用户名: 密码: 验证码:
传热金属表面腐蚀结垢行为模拟及防腐阻垢技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传热金属表面腐蚀与结垢问题广泛存在于工业生产的多种过程中,严重妨碍换热设备的正常运行,造成巨大的能源浪费和经济损失,是一个经过长期研究而至今未能很好解决的问题。现有防腐阻垢技术基本上以添加缓蚀剂、阻垢剂和杀生剂为基础,对环境敏感并容易引起二次污染。本工作以实验室模拟试验和数值分析方法为基础,对传热金属表面的结垢和腐蚀问题进行了研究,结合计算机技术建立了循环冷却水系统模拟分析软件。并根据对传热面腐蚀结垢的机理分析,进行了改善传热面耐蚀、阻垢性能的研究。
     在收集了实际生产运行数据、模拟实验数据和总结经验公式基础上,对碳钢在循环冷却水系统中的腐蚀行为进行了模拟研究。建立了氯离子、pH值、碱度、钙离子、硫酸根离子、溶解固体量(TDS)六种水质参数的动力学模型。以此为基础,利用离子联合作用公式推导了碳钢均匀腐蚀速率的数学模型,利用实验室数据确定了模型指前系数并进行了校正。
     自制实验室污垢热阻测试仪器,在相同条件下利用人工硬水对不同的传热面材质进行了对比试验,得出污垢热阻随时间的变化关系。结果表明,材料表面特性对污垢形成有较大影响,材料的表面能越低,污垢沉积量越小。考察了传热表面温度、溶液pH值、碱度、硬度等影响因素对结垢行为的影响,分析了CaCO3在传热面结垢机理。提出了适用于CaCO3污垢的析晶-颗粒沉积混合污垢模型。以Hasson模型为基础,通过溶液离子和离子对平衡进行的校正,建立了析晶沉积速率模型。引入颗粒污垢沉积速率数学模型和污垢脱除数学模型,模拟了在析晶-颗粒沉积-脱除机制共同作用下的CaCO3垢生成过程。
     以建立的腐蚀速率、结垢速率数学模型和水质参数动力学模型为基础,利用Flash为开发环境,以ActionScript为编程语言设计开发了一套循环冷却水系统模拟软件。软件以动画模拟循环冷却水系统运行过程,以坐标图形式反映系统运行期间水质参数的变化规律,并可对传热面的腐蚀与结垢进行预测。
     通过对传热结垢、腐蚀机理的研究,探讨了通过表面无机膜的制备,以降低材料表面能的方法改善碳钢、不锈钢的防腐、阻垢性能的技术。采用溶胶-凝胶法在304不锈钢表面制备了锐钛矿晶型的TiO2膜;采用化学镀镍和溶胶-凝胶法在A3钢表面制备了Ni3P-TiO2膜层;采用溶胶-凝胶法在A3钢和304不锈钢表面制备了Si02膜。研究了催化剂、DMF添加剂、溶胶混配方式、烧结工艺等对成膜效果的影响,优化了各种无机膜制备工艺。测定了无机膜层的附着力、耐蚀、抗垢和杀菌性能。试验结果表明,在金属材料表面制备无机膜层可大大提高其防腐、阻垢性能。其中TiO2膜因其具有光催化性能,使其耐蚀性、抗垢和杀菌性能均优于Si02膜,且其制备工艺较简便,膜层附着力强,具有实际的应用价值。
The corrosion and fouling of metallic heat transfer surface were widely existed in many industrial processes. The problems that were unsolved up to the present hindered seriously the running of the heat exchanger and caused the great expense of the energe and the money. The actual technology of anticorrosion and fouling resistance mostly added the corrosion inhibitor, the scale inhibitor and the biocidal agent to the water, but these agents were sensitive for the ambience and brought on the environmental pollution. The paper studied on the corrosion and fouling behavior of the metallic heat transfer surface based on the simulation experiment of the laboratory and the numeric means. The simulation software of the recirculation cooling water system was established by the advanced computer technology. The improvement of the corrosion resistance and scale inhibition properties on the heat transfer surface were researched.
     Based on the data collected from the running circulating cooling water system, the laboratory experimental results and some relevant formulaes, the paper simulated the corrosion behavior of the carbon steel heat exchanger. The kinetic models of parameters which included pH value, alkalinity, concentration rate, concentration of calcium and sulphate, total dissolved solids were discussed and verified. The corrosion rate of carbon steel was inferred by the ion associated effect formula and revised.
