didn't play a decisive role on seed germination (GI).
     4. The humification of organic matter has a significant effect on the physicochemical form of heavy metals during aerobic composting. In this study, influence of humic substances (HS) on bioavailability of Cu and Zn was characterized during120d co-composting of sewage sludge and maize straw. At the initial stage of composting, Cu and Zn in sewage sludge were released as organic matter was degraded, and water soluble Cu and Zn increased markedly. Water soluble Cu (primarily FA-Cu) and FA content decreased after21days whereas water soluble Zn (primarily Zn2+) increased during the whole process. Both HA-Cu and HA-Zn were significantly and positively correlated with HA and H/F, respectively. At the end of composting, the distribution coefficients of HA-Cu and HA-Zn reached27.50%and3.33%respectively with HA-Cu/HA-Zn ratio increased from1.29to2.73. The results suggest that Cu combined with HA more strongly than Zn, and composting treatment could decrease bioavailability of Cu markedly. Appropriate extension of composting time could contribute to the formation of HA and passivation of these heavy metals.
     5. FTIR, fluorescence, UV spectra and E4/E6of humic acids (HA) in sewage sludge compost were determined during120days composting process. The results showed a reduction in polysaccharides and aliphatic components, and a relative increase in aromatic components and oxygen element. The fluorescence spectra of HA exhibited a sharp reduction during composting process, and the primary peak didn't shift significantly. The UV spectra of HA was simple, and it wasn't suited to evaluate compost maturity. After63days composting process, spectroscopic characteristics of HA had a same variation tendency with pile temperature and GI, and they could be used as auxiliary indicators to evaluate compost maturity.
     6. Influence of air temperature on pile temperature variety during sewage sludge aerobic composting was discussed, and the relation of variety curve of pile temperature and aeration rate were analyzed. According to the research results published, rational aeration rate and control method of sewage sludge aerobic composting were put forward. The composting process could be divided into five stages:initiation stage, temperature slowly increasing stage, temperature fast increasing stage, high temperature stage and temperature decreasing stage. Aeration rate should be0.01m3·m-3·min-1,0.02m3·m3·min-1,0.04m3·m3·min-1,0.17m3·m-3·min-1and0.04m3·m-3·min-1at the five stages previously stated respectively. Time/temperature-based aeration control system was suitable, and ventilation interval was20mm.
     7. According to toxic response factor of different forms heavy metals, rational application rate of sewage sludge compost was determined. Pollution index and geoaccumulation index were used to evaluate contamination degree of sewage sludge compost. This method stressed the importance of the forms of heavy metals and made up for the shortage of controlling the total amount of heavy metals in the past. Rational application rate of sewage sludge compost in Yangling was3.69t·hm-2·a-1. The results showed Cd was the most important element to restrict application of sewage sludge compost in the area.
引文
班福忱,刘明秀,李亚峰.2006.城市污水处理厂污泥资源化研究探讨.环境科学与管理,31(5):45~47
    鲍士旦.1999.土壤农化分析:第三版.北京:中国农业出版社
    鲍艳宇,陈佳广,颜丽.2006.堆肥过程中基本条件的控制.土壤通报,37(1):164~168
    卞有生.2000.生态农业中废弃物的处理与再生利用.北京:化学工业出版社
    蔡全英,莫测辉,吴启堂,等.1999.化学方法降低城市污泥的重金属含量及其前景分析.土壤与环境,8(4):309~313
    蔡全英,莫测辉,吴启堂,等.2001.城市污泥堆肥处理过程中有机污染物的变化.农业环境保护,20(3):186~189
    蔡全英,曾巧云,莫测辉,等.2003.城市污泥与稻草堆肥中铜锌的形态分布研究.农业环境科学学报,22(4):458~462
    岑超平,张德见,韩琪.2005.城市污水处理厂污泥处理处置的政策分析.生态环境,14(5):803~806陈红英,王红涛.2007.城市污水处理厂污泥的资源化利用研究.浙江工业大学学报,35(3):337~340陈玲,赵建夫,李宇庆,等.2005.城市污水厂污泥快速好氧堆肥技术研究.环境科学,26(5):192~195.
