用户名: 密码: 验证码:
基于缺氧/好氧膜生物反应器的分散聚居区污水处理及回用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是西部建筑科技重点实验室(筹)开发基金项目“分散聚居区污水处理及资源化技术研究”的专题之一。针对分散聚居区污水的特点,采用缺氧/好氧膜生物反应器试验装置,就其处理分散小区污水的工艺影响条件、膜污染及脱氮性能、处理试验及应用开发进行了研究。
     缺氧/好氧膜生物反应器(A/O-MBR)是缺氧/好氧处理工艺与膜分离技术结合而成的新型污水处理及回用工艺。为使系统取得良好的运行效果,需找出影响试验运行的主要因素,并确定主次关系及最佳条件。本研究采用四组平行小试系统进行了正交试验,确定了影响系统运行的主要因素及优化条件。从影响膜污染程度和系统脱氮性能的影响分析,得出了各因素的影响力排序为:SRT>IR>Q气>VA/VO。
     为了探讨运行条件对A/O-MBR系统膜污染及系统脱氮性能的影响,利用小试装置在优化条件下进行了运行试验。研究了污泥停留时间(SRT)与MBR之间的关系,探讨了其影响膜污染的实质原因。将四组反应器的SRT按低、中、高水平分别设为5d、30d、90d和180d。通过观察各SRT下反应器的膜污染程度,对比得出中水平SRT(30d)时污染最轻。同时,根据各SRT下的混合液性质特征、混合液各组分(悬浮固体、胶体、溶解物)对膜污染的贡献率以及临界通量测定值,分析得出溶解性微生物产物(SMP)是影响膜污染的最直接、单一的污泥性质因素,是SRT影响MBR运行效果的实质原因。根据膜污染情况,将其划分为初始污染、缓慢污染和污染跃升三个阶段,利用典型过滤机理模型,重点对前两个阶段进行了数值拟合。拟合结果表明,在初始阶段介质堵塞作用在膜污染中占据主导地位,而在缓慢阶段滤饼堵塞作用占据主导地位。
     同时,研究了SRT和进水C/N比对A/O-MBR系统脱氮性能的影响,并建立了硝化和反硝化的动力学方程,利用PCR-DGGE技术对反应器内的菌落结构进行了分析。结果表明:在达到硝化菌的最小世代时间后,SRT和进水C/N比对反硝化作用的影响较为显著。好氧区比硝化速率和缺氧区比反硝化速率与污泥龄的动力学方程分别为qN=(32.0+5.60θC)/θC和qD=(54.4+3.54θC)/θC。系统不同反应分区在不同SRT条件下的微生物群落结构不同。
     为了考察A/O-MBR处理分散小区污水的情况及适用性,利用山东省环境工程重点实验室多工艺一体化污水处理设备,对A/O-MBR工艺处理分散小区污水及回用进行了中试试验。研究了A/O-MBR长期运行状况,结果表明,该系统处理出水水质能稳定达到了《城市污水再生利用城市杂用水水质标准》(GB/T18920-2002)中的标准。同时,考察了膜污染情况,对试验用膜进行了四次清洗,并初步得出膜清洗的周期。通过扫描电镜(SEM)对膜丝的污染情况进行了分析。在试验运行的第三阶段,向膜生物反应器中投加PAC,探讨了PAC对系统运行效果及对膜污染的影响。试验结果表明:膜内表面的污染主要为生物污染;膜通量经过10d左右的快速下降后,进入平缓下降阶段,日均下降速率为0.211L/m2·h·d,投加PAC能缓解膜污染,可延长膜清洗周期。同时结合实际工程——青岛流亭机场污水处理站,对A/O-MBR系统进行了考察和研究,结果表明,A/O-MBR工艺适用于分散聚居区的污水处理及回用。
     为便于实际应用与推广,在试验研究基础上对A/O-MBR进行了开发研究。将A、O两区在空间上进行了合理设计,同时,考虑了两区的体积可调,搅拌、曝气和混合液回流可控,以及能实现抽吸泵自控等因素,设计研制了立式A/O-MBR污水处理装置,并进行了试验研究。结果表明,该装置具有处理效果好、运行稳定,占地面积小以及自控程度高等特点。已申请了发明专利。
     为了探讨MBR污水处理系统的经济可行性,对MBR系统进行了初步技术经济分析,并对该系统处理污水的成本进行了估算,分析了影响系统运行费用的主要因素,同时,与其他污水处理及回用工艺进行了技术经济比较。
The dissertation project was from the foundation item on state key lab of western architecture and technology (cultivating base)-studies on sewage treatment and recycling technology in scattered neighborhoods. Anoxic/aerobic membrane bioreactor (A/O-MBR) was choosed to treat the sewage from scattered neighborhoods, according to whose characteristics. The operating conditions, membrane fouling, denitrification performance and application development of A/O-MBR were studied in the dissertation.