     The comparison experiments of the different heat transfer material were carried out on the same conditions using the laboratory fouling resistance apparatus and the man-made hardness water. The relation of the fouling rasistance and the time was obtained from the experiment. The results showed that the formation of the fouling was closely related with the characteristic of heat transfer surface. The surface energy of material was lower, the CaCO3 deposit was smaller. The factors included of the surface temperature, pH value, alkalinity and hardness affected the fouling behavior were investigated. According to the CaCO3 fouling formation mechanism, a model was proposed for CaCO3 fouling which took into account both the crystallization and particulate fouling. Based on the hasson model, the crystallization rate model was set up concerning the ion and the ion-pairs equilibrium relationship in the solution. The particulate fouling model and the removal fouling model were introduced, then the CaCO3 fouling formation was simulated with the deposition-removal mechanism.
     The simulation software of the circulating cooling water system was developed by using ActionScript 3.0 as the development tool and Adobe Flash CS4 Professional as the development environment. The software performed the running process of the circulating cooling water system and calculated parameters by using the mathematical models imitating professional numerical calculating softwares, especially the point-by-point survey. In addition, computations of corrosion rate about the carbon steel and the trend of scaling were presented.
     The inorganic films had been prepared on the metallic heat transfer surface to improve the corrosion resistance and scale inhibition properties according to the theory of reduced the surface energy. The works mainly included as followings:the anatase phase TiO2 films had been prepared on 304 stainless steel by sol-gel method; the Ni3P-TiO2 composite films had been prepared on carbon steel by electroless plating and sol-gel method; the amorphism SiO2 films had been prepared on 304 stainless steel and carbon steel. The factors including catalyzer, DMF additive, different mixed sol ways, sinter technics were discussed to effect the films formation on the substrates, then the best preparation process was determined. These films'properties of anticorrosion, antifouling and antibiosis were measured. The results proved that the inorganic films on the metal surface can greatly improve the performances of anticorrosion, antifouling and antibiosis. The TiO2 films had the better characteristic than SiO2 film because of the TiO2 films' photoelectricity effect. Moreover, the preparation of TiO2 film was simple and the adhesion with the substrate was strong so that the film was worth for application.
引文
[1]任光照,徐子恺,王国新.我国水资源开发利用业绩与前景[J].水文,1995(5):11-16.
    [2]戴维·塞克勒.新世纪的水资源短缺[J].水利水电快报,2000,21(8):1-5.
    [3]胡明秀.我国水资源现状及开发利用对策[J].武汉工业学院学报,2004,23(1):104-108.
    [4]邵清.水处理及循环再利用技术[M].北京:化学工业出版社,2004.
    [5]齐冬子.敞开式循环冷却水系统的化学处理[M].第二版.北京:化学工业出版社,2005:1-32.
    [6]杨岳,王树勖,陈玉荣.高硬高碱循环冷却水处理[J].工业用水与废水,35(2),2004:26-28.
    [7]周本省.工业循环冷却水处理技术进展(1)[J].清洗世界,2004,20(11):21.
    [8]杨彩奎.敞开式循环冷却水系统的水质处理[J].山西建筑,2003,29(18):120.
    [9]齐冬子.敞开式循环冷却水的pH值、碱度及加酸量估算[J].工业用水与废水,1999,30(2):10.
    [10]宋凯,王艳棉.循环水水质问题分析及处理方法[J].一重技术,2003(1):48.
    [11]欧阳志.提高循环冷却水浓缩倍数的有效途径[J].工业水处理,2001,21(9):8.
    [12]Steinhagen R, Steinhagen H M, Maani K. Problems and costs due to heat exchangers fouling in New Zealand industries[J]. Heat Transfer Engineering,1993,14(1):19-30.
    [13]夏新民.换热器在线清洗技术介绍石油化工设备技术介绍[J].石油化工设备技术,1993,14(4):56-60.
    [14]Garrett Price B A, Smith S A, Watts R L, et al. Fouling of heat exchangers, characteristics, cost, prevention, control and removal[M]. New York:Noyes Publications,1985.
    [15]Butterworth D, Mascone C F. Heat transfer heads into the 21 st century[J]. Chem. Eng. Prog., 1991,87(9):30-37.
    [16]王家诚.中国能源发展的战略重点[J].能源政策研究,2003(1):28-34.
    [17]Xu Z M, Zhang Z B, Yang S R. Costs due to utility fouling in China[C]. Engineering international conference on Heat Exchanger Fouling and Cleaning-Ⅶ, Tomar, Portugal, July 1-7,2007.
    [18]Epstein N. Fouling in heat exchangers[C]. Heat Transfer 1978-Proc 6th IHIC,1979,6: 235-253.
