用户名: 密码: 验证码:
水处理自动化系统的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
往水中添加氯气以保持水中余氯含量是水处理过程中的常用工艺。但在一些对于水中余氯含量控制精度有严格要求的场合,常见的氯气负压添计系统不能满足需求,因此必须对系统作进一步的改进,采用一种新的工艺。
     本文结合工厂实际,提出先将氯气制成高浓氯水,然后采用变频计量泵添加氯水的工艺及控制系统,在给水流量较小、并且流量波动较大情况下实现水中余氯含量的精确控制。
     预先通过负压加氯,配制一定量的高浓氯水,根据供水流量和余氯值,采用模糊控制改变变频器的工作频率来调节电机的速度,确保原水流量发生阶跃变化时控制系统的响应速度和稳定性;同时根据采样的余氯值为反馈量采用PID控制器控制计量泵冲程,达到精确控制余氯的目的。
     控制部件选用SIEMENS公司的小型可编程控制器S7-3152DP,人机界面配以SIEMENS公司的WINCC系统。
     此系统的特点是反应特性快,加氯量可快速跟随供水流量的变化,通过计量泵的转速和冲程调节,氯水添加的可调比大能及时将加氯量调节到最佳值,可大大降低药耗,稳定水质。
It is common process in water treating to inject chlorine gas into the process water to keep the concentration of the residual chlorine. The general chlorine gas vacuum dosing system is not precise enough to keep the water residual chlorine and need to be improved.
    A new chlorination process was introduced in this article based on the actual conditions. The chlorine gas was mixed with the water to gain the high concentration chlorine water, and then the chlorine water is put in the process water by variable frequency dosing pump.
    The flow of high concentration chlorine water is accurate controlled by dosing pump according to the water flow and the residual chlorine of process water. The dosing pump is regulated by fuzzy control which can ensure the responding speed and stability of the system when the water flow varies quickly, and the capacity of the dosing pump is controled by PID controller based on the actual residual chlorine content.
    The type of the PLC used is S7-3152DP of SIEMENS and the HMI(human mache inerface) is the WINCC system of SIEMENS too.
    The new process can decrease the chlorine consumption and increase the stability of the water quality. It uses a variable frequency metering pumps to inject the high concentration chlorine water into the process water by changing the motor speed and the capicity of the dosing pump,and the value of the residual chlorine can be adjusted to the set point soon.
引文
[01] 常丹华.一种液压伺服系统数制控制器的研制.工业仪表与自动化装置,2000.2:25~28]
    [02] 杨兆春.分程控制在PROVOX系统中的实现.自动化仪表,2000.2:40~41
    [03] 程建芳.城市污水处理控制系统.自动化仪表,2000.7:33~35]
    [04] 郑震宇.监控平台软件的功能及设计实例.自动化仪表,2000.6:5~7
    [05] 许颖原.DCS故障诊断专家系统中知识自动获取的研究.自动化仪表,2000.6:14~16
    [06] 陶文伟.单神经元控制器及其在过热气温控制中的应用.自动化仪表.2000.4:20~22
    [07] 袁南儿,王万良.计算机新型控制策略及应用.北京:清华大学出版社,1998
    [08] 黄海峰,孙小菡.多媒体工业监控网络中信号实时传输机制的研究.工业仪表与自动化装置,2000.5:8~11
    [09] 李晓枫.在分散控制系统上实现的PID参数模糊自整定控制.工业仪表与自动化装置.2000.5:31~33
    [10] 程来九.热工过程自动调节原理和应用.北京:水利电力出版社,1982
    [11] 王亚刚等.基于频域辨识的自整定PID控制器.自动化仪表,2000.8:9~13
    [12] 马宝萍.在线自调整比例因子的模糊控制器.自动化仪表,2000.8:20~22
    [13] 张巍.在线自调整模糊-PID控制器的设计.自动化仪表,2000.9
    [14] 张新宇等.SIMATIC PCS7在净水厂的应用.自动化仪表,2000.9
    [15] 王化祥等.一种新型模糊PID调节器的设计.自动化仪表,2000.5:8~10
    [16] 吴波,纪兴权.大纯滞后过程的采样控制及其工程实现中的若干问题.自动化仪表,2000.5:32~35