     Anoxic/aerobic activated sludge process is combined with membrane separation technology to produce a new process namely A/O-MBR system. The key operating conditions on A/O-MBR and their primary and secondary relation should be found, in order to keep the system running well. In this dissertation,4 parallel bench scale equipments were established to make orthogonal tests. Through observing membrane fouling and denitrification performance under different conditions, the primary and secondary relation of them is:sludge retention time (SRT)>Internal reflux ratio (IR)> aeration intensity (Qair)>the volume ratio of anoxic and aerobic zone (VA/VO).
     The relationship between SRT and MBR was studied by 4 bench scale equipments above. The essential reason on membrane fouling was revealed. The SRT of 4 parallel test was 5d,30d,90d and 180d respectively from low to high level. By contrast the fouling degree was least under middle level SRT (30d) for the parallel tests of A/O-MBR. The mixed liquor characteristics, contribution rate of each mixed liquor component (suspended solid, colloid and solute) to fouling and critical flux were detemined under different level SRT. Finally, it was known that soluble microbial products (SMP) was the most critical factor to impact on membrane fouling. The entire fouling process was divided into three stages namely initial, slow and rapid. Numerical fitting was done to initial and slow fouling stage by filter mechanism models. According the fitting results, medium clogging and cake blockage played a major role in initial and slow fouling separately.
     Meanwhile, using 4 bench scale equipments, it was studied that the denitrification performance of A/O-MBR was affaced by SRT and the ratio of carbon and nitrogen source in influent (C/N). Kinetic equations of nitrification and denitrification were constructed. Colony structures were analyzed in the bioreactor by PCR-DGGE technology. From the experimental results, When the nitrification bacteria reach the minimum generation time, the effect of SRT and influent C/N on denitrification are more significant. The kinetic equation was qN= (32.0+5.60θC)/θC between nitrification rate and SRT, while it was qD= (54.4+3.54θC)/θC between denitrification rate and SRT. The colony structure in the bioreactor was different with other under each SRT.
     To investigate the applicability and the condition of dispersed wastewater treatment by A/O-MBR, multi-process integrated wastewater treatment equipment in key laboratory of environmental engineering in shandong province was used. A pilot study on A/O-MBR process as a wastewater treatment and reuse technology in the scattered residential districts is conducted. Long-term operating conditions of A/O-MBR is studied, whose effluent quality met the standards of GB/T18920-2002. Meanwhile, in order to investigate the membrane fouling, four-time washing of membrane was gone, and the condition of membrane fouling was analyzed by SEM. Through this research, the periodic cleaning of the membrane is drawed preliminary. PAC is dosed in membrane bioreactor in the third phase of the pilot, and the operation effect was discussed. The results showed that:fouling in membrane surface is mainly biological pollution; After rapid decline of 10 days, flux entered gently downward phase, and average daily drop rate is 0.211 L/m2·h·d; PAC dosage can extend cleaning cycles. The project of sewage treatment in Qingdao Liuting International Airport is studied and researched. The results show that, A/O-MBR process is fitted for a wastewater treatment and reuse in the scattered residential districts.
     To facilitate practical application and popularization, the spatial arrangement of anoxic zone and aerobic zone was redesigned. And the operational effect of this system was investigated. The results showe that the reactor have many characteristics, such as good treatment effect, small occupation of land, the volume of anoxic zone and aerobic zone can be easily adjusted, and the pumping time can be controlled automatically. The equipment has been applied for patent.
     The preliminary technical and economic analysis of MBR system was studied in order to discuss the economic feasibility of this system. Meanwhile, the treatment cost and the major factors affecting the cost of this system were conducted. At last, the technical and economic comparison of this system for other wastewater reuse technology was maked.
引文
[1]唐志坚,储俊,张磊,等.农村水环境的生态治理模式与技术探讨[J].污染防治与技术,2008(21):37-40.