    [19]杨善让,徐志明.换热设备的污垢与对策[M].北京:科学出版社,1997,39-40.
    [20]王睿,杨晓静,林昭华,等.循环水系统CaCO3结垢速率的理论预测[J].石油学报(石油加工),2002,18(1):72-77.
    [2l]徐志明,张仲彬,孙灵芳.析晶与颗粒混合污垢的实验研究[J].工程热物理学报,2005,26(5):853-855.
    [22]徐志明,张仲彬,郭闻州.微粒和析晶混合污垢模型[J].工程热物理学报,2006,27(S2):81-84.
    [23]Cleaver J W, Yates B. A sub-layer model for the deposition of particles from a turbulent flow[J]. Chem Eng Sci,1975,31:983-992.
    [24]Turner C W. Rates of particle deposition from aqueous suspensions in turbulent flow:A comparison of theory with experiment[J]. Chem Eng Sci,1993,48(12):2189-2195.
    [25]刘中良,施明恒,戴锅生.结晶垢结垢过程的传热传质模型[J].化工学报,1997,48(4):401-407.
    [26]Hasson D, Zahavi J. Mechanism of calcium sulfate scale deposition on heat transfer surfaces[J]. I&EC Fundamentals,1970,9(1):1-10.
    [27]Muller-Steinhagen H M, Branch C A. Influence of thermal boundary conditions on calcium carbonate fouling in double pipe heat exchangers[J].Chem Eng Process,1988,24:65-68.
    [28]Karnaukhov L R, Stefanis S K, Ciric A R. Proceedings 6th Intern Sym-posium on Fresh Water from the Sea[C]. Athens,1978,211-216.
    [29]Chernozubov V B, Douglas J M, Johnson S W. Proceedings 4th Intern Symposium on Fresh Water from the Sea[C]. Heidelgerg,1973,57-59.
    [30]平亚明,孙奉仲,高明.结垢换热面流体流动特性对于污垢热阻的影响研究[J].水动力学研究与进展,2004,19(4):458-462.
    [31]Hasson D, Avriel M, Resnick W. Calcium carbonate scale deposition on heat transfer surfaces[J]. Desalination.1968,5(1):107-119.
    [32]全贞花,陈永昌,马重芳.碳酸钙于换热表面结垢影响因素的模拟分析[J].工程热物理学报,2008,29(11):1944-1946.
    [33]Wang Y. Composite fouling of calcium sulphate and calcium carbonate in a dynamic seawater reverse osmosis unit[D]. sydney:the university of new south wales,2005.
    [34]Butterworthd D. Resign of shell and tube heat exchangers when the fouling depends on local temperature andvelocity[J]. Applied Thermal Engineering,2002,22:789-801.
    [35]林培滋,黄世煜,初惠萍.温度对碳酸钙结垢过程的影响[J].石油与天然气化工,1999,28(2):128-129.
    [36]杨祖荣,Yoon Woon-Young, Frederick W J.蒸发器中结垢速率研究[J].化工学报,1992,43(2):154-159.
    [37]Hasson D. Progress in precipitation fouling research, a review, Understanding Heat Exchanger fouling and Its Mitigation[C].1997.
    [38]Story M K. Surface temperature effects on the fouling characteristic of colling water [D]. Oregon:Oregon State University,1975.
    [39]Chernozubov V B, Douglas J M, Johnson S W. Proceedings 4th Intern Symposium on Fresh Water from the Sea[C]. Heidelgerg,1973,57-59.
    [40]王睿.传热面结垢机理与阻垢剂阻垢作用机理的研究[D].大连:大连理工大学.1996.
    [41]杨传芳,徐敦颀,沈自求.表面材质及Mg2+对CaCO3结垢的影响[J].高校化学工程学报,1994,8(4):313-317.
    [42]邢晓凯,马重芳,陈永昌.溶液pH值对碳酸钙结垢的影响[J].石油化工设备,2004,33(5):11-14
    [43]Andritsos N, Karabelas A J. Growth of CdS films from flowing aqueous solutions[J]. Journal of Colloid and Interface Science.1994,165(2):301-309.
    [44]任晓光,李铁凤,赵起,等.池式沸腾条件下CaSO4污垢生成的实验研究[J].化学工程,2006,34(3):13-16.
    [45]高明,孙奉仲,曲超,等.不同换热管表面抗垢性能的实验[J].山东大学学报,2005,35(5):33-36.
    [46]杨传芳.碳酸钙于换热表面上结疤的研究[D].大连:大连理工大学.1992.