    [17] 樊世民.现场总线和集散控制系统.工业仪表与自动化装置,2000.2:61~63
    [18] F.G.欣斯基.过程控制系统.北京:化学工业出版社,1982
    [19] 任秀珍.王永初.简单采样控制系统的设计与整定.化工自动化及仪表,1985.3
    [20] 王士杰.论大纯滞后过程的采样控制.炼油化工自动化,1999.6
    [21] 葛敏辉等.现代水处理企业综合自动化方案.工业仪表与自动化装置,2000.2
    [22] 刘磅.TCP/IP Ethernet——自控设备的新选择.世界仪表与自动化,2002.1:52~53
    [23] 俞金寿.工业过程先进控制.世界仪表与自动化,2002.3:12~14
    [24] 郑晓虎.冶金企业水厂控制系统PLC的应用.自动化与仪器仪表,2000.4
    
    
    [25] 王晓岚、苏玉刚.模糊控制技术现状与发展趋势.电工技术,2000.3:4~6
    [26] 王华祥、荪金刚、陈磊.一种新型模糊PID调节器的设计,自动化仪表,21(5)
    [27] 李凡著.模糊信息处理系统.206~240
    [28] Eric Poulin, Andre Pomerleau etc. Development and evaluation of an autotuning and adaptive PID controller. Automatica, 1996,32(1):71~82
    [29] He S.Z.,Tan S.H.,Hang C.C. And Wang P.Z. Control of Dynamical Processes Using A online Ruleadaptive Fuzzy Control System. Fuzzy Sets And system, 54(1993),11~12
    [30] Ho W.K.,Hang C.C. and Cao L.S. Tuning of PID Controllers Based on Gain and Phase Margin Specification. Automatic 31(1994)497~503
    [31] Richalet J. Industrial application of model based predictive control. Automatic, 1993,29(5):1251~1274
    [32] Richalet J, rault A, Testud J L, Papon J. Model predictive heuristic control:Appli-cations to industrial processes. Automatic, 1978,14:413~428
    [33] Braae M, Rutherford D A. Selection of parameters for a fuzzy logic control. Fuzzy Sets and Systems, 1979(2):185~199
    [34] Richalet J. Model-based Predictive control:Who sells what?. CONTROL ENGINEERING, May, 1993
    [35] Richalet J. Observations on model-based predictive control. CONTROL ENGINEERING, Aug, 1992
    [36] Bare W H, Mulholland R J, Sofer S S. Design of catalytic reformer. IEEE Transactions on Automatic Contro1,1990,35(2):156~164
    [37] Wong C C, Feng S M.A switching type of fuzzy controller. IEEE Internat. Conf>on Fuzzy Systems, 1994:30~34
    [38] Tor Schei. Automatic tuning of PID controller based on transfer function estimation. Automatica, 1994,30(12):1983~1989
    [41] 叶银忠.动态系统的故障检测与诊断方法.信息与控制,1985(6),27~33
    [42] SIMATIC STEP 7用户手册.SIEMENS 1996
    [43] S7-300程序控制硬件与安装.SIEMENS 1996
    [44] S7EP 7 V5.0使用入门.SIEMENS 1999
    [45] SIMA7IC的技术功能概述.SIEMENS 2002.04
    [46] 自动化技术的骤变,全集成自动化:TIA SIEMENS.
    [47] 西门子变频器MICROMASTER 420说明书
    
    
    [48] 张彬.自动控制原理.北京邮电大学出版社
    [49] SIMATIC HMI Communication user's Manual SIEMENS 2000.09
    [50] 王敬东.用PLC实现加氯串级比值控制.基础自动化.2001.10,8(5)
    [51] 潘世永.工业控制网络的体系结构.电气自动化,2003年第25卷第4期
    [52] 邹旭东、张凯.基于DSP的全数字化变频调速系统.电气自动化,2003年第25卷第4期
    [53] 何玉安、柴绍宽.基于SINEC L2网和MODBUS PLUS网的自动制造系统研究.电气自动化,2003年第25卷 第4期
    [54] 面向机械制造行业的自动化 SIEMENS
    [55] 标准驱动产品通讯手册 SIEMENS
    [56] 用于自动控制系统的工业通讯网络 SIEMENS
    [57] MILTON ROY Series G,Model" B" Pump instrument manual
    [58] 变频调速基础知识
    [59] 王杭州.传统加氯工艺和控制系统的改进.
    [60] 王权,郑传林,绍洪.给水处理中加氯量的影响因数.山东建筑工程学院学报,2000.3(15)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700