    [2]刘建平.组合生物膜法处理分散式生活污水研究.合肥工业大学硕士学位论文,2006年5月.
    [3]梁祝,倪晋仁.农村生活污水处理技术与政策选择[J].中国地质大学学报:社会科学版,2007,7(3):18-22.
    [4]Tom Stephenson, Simon Judd, Bruce Jefferson and Keith Brindle著.张树国,李咏梅译.膜生物反应器污水处理技术.北京:化学工业出版社(环境科学与工程出版中心).2003.
    [5]Simon Judd, Claire Judd著.陈福泰,黄霞译.膜生物反应器—水和污水处理的原理与应用.北京:科学出版社.2009.
    [6]顾国维,何义亮著.膜生物反应器——在污水处理中的研究和应用.北京:化学工业出版社(环境科学与工程出版中心).2002.
    [7]薛罡,何圣兵,刘亚男著.膜法单元水处理技术.北京:中国建筑工业出版社.2008.
    [8]汪大翠,雷乐成.水处理新技术及工程设计.北京:化学工业出版社,2001.
    [9]李剑锋,一体式A/O膜生物反应器脱氮性能及在船舶污水处理中的应用研究.大连:大连理工大学,2008.
    [10]杨岳平,徐新华.废水处理工程及实例分析.北京:化学工业出版社,2003.
    [11]郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998.
    [12]孙锦宜.含氮废水处理技术与应用.北京:化学工业出版社,2003.
    [13]郑平,徐向阳等.新型生物脱氮理论与技术.北京:科学出版社,2004.
    [14]张林生.水的深度处理与回用技术.北京:化学工业出版社,2004.
    [15]Hellinga C, Schellen AAJC, etc. The Sharon-process:an innovative method for nitrogen removal from ammoniumrich wastewater. Water Science and Technology,1998,37(9).
    [16]Mulder JW, van Kempen R.N-removal by Sharon. Water Quality international,1997.
    [17]Van deGraaf AA, Mulder Ade Bruijn P, etc. Anaerobic oxidation of ammonia is a biologically mediated process.Applied and Environmental Microbiology,1995,61(4): 1246-1251.
    [18]Hee Seok kim, Yonu-Kyoo Choung, Soojeung Ahn, Hae Seok Oh. Enhancing nitrogen removal of piggery wastewater by membrane bioreactor combined with nitrificaiton reactor. Desalination,2008,223:194-204.
    [19]Yu-Lan Wang, Shui-Li Yu, Wen-Xin Shi, Rui-Ling Bao, Qing Zhao,Xing-Tao Zuo. Comparative performance between intermittently cyclic activated sludge-membrane bioreactor and anoxic/aerobic-membrane bioreactor. Bioresource Technology.2009, 100:3877-3881.
    [20]国家环保总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [21]Zhimin Fu, Fenglin Yang, Yingyu An, Yuan Xue. Simultaneous nitrification and denitrification coupled with phosphorus removal in an modified anoxic/oxic-membrane bioreactor(A/O-MBR). Biochemical Engineering Journal 43(2009).191-196.
    [22]张玲.膜生物反应器(MBR)在污水处理中的应用.山西建筑.2007.33(34),197-198.
    [23]S.R. Chae, S.T. Kang, S.M. Lee, E.S. Lee, S.E. Oh. High reuse potential of effluent from an innovative vertical submerged membrane bioreactor treating municipal wastewater. Desalination 202 (2007) 83-89.
    [24]彭永臻,王晓莲,王淑莹.A/O脱氮工艺影响因素及其控制策略的研究.哈尔滨工业大学学报.2005.37(8).
    [25]王建龙,吴立波,齐星,钱易.用氧吸收速率(OUR)表征活性污泥硝化活性的研究.环境科学学报.1999.19(3),225-229.
    [26]张永宝,姜佩华,冀世锋,奚旦立.投加氢氧化铁对SMBR中膜污染的防治.环境污染与防治.26(6).2004,444-446.
    [27]HowY. Ng, Slawomir W. Hermanowicz. Membrane bioreactor operation at short solids retention times:performance and biomass characteristics. Water Research 39 (2005) 981-992.
    [28]Jones K C, Voogt P D. Persistent organic pollutants (POPs):State of the science[J]. Environ Pollut,1999,100(1):209-221.