    [47]杨善让,徐志明,孙灵芳,等.污垢热阻动态模拟自动监测装置及其应用[J].工程热物理学报,2001,22(增刊):149-152.
    [48]吴双英,李友荣.一种监测换热器污垢的新方法[J].工业传热,2000(1):14-15.
    [49]Seider E N. APPlicationoffoulingfaetorsinthedesignofheatexehangers[J]. ASME J Heat of Transfer,1935,82-86.
    [50]张兵强,李云,徐志明.CaCO3析晶污垢成垢过程影响因素的实验研究[J].东北电力大学学报,2008,28(1):49-54.
    [51]周本省.工业水处理技术[M].第二版.北京:化学工业出版社,2002:75-87.
    [52]严瑞瑄.水处理剂应用手册[M].北京:化学工业出版社,2000
    [53]周本省.循环冷却水系统中控制水垢的方法(Ⅱ)[J].化工清洗,1999,26(4):236-240.
    [54]Davor F Z, Preetha M P. Calcium carbonate scale controlling method:US 562830 [P].1996.
    [55]周本省.循环冷却水系统中控制水垢的方法(Ⅰ)[J].化工清洗,999,26(3):179-182.
    [56]Barbara E. Surface studies of corrosion inhibitors in cooling water systems[J]. Materials Performanc,1990(1):45.
    [57]何亮,乔宁,熊蓉春,等.环氧琥珀酸共聚物的制备及对硫酸钡的阻垢作用[J].北京化工 大学学报,2008,35(2):47-49.
    [58]熊蓉春,董雪玲,魏刚.绿色化学与21世纪水处理剂发展战略[J].环境工程,2000,8(2):22-24.
    [59]熊蓉春,魏刚,周娣,等.绿色阻垢剂聚环氧琥珀酸的合成[J].工业水处理,1999,19(3):11-13.
    [60]霍宇凝,赵岩,陆柱.聚天冬氨酸与氧化淀粉复配物的阻垢性能研究[J].华东理工大学学报,2001,27(4):385-387.
    [61]郭亚丽,林惠芳,王冰.加酸运行提高我厂循环水浓缩倍数的研究[C]//2004全国水处理技术研讨会论文集.杭州:中国化工学会工业水处理专业委员,2004:196-200.
    [62]冯敏.工业水处理技术[M].北京:海洋出版社,1992.
    [63]王睿,张岐,丁洁,等.阻垢剂作用机理研究进展[J].化学工业与工程,2004,18(2):79-86.
    [64]唐受印,戴友芝.工业循环冷却水处理[M].北京:化学工业出版社,2003:5-20.
    [65]Aruna Bahadur. Development and evaluation of a low chromate corrosion inhibitor for cooling water systems[J]. Canadian Metallurgical Quarterly,37(5),1998:459-468.
    [66]齐连惠.工业循环冷却水处理技术研究动态[J].环境科学进展,1999,7(1):78-80.
    [67]齐冬子.敞开式循环冷却水系统的化学处理[M].第二版.北京:化学工业出版社,2005:1-32,68-117.
    [68]翟祥华,包伯荣,葛红花,等.模拟冷却水中304不锈钢的耐蚀性能影响因素研究[J].材料保护,2003,36(4):25-28.
    [69]Shair S. Iron bacteria and red water[J]. Industrial Water Engineering,1975,12 (2):16.
    [70]Zhang Liya. Oil field corosion and protection technical manual[M]. Beijing:Oil Industry Publishing House,1999:35.
    [71]Okereke A, Stevens S E. Kinetics of iron oxidation by thiobadllus ferrooxidans[J]. Applied and Environmental Microbiology,1991,57(4):1052-1056.
    [72]Nnati M, Webb C. A kinetic model for biological oxidation of ferous iron by thiohacillus ferrcoxidans[J]. Biotechnology and Bioenginering,1997,53(5):478.
    [73]Larson T E. Bacteria corosion and red water[J]. Journal AWWA,1939,31(7):1186.
    [74]张胜寒,韩丽燕,边娜.循环冷却水系统腐蚀性能评价[J].山西化工,2008,28(4):43-45.
    [75]胡玉国,祝增才.水处理缓蚀剂应用现状及发展方向[J].化工进展,2000(5):29.
    [76]魏存发,吕红,梁宝锋.循环冷却水缓蚀阻垢剂的现状及发展[J].石化技术与应用,2000,18(5):302.
    [77]Choi Dong-Jin, You Seung-Jae, Kim Jung-Gu. Development of an environmentally safe corrosion, scale, and microorganism inhibitor for open recirculating cooling systems [J]. Materials Science and Engineering,2002:228-235.