    陈鸣.2000.城市污水处理厂污泥最终处置方式的探讨.中国给水排水,16(8):23~24
    陈世和,张所明.1990.城市垃圾堆肥原理与工艺.上海:复旦大学出版社
    陈世和.1989.城市生活垃圾堆肥化处理的微生物特性研究.上海环境科学,8(8):17~21
    陈涛,熊先哲.2000.污泥的农林处置与利用.环境保护科学,26(3):32~34
    陈同斌,高定,李新波.2002.城市污泥堆肥对栽培基质保水能力和有效养分的影响.生态学报,22(6):802~807
    陈同斌,杭世珺,徐云,等.2009.对《城镇污水处理厂污泥处置农用泥质》的思考.中国给水排水,25(9):101~108
    陈同斌,黄启飞,高定,等.2002.城市污泥堆肥温度动态变化过程及层次效应.生态学报,22(5):736~741
    陈同斌,黄启飞,高定,等.2002.城市污泥好氧堆肥过程中积温规律的探讨.生态学报,22(6):911~915
    陈同斌,黄启飞,高定,等.2003.中国城市污泥的重金属含量及其变化趋势.环境科学学报,23(5):561-569
    陈同斌,罗维,郑国砥.2005.翻堆对强制通风静态垛混合堆肥过程及其理化性质的影响.环境科学学报,25(1):117~122
    陈同斌,郑国砥,高定,等.2007.关于《农用污泥中污染物控制标准》中锌限量值的讨论.环境科学学报,27(7):1057~1065
    陈同斌,郑玉琪,高定,等.2004.猪粪好氧堆制不同阶段氧气含量变化特征.应用生态学报,15(11):2179~2183
    程五良,方萍,陈玲,等.2004.城市污水厂污泥土地利用可靠性探讨.同济大学学报:自然科学版,32(7):939~942
    冯春,杨光,杜俊,等.2008.污水污泥堆肥重金属总量及形态变化.环境科学研究,21(1):97~102
    冯明谦,刘德明.1999.滚筒高温式堆肥中微生物种类数量变化的研究.中国环境科学,19(6):490~492
    高定,陈同斌,黄启飞.2005.城市污泥堆肥过程自动测控系统及其应用.中国给水排水,21(4):17~19
    高定,黄启飞,陈同斌.2002.新型堆肥调理剂的吸水特性及应用.环境工程,20(3):48-50.
    高伟,郑国砥,高定,等.2006.堆肥处理过程中猪粪有机物的动态变化特征.环境科学,27(5):986~990
    戈乃玢,马淑芳,秦怀英,等.1995.脱水污泥的组分和农用评价.农业环境保护,14(5):202~206
    顾军,赵建夫.1998.湿式氧化处理城市污泥厂活性污泥的研究.同济大学学报,26(3):345~348
    郝晓地,张璐平,兰荔.2007.剩余污泥处理/处置方法的全球概览.中国给水排水,23(20):1~5
    和苗苗,田光明,梁新强.2007.去除污泥中重金属的研究进展.农机化研究,5:12~16
    侯文华,郑朔方,宋英伟,等.2000.活性污泥替代部分纸浆用于造纸的初步研究.环境科学学报,20(51):154~156
    胡光埙,洪云希.1996.城市污泥合成燃料的应用研究.中国给水排水,12(2):13~15
    胡天觉,曾光明,黄国和.2004.仓式好氧堆肥中影响有机物发酵降解的主要因素.湖南大学学报,31(5):31~35
    胡天觉.2004.城市有机固体废物仓式好氧堆肥工艺改进及理论研究.[博士学位论文].湖南:湖南大学
    黄鼓梅,曲东,李国学,等.2002.两种外源微生物对鸡粪高温堆肥的影响.农业环境保护,21(3):208~210
    黄国锋,张振钿,钟流举,等.2004.重金属在猪粪堆肥过程中的化学变化.中国环境科学,24(1):94~99
    黄国锋,钟流举.2003.有机固体废弃物堆肥的物质变化及腐熟度评价.应用生态学报,14(5):813~818
    黄启飞,高定,黄泽春.2002.鼓风对城市污泥好氧堆肥温度变化的影响.生态学报,22(5):742~746黄懿梅,安韶山,白红英,等.2004.鸡粪与不同秸秆高温堆肥中氮素的变化特征.西北农林科技大学学报:自然科学版,32(11):53~57
    黄懿梅,苟春林,梁军峰.2008.两种添加剂对牛粪秸秆堆肥化中氮素损失的控制效果探讨.农业环境科学学报,27(3):1219~1225
    贾程,张增强,张永涛.2008.污泥堆肥过程中氮素形态的变化.环境科学学报,28(11):2269~2276
    姜华,吴波,李国学.2008.添加不同钝化剂降低污泥堆肥的植物毒性研究.环境工程学报,2(10):1413~1415
    蒋成爱,黄国锋,吴启堂.1999.城市污水污泥处理利用研究进展.农业环境与发展,l:13~17
    李承强,魏源送,樊耀波,等.1999.堆肥腐熟度的研究进展.环境科学进展,7(6):1~12
    李承强,魏源送,樊耀波,等.2001.不同填充料污泥好氧堆肥的性质变化及腐熟度.环境科学,22(3):60~65
    李国学,孟凡乔,姜华,等.2000.添加钝化剂对污泥堆肥处理中重金属(Cu,Zn,Mn)形态影响.中
    国农业大学学报,5(1):105~111李国学,张福锁.2000.固体废物堆肥化与有机复混肥的生产.北京:化学工业出版社
    李国学.1999.不同通气方式和秸秆切碎程度对堆制效果和养分转化的影响.农业环境保护,18(3):106~110
    李吉进,郝晋珉,邹国元.2004.高温堆肥碳氮循环及腐殖质变化特征研究.生态环境,13(3):332~334
    李季,彭生平.2005.堆肥工程实用手册.北京:化学工业出版社
    李健,郑春江,郭希利,等.1989.环境背景值数据手册.北京:中国环境科学出版社
    李金红,何群彪.2005.欧洲污泥处理处置概况.中国给水排水,25(1):101~103
    李军.2000.高温突跃法处理城市污泥的研究.环境科学学报,20(6):751~754
    李明.2008.高温堆肥与蚯蚓堆肥对城市污泥重金属形态的影响.环境工程学报,2(10):1407~1412
    李秀金.2001.固体废物工程.北京:中国环境科学出版社
    李艳霞,陈同斌,罗维,等.2003.中国城市污泥有机质及养分含量与土地利用.生态学报,23(11):2464~2474
    李艳霞,王敏健,王菊思,等.1999.城市固体废弃物堆肥化处理的影响因素.土壤与环境,8(1):61~65
    李艳霞,王敏健,王菊思.1999.环境温度对污泥堆肥的影响.环境科学,20(11):63~66
    李艳霞,王敏健,王菊思.1999.有机固体废弃物的腐熟度参数及指标.环境科学,20(2):98~103
    李艳霞,王敏健,王菊思.2000.填充料和通气对污泥堆肥过程的影响.生态学报,20(6):1015~1020李志东,李娜,张洪林,等.2007.城市污水处理厂污泥的处理处置技术.节水灌溉,2:25~31
    林小凤,李国学,贺琪.2005.堆肥化过程中氮素损失控制材料的添加试验研究.农业环境科学学报,24(5):975~978
    林云琴,周少奇.2008.城市污泥好氧堆肥过程中重金属的形态转化.生态环境,17(3):940~943
    刘存芳,袁兴中,曾光明,等.2006.城市有机垃圾间歇厌氧消化pH控制动力学研究.环境科学,27(8):1687~1691
    刘则华,刘锡建,陈思浩.2006.日本的污泥处理现状及对策.上海工程技术大学学报,20(4):291~294
    刘振鸿,陈季华.1996.剩余污泥处理新工艺.上海环境科学,15(2):16~17
    罗维,陈同斌.2004.湿度对堆肥理化性质的影响.生态学报,24(11):2656~2662
    马文漪,杨柳燕.1998.环境微生物工程.南京:南京大学出版社
    孟昭福,张增强,薛澄泽,等.2001.替代黑麦幼苗测定土壤中重金属生物有效性的研究.农业环境保护,20(5):337~340
    芈振明,高忠爱.1993.固体废弃物的处理与处置.北京:高等教育出版社