    [29]李燕城.吴俊奇.水处理实验技术(第二版).中国建筑工业出版社.2004.
    [30]郑少华,姜奉华.试验设计与数据处理[M].北京:中国建筑工业出版社,2004.
    [31]Cho, J., Song, K.G., Yun, H., Ahn, K.H., Kim, J.Y., Chung, T.H.,2005b. Quantitative analysis of biological effect on membrane fouling in submerged membrane bioreactor. Water Science and Technology 51 (6-7),9-18.
    [32]Ng, H.Y., Tan, T.W., Ong, S.L.,2006b. Membrane fouling of submerged membrane bioreactors:impact of mean cell residence time and the contributing factors. Environmental Science and Technology 40 (8),2706-2713.
    [33]Masse, A., Sperandio, M., Cabassud, C.,2006. Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time. Water Research 40 (12),2405-2415.
    [34]Lee, W., Kang, S., Shin, H.,2003. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors. Journal of Membrane Science 216 (1-2),217-227.
    [35]Han, S.-S., Bae, T.-H., Jang, G.-G., Tak, T.-M.,2005. Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system. Process Biochemistry 40 (7),2393-2400.
    [36]Pollice, A., Laera, G., Saturno, D., Giordano, C.,2008. Effects of sludge retention time on the performance of a membrane bioreactor treating municipal sewage. Journal of Membrane Science 317 (1-2),65-70.
    [37]Lubbecke, S., Vogelpohl, A. and Dewjanin, W. (1995) Wastewater treatment in a biological high-performance system with high biomass concentration. Water Res.,29,793-802.
    [38]Rosenberger, S., Evenblij, H., te Poele, S., Wintgens, T. and Laabs, C. (2005) The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes-six case studies of different European research groups. J. Membrane Sci., 263,113-126.
    [39]Chang, I.-S. and Kim, S.-N. (2005) Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance. Proc. Biochem.,40,1307-1314.
    [40]Fang, H. H. P. and Shi, X. (2005) Pore fouling of microfiltration membranes by activated sludge. J. Membrane Sci.,264,161-166.
    [41]Han, S. S., Bae, T. H., Jang, G. G. and Tak, T. M. (2005) Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system. Proc. Biochem.,40, 2393-2400.
    [42]Bin, C., Xiaochang, W. and Enrang, W. (2004) Effects of tmp, miss concentration and intermittent membrane permeation on a hybrid submerdged mbr fouling, Proceedings of Water Environment-Membrane Technology Conference, Seoul, Korea.
    [43]Madaeni, S. S., Fane, A. G. and Wiley, D. E. (1999) Factors influencing critical flux in membrane filtration of activated sludge. J. Chem. Technol. Biotechnol.,74,539-543.
    [44]Cicek, N., Franco, J. P., Suidan, M. T. and Urbain, V. (1998) Using a membrane bioreactor to reclaim wastewater. J. Am. Water Works Assoc.,90,105-113.
    [45]Beaubien, A., Baty, M., Jeannot, F., Francoeur, E. and Manem, J. (1996) Design and operation of anaerobic membrane bioreactors:Development of a filtration testing strategy. J. Membrane Sci.,109,173-184.
    [46]Defrance, L. and Jaffrin, M. Y. (1999) Reversibility of fouling formed in activated sludge filtration. J. Membrane Sci.,157,73-84.
    [47]Le-Clech, P., Jefferson, B. and Judd, S. J. (2003c) Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor. J. Membrane Sci.,218,117-129.
    [48]Bouhabila, E. H., Ben Aim, R. and Buisson, H. (1998) Microfiltration of activated sludge using submerged membrane with air bubbling (application to wastewater treatment). Desalination,118,315-322.
    [49]Hong, S. P., Bae, T. H., Tak, T. M., Hong, S. and Randall, A. (2002) Fouling control in activated sludge submerged hollow fiber membrane bioreactors. Desalination,143, 219-228.
    [50]Sethi, S. and Wiesner, M. R. (1997) Modeling of Transient Permeate Flux in Cross-Flow Membrane Filtration Incorporating Multiple Particle Transport Mechanisms. J. Membrane Sci.,1-2.
    [51]Flemming, H. C. and Wingender, J. (2001) Relevance of microbial extracellular polymeric substances(epss)-part i:Structural and ecological aspects. Water Sci. Technol.,43,1-8.