    [78]郑逸云,周柏青,李芹.水处理缓蚀剂应用现状与发展[J].腐蚀科学与防护技术,2004,16(2):101.
    [79]Paivi H. Ruokojarvi, Arja H. Askainen, et al. Chemical inhibition of RCDD/F formation in incineration processes[J]. Science of the Total Environment,2004,325:83-94.
    [80]张海燕,都维平.SW-621新型阻垢缓蚀剂处理工业循环冷却水的试验研究[J].宁夏石油化工,2003(3):16-17.
    [81]Magalhas F C M, Sobrinho d'Ella G, et al. Microorganism Influenced Corrosion (MIC) Process in Petrobras Refinery Water Cooling System[J]. International Biodeterioration and Biodegradation.1996,37(1-2):126.
    [82]陆柱.水处理药剂量的现状、进展与建议[J].净水技术,2000,18(1):4.
    [83]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,2007.
    [84]陈爱民,李光海,杨清华,等.循环冷却水零排污运行方案的研究[J].工业水处理,2002,22(4):16-19.
    [85]Betz. Handbook of industrial water conditioning.1976.
    [86]Simpson G. The research of biocides for cooling water treatment[J]. Industrial Water Treatment,1993,25(3):22.
    [87]李本高.循环冷却水处理技术面临新的形势和挑战[J].石油化工环境保护,2001(1):60.
    [88]尹学飞,逮峰,陈东玖,等.提高浓缩倍数降低腐蚀速率[C]//2002全国水处理技术研讨会论文集.广西:中国化工学会工业水处理专业委员,2002:159-161.
    [89]张春雷.循环冷却水处理核心控制参数的研究[D].河北:华北电力大学,2008.
    [90]史海象.高浓缩倍率水处理技术在电厂的应用[J].工业水处理,2004,24(6):54-56.
    [1]刘秀晨,安成强.金属腐蚀学[M].北京:国防工业出版社,2004:2-12.
    [2]DABROWSKI W, BUCHTA R, MACKIE R I. Calcium Carbonate Equilibria in Water Supply Systems[J/OL]. http://www.kfki.baw.de/conferences/ICHE/2002-Warsaw/Articles/PDF/ 284F.pdf,2002.
    [3]IMRAN S A, DIETZ J D, MUTOTI G, et al. Modified Larsons Ratio Incorporating Temperature, Water Age and Electroneutrality Effects on Red Water Release[J]. Journal of Environmental Engineering,2004,131(11):1514-1520.
    [4]FERGUSON R J. Developing Corrosion Inhibitor Models[J/OL]. http://www.French creeksoftware.com/wt93.htm,1993.
    [5]GALLEGOS A A, MARTINEZ S S, REYES J L R. Evaluation of Water Corrosivity Using a Corrosion Rate Model for a Cooling Water System [J]. Journal of New Materials for Electrochemical Systems,2005(8):133-142.
    [6]GB/T15451-95.工业循环冷却水中碱度的测定方法[S].
    [7]GB/T15452-95.工业循环冷却水中钙、镁离子的测定[S].
    [8]GB/T15893.2-95工业循环冷水中pH值的测定[S].
    [9]GB/T15453-95工业循环冷却水中氯离子的测定[S].
    [10]GB/T15893.3-95工业循环冷却水中硫酸盐的测定[S].
    [11]GB/T15893.4-95工业循环冷却水中溶解性固体的测定[S].
    [12]HB2-1526.冷却水化学处理标准腐蚀试片技术条件中对试片的处理和测试方法测定[S].
    [13]NORDSVEEN M, NESIC S, NYBORG R, et al. A Mechanistic Model for Carbon Dioxide Corrosion[J]. Corrosion,2003,29(7):433-456.
    [14]齐冬子.敞开式循环冷却水系统的化学处理[M].第二版.北京:化学工业出版社,2005.
    [15]唐受印,戴友芝.工业循环冷却水处理[M].北京:化学工业出版社,2003.
    [16]齐冬子.敞开式循环冷却水系统中韵pH值、碱度及加酸量估算[J].工业用水与废水,1999,30(2):10-14.
    [17]张春雷.循环冷却水处理核心控制参数的研究[D].河北:华北电力大学,2008.
    [18]GB50050-2007,工业循环冷却水处理设计规范[S].
    [19]贾丰春,李自托,董泉玉.工业循环冷却水阻垢剂研究现状与发展[J].工业水处理,2006,26(4):12-14.
    [1]俞秀民.传热设备污垢防治的重大经济意义[J].化学清洗,1995,11(3):22-25.