    莫测辉,蔡全英,吴启堂,等.2001.城市污泥中有机污染物的研究进展.农业环境保护,20(4):273~276
    莫测辉,蔡全英,吴启堂,等.2001.我国一些城市污泥中多环芳烃(PAHs)的研究.环境科学学报,21(5):613~618
    莫测辉,蔡全英,吴启堂.2002.城市污泥及其堆肥施用对通菜中有机污染物的累积效应.环境科学,23(5):52~56
    莫测辉,吴启堂,蔡全英,等.2000.论城市污泥农用资源化与可持续发展.应用生态学报,11(1):157~160
    倪娒娣,陈志银,程绍明,等.2005.不同通风量下猪粪好氧堆肥中氧气浓度的变化.浙江大学学报:农业与生命科学版,31(5):603~607
    牛俊玲,崔宗均,李国学.2006.城市生活垃圾堆肥的成分变化及腐熟度评价.农业环境科学学报,25(1):249~253
    牛俊玲,高军侠,李彦明.2007.堆肥过程中的微生物研究进展.中国生态农业学报,15(6):185~189牛樱,陈季华.2000.剩余污泥处理技术进展.工业用水与废水,31(5):4~6
    乔显亮,骆永明,吴胜春.2002.污泥的土地利用及其环境影响.土壤,2:79~85
    秦莉,李玉春,李国学,等.2006.城市生活垃圾堆肥过程中腐熟度指标及控制参数.农业工程学报,22(12):189~193
    任福民,周玉松,牛牧晨,等.2007.污泥中的重金属特性分析和生态风险评价.北京交通大学学报,31(1):102~105
    任丽梅,贺琪,李国学,等.2008.氢氧化镁和磷酸混合添加剂在模拟堆肥中的保氮效果研究及其经济效益分析.农业工程学报,24(4):225~228
    生骏,陆文静,王洪涛.2007.粉煤灰对污泥堆肥过程和土地施用后交换态重金属(Cu,Zn,Pb)的影响.环境科学,28(6):1367~1371
    施惠生.2004.利用城市垃圾焚烧飞灰锻烧水泥熟料初探.水泥,11:l~4
    孙德志.2002.环境工程中的高级氧化技术.北京:化学工业出版社
    孙西宁,李艳霞,张增强,等.2009.城市污泥好氧堆肥过程中重金属的形态变化.环境科学学报,29(9):1836~1841
    孙西宁,张增强,张永涛,等.2007.陕西杨凌污水处理厂污泥成分月际变化及其土地利用探讨.西北农林科技大学学报:自然科学版,35(9):215~220
    田旸,柳丽芬,张兴文,等.2003.秸秆与污泥混合堆肥研究.大连理工大学学报,43(6):753~758
    万洪云.2000.利用活性污泥制造活性炭的研究.干旱环境监侧,14(4):202~206
    汪正华,魏晶时,沈俭.2000.对菜籽饼中葡萄糖苷有高效降解作用的菌种筛选研究.微生物杂志,20(1):57~59
    王宁.2005.综合利用造纸废渣和污泥的新方法.江苏环境科技,18(2):23~24
    王新,陈涛,粱仁禄,等.2002.污泥土地利用对农作物及土壤的影响研究.应用生态学报,13(2):163~166
    王新,贾永锋.2007.沈阳北部污水处理厂污泥土地利用可行性研究.农业环境科学学报,26(4):1543~1546
    王兴润,金宜英,聂永丰.2007.国内外污泥热干燥工艺的应用进展及技术要点.中国给水排水,23(8):5~8
    王雁河,张书廷.2007.剩余污泥干化技术的研究进展与发展方向.污染防治技术,20(3):51~53
    王治军,王伟,高段森,等.2005.高温和中温ASBR处理热水解污泥的对比.环境科学,26(2):88~92
    魏源送,樊耀波,王敏健,等.2000.堆肥系统的通风控制方式.环境科学,21(3):101~104
    魏源送,李承强,樊耀波,等.2000.环境温度对污泥堆肥过程的影响.环境污染治理技术与设备,1(6):45~52
    魏源送,李承强,樊耀波.2001.不同通风方式对污泥堆肥的影响.环境科学,22(3):54~59
    魏源送,王敏健,王菊思.1997.堆肥技术及进展.环境科学进展,3:11~23
    魏自民,席北斗,赵越,等.2005.接种外源微生物生活垃圾堆肥中的胡敏酸荧光特性.环境科学学报,25(10):1349~1354
    魏自民,席北斗,赵越,等.2006.城市生活垃圾外源微生物堆肥对有机酸变化及堆肥腐熟度的影响.环境科学,27(2):376~380
    魏自民,席北斗,赵越,等.2007.城市生活垃圾堆肥胡敏酸动态光谱特性.光谱学与光谱分析,27(11):2275~2278
    席北斗,刘鸿亮,白庆中,等.2002.堆肥中纤维素和木质素的生物降解研究现状.环境污染治理技术与设备,3(3):19~23
    席北斗.2005.有机物体废弃物管理与资源化技术.北京:国防工业出版社
    熊雄,李艳霞,韩杰,等.2008.堆肥腐殖质的形成和变化及其对重金属有效性的影响[J].农业环境科学学报,27(6):2137~2142
    徐红,樊耀波,贾智萍,等.2000.时间温度联合控制的强制通风污泥堆肥技术.环境科学,21(11):51~55
    徐惠忠.2004.固体废弃物资源化技术.北京:化学工业出版社
    薛澄泽.1994.生物固体资源化.环境杂志,10(1):1~5
    严捍东.2005.生活污泥改性烧制超轻陶粒的研究.环境污染与防治,27(l):63~68
    杨朝晖,杨霞.1995.污水处理厂的污泥处置.环境科学与技术,18(4):40~42
    杨朝晖,曾光明,蒋晓云,等.2005.城市垃圾堆肥过程中的生物学问题研究.微生物学杂志,25(3):57~60
    杨国义,夏钟文,李芳柏,等.2003.不同通风方式对猪粪高温堆肥氮素和碳素变化的影响.农业环境科学学报,22(4):463~467
    杨林章,毛景东.1995.污泥在农业上的合理应用.土壤学进展,23(6):43~47
    杨晓奕,蒋展鹏.2003.湿式氧化处理剩余污泥的研究.中国给水排水,19(7):50~54
    殷宪强,张增强,孙慧敏,等.2004.施用污泥堆肥对土壤中CuZn形态分布的影响研究.农业环境科学学报,23(3):448~451
    于忠臣,刘继伟,吴国忠,等.2006.好氧堆肥化中堆体理论供氧模式.哈尔滨工业大学学报,38(10):1649~1653
    袁守军,牟艳艳,郑正,等.2004.城市污水厂污泥高温好氧堆肥氮素转变行为研究[J].环境污染治理技术与设备,5(10):47~50
    袁守军,朱宛华.2001.合肥市污水处理厂污泥处置途径探讨.合肥工业大学学报:自然科学版,24(4):538~542
    袁月祥,廖银章,刘晓风.2002.有机垃圾发酵过程中的微生物研究.微生物学杂志,22(1):22~24
    岳波,陈同斌,黄泽春,等.2005.城市污泥堆肥过程中气温对堆体温度影响的模拟.环境科学学报,25(11):1476~1483
    昝元峰,王树众,沈林华,等.2004.污泥处理技术的新进展.中国给水排水,20(6):25~28
    曾光明,黄国和,袁兴中.2006.堆肥环境生物与控制.北京:科学出版社
    曾现来,张增强,张永涛.2006.城市生活垃圾堆肥试验装置的设计.环境污染治理技术与设备,7(10):109~112
    占新华,周立祥,黄焕忠.2003.城市污泥堆肥中水溶性有机物的理化特性变化.中国环境科学,23(4):390~394
    张道方,程海静,史雪霏.2006.上海部分企业工业废水污泥的处理、处置现状.中国给水排水,22(22):7~9
    张清敏,陈卫平,胡国臣,等.2000.污泥有效利用研究进展.农业环境保护,19(1):58~61
    张天红,薛澄泽.1994.西安市污水污泥林地施用效果的研究.西北农业大学学报,22(2):67~71
    张向阳,牛华寺,吴星五.2008.生活垃圾好氧堆肥过程中氧浓度的变化规律及其应用.中国给水排水,24(15):86~88
    张雪英,黄焕忠,周立祥.2004.堆肥处理对污泥腐殖物质组成和光谱学特征的影响.环境化学,23(1):96~101张雪英,张宇峰.2008.污泥堆肥前后水溶性有机物的性质变化研究.农业环境科学学报,27(4):1667~1671