    [52]Laspidou, G. S. and Rittmann, B. E. (2002) A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res.,36, 2711-2720.
    [53]Nielson, P. H. and Jahn, A. (1999) Extraction of eps. In Wingender, J., Neu, T. R. and Flemming, H. C. E. (eds.) Microbial Extracellular Polymeric Substances. Springer-Verlag-eds, Berlin.
    [54]Zubair Ahmed, Jinwoo Cho, Byung-Ran Lim, Kyung-Guen Song and Kyu-Hong Ahn. (2007) Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor. J. Membrane Sci.,287,211-218.
    [55]R. Bura, M. Cheung, B. Liao, J. Finlayson, B.C. Lee, I.G. Droppo, G.G. Leppard, S.N. Liss, Composition of extracellular polymeric substances in the activated sludge floc matrix, Water Sci. Technol.37 (4-5) (1998) 325-333.
    [56]M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem.28 (3) (1956) 350-356.
    [57]Wilen, B.-M., Jin, B., and Lant, P. (2003) The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Research,37(9),2127-2139.
    [58]Yeom, I. T., Lee, K. R., Choi, Y. G., Kim, H. S. and Lee, Y. (2004) Evaluation of a membrane bioreactor system coupled with sludge pretreatment for aerobic sludge digestion, Proceedings of Water Environment-Membrane Technology Conference, Seoul, Korea.
    [59]Manem, J. and Sanderson, R. (1996) Membrane bioreactors. In Mallevialle, J., Odendaal, P. E. and Wiesner, M. R. (eds) Water Treatment Membrane Processes. McGRaw Hill, New York, pp.17.1-17.31.
    [60]Rosenburger, S., Kraume, M. and Szewzyk, U. (1999) Operation of different membrane bioreactors experimental results and physiological state of the microorganisms, Proceedings IWA Conference Membrane Technology in Environmental Management, Tokyo 310-316.
    [61]Itonaga, T., Kimura, K. and Watanabe, Y. (2004) Influence of suspension viscosity and colloidal particals on permeability of membrane used in membrane bioreactor (mbr). Water Sci.Technol.,50,301-309.
    [62]Badino, J. A. C., Facciotti, M. C. R. and Schmidell, W. (2001) Volumetric oxygen transfer coefficients (kLa) in batch cultivations involving non-Newtonian-broths. Biochem. Engng. J.,8,111-119.
    [63]Garcia-Ochoa, F., Castro, E. G. and Santos, V. E. (2000) Oxygen transfer and uptake rates during xanthan gum production. Enzyme Microbial. Technol.,27,680-690.
    [64]Jin, B., Yu, Q., Yanm X. Q. and van Leeuwen, J. H. (2001) Characterization and improvement of oxygen transfer in pilot plant external air-lift bioreacter for mycelial biomass production. World J. Microbiol. Biotechnol.,17,265-272.
    [65]Koide, K., Shibata, K., Ito, H., Kim, S.Y. and Ohtaguchi, K. (1992) Gas holdup and volumetric liquid-phase mass transfer coefficient in a gel-partical suspended bubble column with draught tube. J. Chem. Eng. Japan,25,11-16.
    [66]Qzbek, B. and Gayik, S. (2001) The studies on the oxygen mass transfer coefficient in a bioreactor. Proc. Biochem.,36,729-741.
    [67]Liu, R., Huang, X. and Sun, Y. F. et al. (2003) Hydrodynamic effect on sludge accumulation over membrane surfaces in a submerged membrane bioreactor. Process Biochemistry,39(2), 157-163.
    [68]Geng, Z., Hall, E.R.,2007. A comparative study of fouling-related properties of sludge from conventional and membrane enhanced biological phosphorus removal processes. Water Research 41 (19),4329-4338.
    [69]Rosenberger, S., Laabs, C., Lesjean, B., Gnirss, R., Amy, G., Jekel, M., Schrotter, J.C.,2006. Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment. Water Research 40 (4),710-720.
    [70]Iritani, E., Katagiri, N., Sengoku, T., Yoo, K.M., Kawasaki, K., Matsuda, A.,2007. Flux decline behaviors in dead-end microfiltration of activated sludge and its supernatant. Journal of Membrane Science 300,36-44.
    [71]Shin, H.-S. and Kang, S.-T. (2003) Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times. Water Res.,37,121-127.