    [2]王睿,丁洁,沈自求.换热设备的结垢机理研究现状[J].化工进展,1999(03):31-35.
    [3]Epstein N.Fouling in Heat Exchangers[C].Heat Transfer,1979.
    [4]周本省.循环冷却水系统中的水垢及其控制[J].腐蚀与防护,2006,27(1):26-31.
    [5]DABROWSKI W, BUCHTA R, MACKIE R I. Calcium Carbonate Equilibria in Water Supply Systems[J/OL]. http://www.kfki.baw.de/conferences/ICHE/2002-Warsaw/Articles/PDF/ 284F.pdf,2002.
    [6]齐冬子.敞开式循环冷却水系统中的pH值、碱度及加酸量估算[J].工业用水与废水,1999,30(2):10-14.
    [7]Kim W T. A study of physical water treatment methods for the mitigation of mineral fouling[D]. USA:Drexel University,2001.
    [8]kern D Q, Seaton R E. A theoretical analysis of thermal surface fouling[J]. Chem. Eng. Prog., 1959,4:258-262.
    [9]kern D Q, Seaton R E.Surface fouling how to limit[J]. Cr. Chem Eng.,1959,55(6):71-73.
    [10]王睿.传热面的结垢机理与阻垢剂阻垢作用机理的研究[D].大连:大连理工大学,1996.
    [11]Hasson D, Sherman H, Biton M. Prediction of calcium carbonate scaling rates[C]. Proceedings 6th international Symposium Fresh Water from the Sea,1978,2:193-199.
    [12]Taborek J, Aoki T, Ritter R B, et al. Predictive methods for fouling behaviour[J]. Chemical Engineering Progress,1972,68(7):69-78.
    [13]周本省.工业水处理技术[M].第二版.北京:化学工业出版社,2002.
    [14]高明,孙奉仲,王妮妮,等.换热表面的表面能对换热性能影响的理论分析[J].能源工程,2006(2):12-14.
    [15]张仲彬,换热表面污垢特性研究[D].北京:华北电力大学,2009.
    [16]Zhao Q, Wang X.. Heat transfer Surfaces Coated with Fluorinated Diamond-Like Carbon Films to Minimize Scale Formation[J]. Surface & Coatings Technology,2005,192(1):77-80.
    [17]顾惕人,朱琪瑶.表面化学[M].北京:科学出版社,1996.
    [18]钱苗根,姚寿山,张少宗.现代表面技术[M].北京:机械工业出版社,1999.
    [19]Forster M, Bohnet M. Influence of the interfacial free energy crystal/heat transfer surface on the induction period during fouling[J]. Int J Therm Sci,1999,38:944-954.
    [20]程延海,邹勇,程林,等.表面改性对换热面抗垢性能的影响[J].工程热物理学报,2009,30(9):1528-1530.
    [21]王春芬,虞斌,涂善东.聚四氟乙烯及其改性复合材料在换热器中应用[J].2005,34(3):41-45.
    [22]Zhao Q, Liu Y.Investigation of graded Ni-Cu-P-PTFE composite coatings with antscaling properties[J].Applied Surface Science,2004,229:56-62.
    [23]Sheikholeslami R.Calcium sulfate fouling-precipitation or particulate:A proposed composite model[J].Heat Transfer Engineering.2000,21(3):24-33.
    [24]Liu R. A study of fouling in a heat exchanger with an application of an electronic anti-fouling technology[D]. Philadelphia:Drexel University,1999.41-63.
    [25]Muller-Steinhagen H M, Branch C A. Influence of thermal boundary conditions on calcium carbonate fouling in double pipe heat exchangers [J]. Chem Eng Process,1988,24:65-73.
    [26]Augustin W, Bohnet M. Influence of the ratio of free hydrogen ions on crystallization fouling[J]. Chemical Engineering and Processing,1995,34:79-85.
    [27]王睿,杨晓静,林昭华,等.循环水系统CaCO3结垢速率的理论预测[J].石油学报(石油加工),2002,18(1):72-77.
    [28]Linton W H, Sherwood T K. Mass transfer from solid shapes to water in streamline and turbulent flow[J]. Chem Eng Process,1950,46:258-264.
    [29]时钧,汪家鼎,余国琮,等.化学工程手册(上)[M].北京:化学工业出版社,1996.1-149.
    [30]齐冬子.敞开式循环冷却水系统的化学处理[M].第二版,北京:化学工业出版社,2005.
    [30]杨善让.换热设备的污垢与对策[M].北京:科学出版社,1997.