    张雪英,周立祥,沈其荣,等.2002.城市污泥强制通风堆肥过程中的生物学和化学变化特征.应用生态学报,13(4):467~470
    张雪英,周顺桂,周立祥,等.2004.堆肥处理对污泥腐殖物质形态及其重金属分配的影响[J].生态学杂志,23(1):30~33
    张增强,薛澄泽.1995.几种草本植物对污堆肥的生长响应研究.西北农业大学学报,23(6):47~51
    张增强,薛澄泽.1996.几种草本植物对污堆肥的生长响应.西北农业大学学报,24(1):65~69
    张增强,薛澄泽.1997.城市污水污泥的堆肥化和资源化.环境保护,7:12~15
    张增强,殷宪强.2004.污泥土地利用对环境的影响.农业环境科学学报,23(6):1182~1187
    张增强.2003.固体废物的处置与利用.杨凌:西北农林科技大学出版社
    赵庆祥.2002.污泥资源化技术.北京:化学工业出版社
    赵素芬,刘建新,倪娣娒.2005.畜禽废弃物高温好氧堆肥过程中磷素的变化研究.农业环境科学学报,24(2):384~386
    赵小蓉,林启美,孙焱鑫.2000.纤维素分解菌对不同纤维素类物质的分解作用.微生物学杂志,20(3):12~14
    赵由才.2002.生活垃圾资源化原理与技术.北京:化学工业出版社
    郑国砥,陈同斌,高定,等.2005.好氧高温堆肥处理对猪粪中重金属形态的影响[J].中国环境科学,25(1):6~9
    郑玉琪,陈同斌,高定,等.2002.猪粪快速好氧堆肥过程中氧气浓度的变化.生态学报,22(5):747~751
    郑玉琪,陈同斌,高定,等.2004.静态垛好氧堆肥堆体中氧气浓度和耗氧速率的垂直分布特征.环境科学,25(2):134~139
    中华人民共和国城乡建设环境保护部.1984.GB4284-84,农用污泥中污染物控制标准.北京:中国标准出版社
    中华人民共和国环境保护总局.1995.GB15618-1995,土壤环境质量标准.北京:中国标准出版社
    中华人民共和国环境保护总局.2002.GB18918-2002,城镇污水处理厂污染物排放标准.北京:中国标准出版社
    中华人民共和国建设部.2007.CJ247—2007,城镇污水处理厂污泥泥质.北京:中国标准出版社
    中华人民共和国卫生部.1988.GB7959-1987,粪便无害化卫生标准.北京:中国标准出版社
    周春峰.2007.城市污泥处理现状及对策分析.现代商贸工业,19(10):288-289
    周立祥,胡霭堂,戈乃玢,等.1999.城市污泥土地利用研究.生态学报,19(2):185-193
    周立祥,胡霭堂,胡忠明.1997.厌氧消化污泥化学组成及其环境化学性质.植物营养与肥料学报,3(2):176-181
    周立祥,沈其荣,陈同斌.2000.重金属及养分元素在城市污泥主要组分中的分配及其化学形态.环境科学学报,20(3):269-274
    周立祥,王艮梅.2001.污水污泥中重金属的细菌淋滤效果研究.环境科学学报,21(4):504-506
    周群英,高廷耀.2000.环境工程微生物学.北京:高等教育出版社
    周少奇,李端.2003.污泥堆肥过程中氮素损失机理及保氮技术.土壤,35(6):481-484
    周少奇,陆伟东,林云琴.2006.城市污泥与有机垃圾交替式好氧厌氧堆肥化.华南理工大学学报,34(9):118-120
    周少奇,陆伟东.2006.交替好氧厌氧堆肥化对城市污泥重金属的影响.华南理工大学学报:自然科学版,34(12):1-4
    周少奇.2002.城市污泥处理处置与资源化.广州:华南理工大学出版社
    朱南文,高廷耀,周增炎.1998.我国城市污水厂污泥处置途径的选择.上海环境科学,17(11):40-42
    朱能武.2005.堆肥微生物学研究现状与发展前景.氨基酸和生物资源,27(4):36-40
    Agnew J M, Leonard J J.2003. The Physical Properties of Compost. Compost Science&Utilization,11(3):238
    Amir S, Hafidi M, Merlina G, et al.2005. Sequential extraction of heavy metals during composting of sewage sludge. Chemosphere,59:801-810
    Bergkvist P, Jarvis N, Berggren D, et al.2003. Long-term effects of sewage sludge applications on soil properties, cadmium availability and distribution in arable soil. Agriculture, Ecosystems and Environment,97:167-179
    Bernal M P, Parede C, Sanchez-Monedero M A, et al.1998. Maturity and stability parameters of composts prepared with a wide of organic wastes. Bioresource Technology,63:91-99
    Bertoncini E I, D'Orazio V, Senesi N, et al.2008. Effects of sewage sludge amendment on the properties of two Brazilian oxisols and their humic acids. Bioresource Technology,99:4972-4979
    Cai Q Y, Mo C H, Wu Q T, et al.2007. Concentration and speciation of heavy metals in six different sewage sludge-composts. Journal of Hazardous Materials,147:1063-1072
    Campitelli P, Ceppi S.2008. Effects of composting technologies on the chemical and physicochemical properties of humic acids. Geoderma,144:325-333
    Cenni R, Janisch B, Spliethoff H.2001. Legislative and environmental issues on the use of ash from coal and municipal sewage sludge co-firing as construction material. Waste Management,20:17-31
    Chanyansak V, Kubota H.1981. Carbon/organic nitrogen ration in water extracts as a measure of compost degradation. Journal of Ferment Technology,59(3):215-221
    Chefetz B, Hatcher P G, Hadar Y, et al.1996. Chemical and biological characterization of organic matter during composting of municipal solid waste. Journal of Environmental quality,25(4):776-785