    [72]Fengshen Fan and Hongde zhou. (2007) Interrelated Effects of Aeration and Mixed Liquor Fractions on Membrane Fouling for Submerged Membrane Bioreactor Processes in Wastewater Treatment. Environ. Sci. Technol,41,2523-2528.
    [73]Field, R. W., Wu, D., Howell, J. A. and Gupta, B. B. (1995) Critical flux concept for microfiltration fouling. J. Membrane Sci.,100,259-272.
    [74]Wisniewski, C., Grasmick, A., and Leon Cruz, A. Critical patical size in membrane bioreactors:Case of a denitrifying bacterial suspension. Journal of Membrane Science,2000, 178(1-2):141-150.
    [75]Davis, R. H. Modeling of fouling of crossflow microfiltration membranes. Separation and purification methods,1992,21(2):75-126.
    [76]Zhang, J., Chua, H. C., Zhou, J. and Fane, A. G. (2006) Factors affecting the membrane performance in submerged membrane bioreactos. J. Membrane Sci., (Submitted).
    [77]张劲松.MBR的膜污染机制与可持续操作原理.大连理工大学博士学位论文,2006年12月,109-110.
    [78]Jiang, T., Kennedy, M. D., Guinzbourg, B. F., Vanrolleghem, P. A. and Schippers, J. C. (2005) Optimising the operation of a mbr pilot plant by quantitative analysis of the membrane fouling mechanism. Water Sci. Technol.,51,19-25.
    [79]Ognier, S., Wisnieswski, C. and Grasmick, A. (2002a) Influence of macromolecule adsorption during filtration of a membrane bioreactor mixed liquor suspension. J. Membr. Sci.,209,27-37.
    [80]B. D. Cho and A. G. Fane, Fouling transients in nominally sub-critical flux operation of a membrane bioreactor. Journal of Membrane Science,2002.209(2):p.391-403.
    [81]Grace, H. P. (1956) Resistance and compressibility of filter cakes. Chem. Eng. Prog.,49, 303-318.
    [82]Glen Bolton, Dan LaCasse, Ralf Kuriyel. Combined models of membrane fouling: Development and application to microfiltration and ultrafiltration of biological fluids[J]. Journal of Membrane Science,2006,277:75-84.
    [83]Qi-Feng Liu, Seung-Hyun Kim. Evaluation of membrane fouling models based on bench-scale experiments:A comparison between constant flowrate blocking laws and artificial neural network (ANNs) model[J]. Journal of Membrane Science,2008,310: 393-401.
    [84]J.A. Suarez, J.M. Veza, Dead-end microfiltration as advanced treatment for wastewater, Desalination 127 (2000) 47-58.
    [85]M. Hlavacek and F. Bouchet. Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions. Journal of Membrane Science, 82(1993)285-295.
    [86]Bowen, W. R., Calvo, J. I. and Hernandez, A. (1995) Steps of membrane blocking in flux decline during protein microfiltration. J. Membrane Sci.,101,153-165.
    [87]Visvanathan, C. and Ben Aim, R. (1989) Studies on colloidal membrane fouling mechanisms in crossflow microfiltration. J. Membrane Sci.,45,3-15.
    [88]郑祥,刘俊新.影响MBR脱氮效率的因素研究.环境科学学报.2005,25(10).
    [89]王捷.浸没式膜-生物反应器运行工况及系统设计的优化研究.天津:天津大学,2007.
    [90]秦霄雯.一体式膜生物反应器处理生活污水的试验研究.济南:山东大学,2004.
    [91]Hay Choon Teck, Khor Swee Loong, Darren Delai Sun.Influence of a prolonged solid retention time environment on nitrification/denitrification and sludge production in a submerged membrane bioreactor. Desalination 245 (2009) 28-43.
    [92]Barker, P., Dold, P.,1995. COD and nitrogen mass balances in activated sludge systems. Water Research 29 (2),633-643.
    [93]邓春华.错流式膜生物反应器处理己内酞胺废水脱氮性能的研究东华大学.2006.
    [94]Ouyang Ke, Liu Junxin. Effect of sludge retention time on sludge characteristics and membrane fouling of membrane bioreactor. Journal of Environmental Sciences.21(2009) 1329-1335.