    [31]全贞花,陈永昌,马重芳.碳酸钙于换热表面结垢的传热与传质模型[J].中国科学(E)辑: 技术科学,2008,38(5):773-780.
    [32]Cleaver J W, Yates B. A sub-layer model for the deposition of particles from a turbulent flow[J]. Chem Eng Sci,1975,31:983-992.
    [33]Turner C W. Rates of particle deposition from aqueous suspensions in turbulent flow:A comparison of theory with experiment[J]. Chem Eng Sci,1993,48(12):2189-2195.
    [34]Papavergos P G, Hedley A B. Particle deposition behavior from turbulent flows[J]. Chem Eng Res Des,1984,62:275-295.
    [35]Cakal G O, Eroglu I, Ozkar S. Gypsum crystal size distribution in four continuous flow stirred slurry boric acid reactors in series compared with the batch[J]. Journal of Crystal Growth, 2006,290(1):197-202.
    [36]Krause S. Fouling of heat transfer surface by crystallization and sedimentation[J]. International chemical engineering,1993,33(3):355-401.
    [37]A.P. Watkinson. Water quality effects on fouling from hard waters, Hear Exchanger Source Book[M]. Washington DC:Hemisphere,1986.
    [38]杨传芳,徐敦欣,沈自求.流动水系统中CaCO3在换热表面上结垢机理的研究[J].化工学报,1993,44(3):289-296.
    [1]林玉珍,刘景军,雍兴跃.数值计算发在流体腐蚀研究中的应用(Ⅰ)[J].中国腐蚀与防护学报,1999,19(1):1-7.
    [2]陈明和,谢兰生,朱知寿,等.计算机模拟与预测方法在材料科学研究中的应用[J].机械工程材料,2005,29(6):1-3.
    [3]乔宁.材料科学中的计算机应用[M].北京:中国纺织出版社,2007.
    [4]Anon. Database Of Generid Chemical Additives Usage In Cooling-Water Systems[J]. EPRICS, 1987.
    [5]Brown C A, Joubert A. Using multicriteria analysis to develop environmental flow scenarios for rivers targeted for water resource management[J]. Water SA,2003,29(4):365-367.
    [6]OLI systems. http://www.olisystems.com.
    [7]黄晓陵,黄秋龙.化学水气品质监测数据管理系统[J].河北电力技术,1997,4(16):27-29.
    [8]李胜,罗益民.水质管理系统的实现[J].石油化工腐蚀与防护,2000,17(1):61-65.
    [9]张亚飞.Flash ActionScript3.0开发王[M].北京:电子工业出版社,2008.
    [1]杨善让,徐志明,孙灵芳.换热设备污垢与对策(第二版)[M],北京:科学出版社,2004.
    [2]Aborek, J. Assessment of fouling research on the design of heat exchanger, Fouling Mitigation of Industrial heat-exchanger equipment[C], New York:Begell House Inc punlishers,1997,27.
    [3]刘明言,林瑞泰,李修伦,黄鸿鼎.管壳式换热器工艺设计的新挑战[J],化学工程,2005,33(1):16-19.
    [4]郭泉,王国玲.换热器的结垢问题[J].辽宁化工,2001,30(2):88-89.
    [5]王荣生,黄翔峰,谢浩.城市污水厂尾水氯消毒及其余氯控制技术进展[J].贵州环保科技,2003,9(4):16-21.
    [6]Ernest R B, Latch L Y. Effects of Disinfectants on Wastewater Effluent Toxicity[J]. Water Research,1997,31(7):1581-1558.
    [7]DURAN F E, DUNKENLBERGEI G W A. Comparation of Membrane Softening on Three South Florida Groundwater[J]. Desalination,1995,102:27-34.
    [8]愈三传,金可勇.膜软化及其应用[J].工业水处理,2000,20(11):10-13.
    [9]姚寿山,李戈扬,胡文彬.表面科学与技术[M],北京:机械工业出版社,2005.
    [10]刘明言,王红,王燕.表面工程技术应用于蒸发器的防垢及沸腾传热强化的研究进展[J].化工进展,2007,26(3):442-447.
    [11]任晓光,刘长厚,赵起,等。在流动沸腾装置中磁控溅射表面的抗垢性能[J].化工学报,2001,52(3):173-175.
    [12]刘天庆,徐敦颀.换热器表面防除垢新方法的研究[J],表面技术,1993,22(5):214-217.
    [13]ZHAO Q. Dropwise condensation of steam on ion implanted condenser surface[J]. Plant Recovery System & CHP,1994,14 (5):525-534.
    [14]王乃华,李淑英·镍基渗层管表面实现珠状凝结的研究[J].动力工程,2002,22(3):1804-1807.