    Chua A S M, Takabatake H, Satoh H, et al.2003. Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater:effect of pH, sludge retention time (SRT), and acetate concentration in influent. Water Research,37:3602-3611
    D'Orazio V, Senesi N.2009. Spectroscopic properties of humic acids isolated from the rhizosphere and bulk soil compartments and fractionated by size-exclusion chromatography. Soil Biology and Biochemistry,41:1775-1781
    Das K C, Tollner E W, Tornabene T G.2001. Composting by-products from a bleached kraft pulping process:Effect of type and amount of nitrogen amendments. Compost Science&Utilization,9(3):256-267
    Domeizel M, Khalil A, Prudent P.2004. UV spectroscopy:a tool for monitoring humification and for proposing an index of the maturity of compost. Bioresource Technology,94(2):177-184
    Droussi Z, D'Orazio V, Hafidi M, et al.2009. Elemental and spectroscopic characterization of humic-acid-like compounds during composting of olive mill by-products. Journal of Hazardous Materials,163:1289-1297
    Dvais R D.1996. The impact of EU and UK environmental pressures on future of sludge treatment and disposal. Waster Environ. Manage,10(2):65-69
    Eghball B, Power J F, Gilley J E, et al.1997. Nutrient, carbon and mass loss during composting of beef cattle feedlot manure. Environment Quality,26:189-193
    Fernandes L, Sarta J M.1997. Comparative study of static pile composting:using natural, forced and passive aeration methods. Compost Science and Utilization,5(4):65-77
    Finstein M S.1980. Microbial ecosystems responsible for anaerobic digestion and composting. Journal WPCE,52(11):2675-2685
    Frederick C, Michel J, Reddy C A.1998. Composting rate, odor production, and compost quality in bench-scale reactors. Compost Science and Utilization,6(4):6-14
    Furhacher M, Haberl R.1995. Composting of sewages sludge in a rotating vessel. Water Science Technology,32(11):121-125.
    Garcia C, Hernandez T, Costa F.1991. Study on water extract of sewage sludge compost. Soil Science and Plant Nutrition,37:399-408
    George T, Frank K.2006.Handbook of Solid Waste Management. Beijing:Chemical Industry Press
    Goldstein N, Steuteville R.1993. Biosolids composting makes healthy progress. BioCycle,34:48-57
    Grube M, Lin J G, Lee P H, et al.2006. Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma,130:324-333
    Harada Y, Inoko A, Todati M, et al.1980. Maturing process of city refuse compost during piling.Soil Science and Plant Nutrition,27(3):357-364
    Haroun M, Idris A, Omar S R S.2007. A study of heavy metals and their fate in the composting of tannery sludge. Waste Management,27:1541-1550
    Harper E, Miller F C, Macauley B J.1992. Physical management and interpretation of an environmentally controlled composting ecosystem. Australian Journal of Experimental Agriculture,32:657-667
    Haug R T,1979. Engineering principles of sludge composting. Journal of Water Pollute Control Fed,51:2189-2206
    Haug R T.1993. The practical handbook of compost engineering. Florida:Lewis Publishers
    He M M, Li W H, Liang X Q, et al.2009. Effect of composting process on phytotoxicity and speciation of copper, zinc and lead in sewage sludge and swine manure. Waste Management,29:590-597
    He M M, Tian G M, Liang X Q.2009. Phytotoxicity and speciation of copper, zinc and lead during the aerobic composting of sewage sludge. Journal of Hazardous Materials,163:671-677
    Hernandez T, Masciandaro G, Moreno J I, et al.2006. Changes in organic matter composition during composting of two digested sewage sludges. Waste Management,26:1370-1376