    [95]周利,彭永臻,李丽等.活性污泥法中引起丝状菌污泥膨胀的因素.青岛建筑工程学院学报,2005,26(2):50-52.
    [96]彭永臻,高春娣,王淑莹.运转条件及营养物质对污泥沉降性能的影响.环境科学学报.21,2001,137-142.
    [97]Influence of solid retention time on sludge characteristics and effluent quality in immersed membrane bioreactor.
    [98]S. Rosenberger, U. Krtiger, R. Witzig, W. Manz, U. Szewzyk and M. Kraume, Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Res.,36(2002) 413-420.
    [99]Carrera, J., Vicent, T., Lafuente, J.,2004. Effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater. Process Biochemistry 39,2035-2041.
    [100]Bliss, P., Barnes, D.,1983. Biological Control of Nitrogen in Wastewater Treatment, first ed. University Press, London.
    [101]Tiedje, J.M. (Ed.),1988. Ecology of Denitrification and Dissimilatory Nitrate Reduction to Ammonium. Biology of Anaerobic Microorganism. John Wiley and Sons, New York, pp. 179-244.
    [102]孟庆娟.内循环式膜生物反应器强化脱氮.大连理工大学.2007.
    [103]国际水协废水生物处理设计与运行数学模型课题组.活性污泥数学模型.同济大学出版社.2002.
    [104]卢永,陈秉娟,申世峰.PCR-DGGE在水处理微生物群落多样性分析中的应用.化学与生物工程2009,26(5),55-59.
    [105]宫曼丽,任南琪,刑德峰.DGGE/TGGE技术及其在微生物分子生态学中的应用[J]. 微生物学报,2004,44(6):845-848.
    [106]Curtis T P, Craine N G. The comparison of the diversity of activated sludge plants. Water Science and Technology,1998,37,71-78.
    [107]Muyzer G, Dewaal Ec, uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA[J]. Appl Environ M icrobiol,1993,59(3):695-700.
    [108]Shanno, C.R.,1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.
    [109]天津膜天膜科技有限公司.帘式膜用户手册,2004.
    [110]王志伟,吴志超,顾国维等.SMBR工艺处理废水时操作方式的研究.环境工程,2005,23(4): 7-10.
    [111]环境影响评价技术导则与评价汇编(第一版).北京:中国环境科学出版社,2005.3.
    [112]GB-T18920-2002,中华人民共和国城镇建设行业标准.
    [113]张自杰.排水工程(下册第四版).北京:中国建筑工业出版社,2000.
    [114]曹斌.复合生物反应器—膜分离技术处理城市污水的试验研究.西安建筑科技大学博士学位论文,2005年2月.
    [115]Ueda. T. and Horan N. J. Fate of indigenous bacteriophage in a membrane bioreactor. Water. Res.,2000,34:2151-2159.
    [116]何义亮,顾国维,刘杰.膜生物反应器生物降解与膜分离共作用特性研究[J].环境污染与防治,1998,20(6):18-20.
    [117]罗敏,王占生,侯立安.纳滤膜污染的分析与机理研究.水处理技术,1998,24(6):31-322.
    [118]Ramesh A, Lee D. J, Hong S. G. Soluble microbial products (SMP) and soluble extracellular polymeric substances (EPS) from wastewater sludge [J]. Appl Microbiol Biotechnol,2006,73(1):219-225.
    [119]Ichihashi O., Satoh H, Mino T. Effect of soluble microbial products on microbial metabolisms related to nutrient removal [J]. Water Res.,2006,40(8):1627-1633.
    [120]B. D. Cho and A. G. Fane, Fouling phenomena in a MBR:transmembrane pressure transients and the role of EPS (extracellular polymeric substances), Water Supply,2003, 3(5):261-266.
    [121]Jae-Sok Kim, Chung-Hak Lee, Hee-Dong Chun. Comparison of ultrafiltration characteristics between activated sludge and BAC sludge. Water Res.,1998, 32(11):3446-3451.
    [122]GUNDER P, Replacement of secondary clarification by membrane separation results with plate and hollow fiber modules [J]. Wat. Sci. Tech.,1998,38(4/5):383-393.
    [123]傅金祥,苏锦明,徐巍等.PAC对IMBR的净水效果和膜污染的影响研究[J].沈阳建筑 工程学院学报,2004,4(2):143-146.
    [124]Jonathan A. Dietrich Membrane technology comes of age. Pollut. Eng.,1995,27(7): 20-25.