    [15]江雷.从自然到仿生的超疏水纳米界面材料[J],化工进展,2003,22(12):1258-1263.
    [16]Takata, Y., Hidaka, S., Masuda, M., et al. Pool boiling on a superhydrophilic surface[J], Int. J. of Energy Research,2003,27(2):111-119.
    [17]王红,经过表面处理的蒸发器传热及防除垢研究[D].天津:天津大学,2006.
    [18]周幸福,褚道葆,林昌健.不锈钢表面纳米TiO2膜的制备及其耐蚀性能[J].材料保护,2002,35(7):4-5.
    [19]METRIC T, PARKHILL R, KNOBBE E. Synthesis of hybrid organic-inorganic sol-gel coatings for corrosion resistance[J]. Materials Research Society Symposium-Proceedings, 1999,576:293-298.
    [20]肖正伟,曾振欧,赵国鹏,等.304不锈钢上纳米TiO2涂层的制备与防腐蚀性能研究[J].电镀与涂饰,2007,26 (7):35-38.
    [21]WANG D H, BIERWAGEN G P. Sol-gel coatings on metals for corrosion protection [J]. Progress in Organic Coatings,2009,64(4):327-338.
    [22]李新起,闫肖萌.无机膜制备工艺、改性及成膜机理的研究进展[J].陶瓷学报,2008,29(2):170-182.
    [23]崔晓莉,江志裕.纳米TiO2薄膜的制备方法[J].化学进展,2002,14(5):326-331.
    [24]银董红,邓吨英,陈恩伟,等.溶胶-凝胶法制备二氧化钛薄膜的研究进展[J].工业催化,2004,12(1):1-6.
    [25]李红,赵高凌,杨金坚,等.溶胶凝胶法制备TiO2薄膜的微观结构和光学性能研究[J].功能材料,2005,36(12):1869-1871.
    [26]YUAN J N, TSUJIKAWA S. Characterization of sol-gel-derived TiO2 coatings and their photoeffects on copper substrates [J]. J Electrochem Soc,1995,142 (10):3444-3450.
    [27]SHEN G X, CHEN Y C, LIN C J. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method [J]. ThinSolid Films,2005,489 (1/2): 130-136.
    [28]杨邦朝,陈金菊,韩丽坤.纳米技术在表面处理中的应用[J].表面技术,2003,32(3):60-61.
    [29]FERNANDO G, KATHERINE V, et al. Titanium dioxide nanocrystalline bactericidal thin films grown by sol-gel technique[J]. Applied Surface Science,2008,39(11):1333-1335.
    [30]高明,孙奉仲,曲超,等.不同换热管表面抗垢性能的实验[J].山东大学学报,2005,35(5):33-36.
    [31]ASTM D3359.胶带法测试涂层附着力[S].
    [32]Zhang L, Zhu Y F, He Y, et al. Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel[J]. Applied Catalysis B:Environmental,2003,40: 287-292.
    [33]邱国民,王兴利,张可铮,等.溶胶-凝胶法制备SiO2无机膜的影响因素[J].辽宁石油化工大学学报,2006,26(2):19-22.
    [34]Barati N, Faghihi M A, Ghasemi H. Preparation of uniform TiO2 nanostructure film on 316L stainless steel by sol-gel dip coating[J]. Applied Surface Science,2009,255:8328-8333.
    [35]秦丽雁,张寿禄,宋诗哲.典型不锈钢晶间腐蚀敏化温度的研究[J].中国腐蚀与防护学报,2006,21(1):1-5.
    [36]洪波,姜传海,王新建.Ni-P非晶薄膜晶化相与相变动力学的XRD分析[J].金属学报,2006,42(7):699-702
    [37]SHIBLI S M A, DILIMON V S. Effect of phosphorous content and TiO2-reinforcement on Ni-Pelectroless plates for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2007,32:1694-1700
    [38]宋来洲,李建,王福君.化学镀Ti-P合金/TiO2复合膜的耐蚀性研究[J].材料科学与工艺,2002,10(2):148-151
    [39]Foster, M., Bohnet, M. Influence of the interfacial free energy crystal/heat transfer surface on the induction period during fouling[J], Int. J. of Thermal Sciences,1999,38(11):944-954.
    [40]Wang R, Hashimoto Y, Fujishima A, et al. Light-induced amphiphilic surfaces[J]. Nature,1997, 388(31):431-432.
    [41]林华香,王绪绪,付贤智.不同晶型的TiO2膜表面光致亲水性的研究[J].材料导报,2007,21(11):118-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700