    Horn A L, During R, Gath S.2003. Comparison of decision support systems for an optimized application of compost and sewage sludge on agricultural land based on heavy metal accumulation in soil. The Science of the Total Environment,311:35-48http://www.h2o-china.com
    Hu T J, Zeng G M, Huang D L, et al.2007. Use of potassium dihydrogen phosphate and sawdust as adsorbents of ammoniacal nitrogen in aerobic composting process. Journal of Hazardous Materials,141:736-744
    Huang G F, Wu Q T, Wong J W C, et al.2006. Transformation of organic matter during co-composting of pig manure with sawdust. Bioresource Technology,97:1834-1842
    Hue N V, Liu J.1995. Predicting compost stability. Compost Science&Utilization,3(2):8-15
    Huyard A, Ferran B, Audic J M.2000. The two-phase anaerobic digestion process:sludge stabilization and pathogens reduction. Water Science ana'Technology,42(9):41-47
    Inbar Y, Chen Y, Hadar Y.1989. Solid state carbon-13nuclear magnetic resource infrared spectroscopy of composted organic matter. Soil Sci Am J,53:1695-1701
    Jackson M J, Line M A, Wilson S, et al.2000. Application of composted pulp and paper sludge to a young pine plantation. Environment Quality,29:405
    Jamali M K, Kazi T G, Arain M B, et al.2009. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge. Journal of Hazardous Materials,164:1386-1391
    Jonathan C H, Richard D, Kuchen R.1990. Fundamentals and application of windrow composting. Journal of Environmental Engineering,116(4):747-763
    Jouraiphy A, Amir S, Gharous M E, et al.2005. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste. International Biodeterioration&Biodegradation,56:101-108
    Lasaridi K E, Stentiford E I.1998. A simple respirometric technique for assessing compost stability. Water Research,32(12):3717-3723
    Leth M, Jensen H E K, Iversen J J L.2001. Influence of different nitrogen sources on composting of Miscanthus in open and closed systems. Compost Science&Utilization,9(3):197-206
    Li G X, Zhang F S, Sun Y, et al.2001. Chemical evaluation of sewage sludge composting as a mature indicator for composting process. Water, Air, and Soil Pollution,32:333-345.
    Liu S, Wang X D, Lu L L, et al.2008. Competitive complexation of copper and zinc by sequentially extracted humic substances from manure compost. Agricultural Sciences in China,7(10):1253-1259
    Liu X L, Zhang S Z, Wu W Y, et al.2007. Metal sorption on soils as affected by the dissolved organic matter in sewage sludge and the relative calculation of sewage sludge application. Journal of Hazardous Materials,149:399-407
    Liu Y S, Ma L L, Li Y Q, et al.2007. Evolution of heavy metal speciation during the aerobic composting process of sewage sludge. Chemosphere,67:1025-1032
    MacGregor S T, Miller F C, Psarianos K M, et al.1981. Composting process control based on interaction between microbial heat output and temperature. Applied and Environmental Microbiology,41(6):1321-1330
    Macnicol R D, Beckett P H.1989. The distribution of heavy metal between the principal components of digested sewage sludge. Water Research,23(2):199-206
    Mafra A L, Senesi N, Brunetti G, et al.2007. Humic acids from hydromorphic soils of the upper Negro river basin, Amazonas:Chemical and spectroscopic characterization. Geoderma,138:170-176
    Mathioudakis V L, Kapagiannidis A G, Athanasoulia E, et al.2009. Extended dewatering of sewage sludge in solar drying plants. Desalination,248:733-739