    [125]李辰,黄廷林,何文杰等.复合淹没式膜生物反应器处理城市污水的中试研究.中国给水排水,2007,23(19):103-105.
    [126]朱亮,朱凤春,许旭昌,MBR/PAC组合工艺处理污水厂尾水的中试研究,中国给水排水,2009,25(5):59-62.
    [127]Chaize S, Huyard A. Membrane bioreactor on domestic wastewater treatment:sludge production and modeling approach[J]. Wat. Sci. Tech.,1991,23(7/9):1591-1600.
    [128]宫兆国,苗群,刘志强,应用MBR工艺处理流亭机场污水,山东环境,2003年环境保护科技论文专辑(二),2003,387-388.
    [129]Liu ZQ, Qun M, An WC. An application of membrane bio-reactor process for the wastewater treatment of Qingdao International Airport, Desalination,2007,202 (1/3):144-149.
    [130]张树国,李咏梅.膜生物反应器污水处理技术.北京:化学工业出版社,2003.4.
    [131]安文超.微滤膜生物反应器处理生活污水的中试试验研究.青岛理工大学硕士学位论文,2005年6月.
    [132]郑祥,刘俊新.膜生物反应器的技术经济分析.给水排水,2002,28(3):105-108.
    [133]顾平.中空膜生物床处理生活污水的中试研究.中国给水排水,2000,16(3): 5-8.
    [134]邢传红,文湘华,钱易.管式膜-生物反应器处理城市污水的工艺设计.中国给水排水,1999,15(1): 1-5.
    [135]Gander M, Jefferson B. and Judd S. Aerobic MBRs for domestic wastewater treatment:a review with cost consideration. Sep. Puri. Tech,2000,18:119-130.
    [136]钟淳昌,戚盛豪.简明给水设计手册.北京:中国建筑工业出版社,1989.
    [137]Kennedy, S. and Churchouse, S. J. (2005) Progress in membrane bioreactors:new advances, Proceedings of the Water and Wastewater Europe Conference, Milan, June.
    [138]Metcalf, Eddy, (2003) Wastewater Engineering-Treatment and Reuse (4rd edn). McGraw-Hill, New York.
    [139]Rosso, D. and Stenstrom, M. (2005) Comparative economic analysis of the impact of mean cell retention time and denitrification on aeration systems. Water Res.,39, 3773-3780.
    [140]EPA (1989) EPA/ASCE Design manual on fine pore aeration. Cincinnati, Ohio.
    [141]Iranpour, R., Magallanes, M., Zermeno, M., Varsh, V., Abrishamchi, A. and Stenstrom, M. (2000) Assessment of aeration basin performance efficiency:sampling methods and tank coverage. Water Res.,34(12),3137-3152.
    [142]Le-Clech, P., Jefferson, B. and Judd, S. J. (2003c) Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor. J. Membrane Sci.,218,117-129.
    [143]Liu, R., Huang, X., Sun, Y. F. and Qian, Y. (2003) Hydrodynamic effect on sludge accumulation over membrane surfaces in a submerged membrane bioreactor. Proc. Biochem.,39,157-163.
    [144]Psoch, C. and Schiewer, S. (2005b) Long-term study of an intermittent air sparged mbr for synthetic wastewater treatment. J. Membrane Sci.,260,56-65.
    [145]Ueda, T., Hata, K., Kikuoka, Y. and Seino, O. (1997) Effects of aeration on suction pressure in a submerged membrane bioreactor, Water Res.,31,489-494.
    [146]邢美燕.应用膜生物反应器处理生活污水的中试试验研究.青岛理工大学硕士学位论文,2004年5月.
    [147]Ji, L. and Zhou, J. (2006) Influence of aeration on microbial polymers and membrane fouling in submerged membrane bioreactors. J. Membrane Sci., in press.
    [148]Park, J. S., Yeon, K. M. and Lee, C. H. (2005b) Hydrodynamics and microbial physiology affecting performance of a new mbr, membrane-coupled high-performance compact reactor. Desalination,172,181-188.
    [149]Germain, E. (2004). Biomass effects on Membrane Bioreactor operations, EngD Thesis, Cranfield University.
    [150]汪志祥,徐磊.城市污水处理厂工艺方案选择技术经济分析.工业安全与环保,2008,34(2):23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700