    Mcbride M B.1997. Mobility and solublity of toxic metals and nutrients in soil fifteen years after sludge application. Soil Science,162(7):487-500
    Miyatake F, Iwabuchi K.2005. Effect of high compost temperature on enzymatic activity and species diversity of culturable bacteria in cattle manure compost. Bioresource Technology,90:1921-1925
    Moreira R, Sousa J P, Canhoto C.2008. Biological testing of a digested sewage sludge and derived composts. Bioresource Technology,99:8382-8389
    Muller G.1979. Schwermetalle in den sedimenten des Rheins-Veranderungen seit1971. Umschau,79(24):778-783
    Nakasaki K, Yaguchi H, Sasaki Y, et al.1993. Effects of pH control on composting of garbage. Waste Management&Research,11:117-125
    Nasr F A.1997. Treatment and reuse of sewage sludge. The Environmentalist,17:109-113
    Navaee-Ardeh S, Bertrand F, Stuart P R.2010. Key variables analysis of a novel continuous biodrying process for drying mixed sludge. Bioresource Technology,101:3379-3387
    Nomeda S, Valdas P, Chen S Y, et al.2008. Variations of metal distribution in sewage sludge composting. Waste Management,28:1637-1644
    Nopharatana A, Pullammanappallil P C, Clarke W P.2003. A dynamic mathematical model for sequential leach bed anaerobic digestion of organic fraction of municipal solid waste. Biochemical Engineering Journal,13:21-33
    Okuno N, Ishikawa Y, Shimizu A.2004. Utilization of sludge in building material. Water Science Technology,49(10):225-232
    Okuno N.2002. Options for biosolids utilization and sludge disposal production of usable materials. London:IWA Publishing
    Pedra F, Plaza C, Fernandez J M, et al.2008. Effects of municipal solid waste compost and sewage sludge on chemical and spectroscopic properties of humic acids from a sandy Haplic Podzol and a clay loam Calcic Vertisol in Portugal. Waste Management,28:2183-2191
    Perez M G, Martin-Neto L, Saab S C, et al.2004. Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR,13C NMR, FTIR and fluorescence spectroscopy. Geoderma,118: 181-190
    Quitain A T, Faisal M, Kang K.2002. Low-molecular-weight carboxylic acids produced from hydrothermal treatment of organic wastes. Journal of Hazardous Materials,93(2):209-220
    Rauret G, Lopez-Sanchez J F, Sahuquillo A, et al.1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring,1:57-61
    Rhu D H, Lee W H, Kim J Y, et al.2003. Polyhydroxyalkanoates (PHA) production from waste. Water Science and Technology,48(8):221-228
    Richard T L, Hamelers H V M, Veeken A.2002. Moisture relationships in composting processes. Compost Science&Utilization,10(4):286-303
    Said-Pullicino D, Flora G E, Giovanni G.2007. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresource Technology,98:1822-1831
    Sanchez-Martin M J, GarcIa-Delgado M, Lorenzo L F, et al.2007. Heavy metals in sewage sludge amended soils determined by sequential extractions as a function of incubation time of soils. Geoderma,142:262-273
    Scheminski A, Krull R, Hempel D C.2000. Oxidative treatment of digested sewage sludge with ozone. Water Science Technology,12(9):151-158
    Senesi N, Plaza C, Brunetti G, et al.2007. A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biology&Biochemistry,39:1244^1262
    Shiota N, Akashi A, Hasegawa S.2002. A strategy in wastewater treatment process for significant reduction of excess sludge production. Water Science and Technology,45(12):127-134
    Shirshova L T, Ghabbour E A, Davies G.2006. Spectroscopic characterization of humic acid fractions isolated from soil using different extraction procedures. Geoderma,133:204-216
    Smith S R.2009. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International,35:142-156
    Soest V P J.1963. Use of detergents in the analysis of fibrous feeds. Ⅱ. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Agricultural Chemists,46:829-835
    Soumia A, Mohamed H, Georges M, et al.2005. Sequential extraction of heavy metals during composting of sewage sludge. Chemosphere,59:801-810
    Spinosa L.2001. Evolution of sewage sludge regulations in Europe. Water Science Technology,44(10):1-8
    Steven T S, Paul R A, Glenn D M, et al.1999. Kretschmann aquaculture sludge removal and stabilization within created wetlands. Water Science and Technology,19:81-92
    Stylianou M A, Inglezakis V J, Moustakas K G, et al.2008. Improvement of the quality of sewage sludge compost by adding natural clinoptilolite. Desalination,224:240-249
    Tay J H, Hong S Y, Show K Y.2000. Reuse of sludge as palletized aggregate. Journal of Environmental Engineering,126(3):279-286
    Thehm A, Nickel K, Zellhorm M.2001. Untrflsonic waste activated sludge disintegration for improving anaerobic stabilization. Water Research,35(8):2003-2009
    Tlombardi A, Fjardim W.1999. Fluorescence spectroscopy of high performance liquid chromatography fractionated marine and terrestrial organic materials. Water Research,33(2):512-520
    Toribio M, Romanya J.2006. Leaching of heavy metals (Cu, Ni and Zn) and organic matter after sewage sludge application to Mediterranean forest soils. Science of the Total Environment,363:11-21
    Torri S I, Lavado R S.2008. Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge. Waste Management,28:821-832
    Tuomela M, Vikman M, Hatakka M.2000. Biodegradation of lignin in a compost environment:a review. Bioresource Technology,72:169-183
    Vuorinen A H, Saharinen M H.1997. Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system. Agriculture, Ecosystems and Environment,66:19-29
    Wang X J, Chen L, Xia S Q, et al.2008. Changes of Cu, Zn, and Ni chemical speciation in sewage sludge co-composted with sodium sulfide and lime. Journal of Environmental Sciences,20:156-160
    Warman P R.1999. Evaluation of seed germination and growth tests for assessing compost maturity. Compost Science&Utilization,7(3):33-37
    Weenaes M, GrOotaerd H, Simoens F, et al.2000. Anaerobiec digestion of ozonized blosolids. Water Research,34(8):2330-2336
    Weppen P.2002. Process calorimetry on composting of municipal organic wastes. Biomass and Bioenergy,21:289-299
    Wong J W C, Selvam A.2006. Speciation of heavy metals during co-composting of sewage sludge with lime. Chemosphere,63:980-986
    Yasui H, Nakamura K, Sakuma S, Iwasaki M.1996. A full-scale operation of a novel activated sludge process without excess sludge production. Water Science Technology,34(3):395-404
    Zorpas A A, Constantinides T, Vlyssides A G, et al.2000. Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresource Technology,72:113-119
    Zorpas A A, Inglezakis V J, Loizidou M.2008. Heavy metals fractionation before, during and after composting of sewage sludge with natural zeolite. Waste Management,28:2054-2060
    Zorpas A A, Loizidou M.2008. Sawdust and natural zeolite as a bulking agent for improving quality of a composting product from anaerobically stabilized sewage sludge. Bioresource Technology,99:7545-7552

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700