用户名: 密码: 验证码:
多段进水A/O生物膜脱氮工艺运行性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国社会的不断发展和人民生活水平的不断提高,水体的氮元素污染问题日益严重。传统的生物脱氮工艺具有污泥产量大,运行费用高,占地面积大,基建费用高等缺点。研究人员积极开展新型脱氮工艺的研发和对传统生物脱氮工艺的改进,其中多段进水A/O生物脱氮工艺具有TN去除效率高、污泥产量少、基建费用低、运行费用省等优点,受到了研究人员的广泛关注。
     本研究通过建立一种同时对多段进水A/O生物膜脱氮工艺的进水流量和反应单元容积进行优化分配的方法,提升了该工艺的运行性能。针对多段进水A/O生物膜脱氮工艺开展了理论分析、试验研究和基于生化反应动力学的数值模拟,基于理论分析及试验研究结果,并根据对运营中的高速公路服务区排放污水水质水量的调查,对处理高速公路服务区污水的多段进水A/O生物膜脱氮工艺的运行策略进行了优化。主要得出以下结论:
     (1)基于COD与NO_3~-—N按一固定比例进入多段进水A/O生物膜脱氮工艺各段缺氧池的原则对工艺的流量进行分配,可以使该工艺在理论上达到最大的TN去除效率。通过对等流量分配模式和优化模式下工艺出水水质的分析计算,说明按照优化模式对多段进水A/O生物膜脱氮工艺的进水流量进行分配可以提高该工艺的TN去除效率。多段进水A/O生物膜脱氮工艺的流量分配系数与工艺分段数、进水COD与总凯氏氮(TKN)的比值(C/N比)和缺氧池进水中COD与NO_3~-—N的比值(α,mgCOD/mgNO_3~-—N)有关;
     (2)多段进水A/O生物膜脱氮工艺的最大TN去除效率与进水C/N比(m),回流比(R)和α有关。当进水C/N比较高,即m≥α时,该工艺的最大TN去除效率随着R的增大而增大。当进水C/N比较低,即m<α时,此时存在一临界回流比R_m,当R<R_m时,该工艺的最大TN去除效率随R的增大而增大;当R≥R_m时,该工艺的最大TN去除效率为一定值,与R无关;
     (3)在多段进水A/O生物膜脱氮工艺的进水流量分配和反应单元的容积设计中存在最优α值。基于ASM1模型的数值模拟结果,多段进水A/O生物膜脱氮工艺的进水流量和各反应单元容积的设计中可选择α等于7mgCOD/mgNO_3~-—N。试验结果表明选择α等于7mgCOD/mgNO_3~-—N对工艺的进水流量和各处理单元的容积进行分配是合适的;
     (4)等流量分配模式下,回流比对三段进水A/O生物膜脱氮工艺的TN去除效率有一定的影响。当回流比小于3/4时,该工艺的TN去除效率随着回流比的增大而增大;当回流比为1时,该工艺的TN去除效率略低于回流比为3/4时的TN去除效率;
     (5)当进水COD和NH+4N浓度分别为1000mg/L和100mg/L时,水力停留时间为36h,回流比为1/3时,等流量分配模式和优化模式下三段进水A/O生物膜脱氮工艺的TN去除效率分别为80.3%和88.8%。本研究中建立的同时对工艺的进水流量和各反应单元容积进行优化分配的方法可以提高多段进水A/O生物膜脱氮工艺的TN去除效率;
     (6)本研究中建立的基于ASM模型构架的多基质多种类微生物的零级反应一维生物膜动力学模型适用于三段进水A/O生物膜脱氮工艺的稳态运行结果的模拟,该模型可以较好地模拟各单元出水水质。将模型应用于反应器运行参数变化时的动态模拟,可以预知水质及生物量的变化过程,有助于理解反应器中发生的生化现象,对指导实验过程有很大的实际意义;
     (7)高速公路服务区污水属高浓度COD高浓度氨氮生活污水。在设计高速公路服务区污水处理设施时,污水量时变化系数不宜按照《室外排水设计规范》(GB50014-2006)或者按照常规小流量生活污水的时变化系数取值。较均匀的入区车流量随时间的分布,削弱了高速公路服务区排放污水的小时变化强度。
With the rapid development of society and the constant improvement of the standard ofliving in China, nitrogen contamination of water bodies becomes more and more serious.Conventional biological nitrogen removal processes have disadvantages such as a largeamount of excess sludge, high operating cost, large footprint and big investment. Researchersengage in the development of new biological nitrogen removal processes and theimprovement of conventional biological nitrogen removal processes actively. With theadvantages of high total nitrogen (TN) removal efficiency, less excess sludge, less investmentand lower operating cost, step feeding Anoxic/Oxic (A/O) biological nitrogen removalprocess has attracted a great deal of interest.
     An optimized method which can distribute the influent and the volume of each treatmentunit of step feeding A/O biofilm nitrogen removal process simultaneously was proposed inthis study for improving the performance of the process. Theoretical analysis, experimentalstudy and numerical simulation based on the biochemical reaction kinetics of the process werealso performed. According to the survey data of the quality and quantity of the wastewaterdischarged from an operating expressway service area and the theoretical analysis and theexperimental results of the step feeding A/O biofilm nitrogen removal process, the optimizedoperation strategy of the step feeding A/O biofilm nitrogen removal process dealing with theexpressway service area wastewater was proposed. The following conclusions were drawn:
     (1) The influent of the step feeding A/O biofilm nitrogen removal process wasdistributed by the principle of COD andNO_3~-—Nfed into the anoxic units of the processwith a fixed ratio which could make the process achieve the maximum TN removal efficiencyin theory. By comparison the effluent quality of the process under the optimization mode withthat of under the equal flow rate distribution mode, it was indicated that, the influentdistributed with the optimized method could improve the TN removal efficiency of theprocess. Flow rate distribution coefficient of the process was in relation to steps of the process,influent COD-to-TKN ratio (C/N ratio) and COD-to-NO_3~-—Nratio (α,mgCOD/mgNO_3~-—N)of the influent of the anoxic unit;
     (2) The maximum TN removal efficiency of the step feeding A/O biofilm nitrogenremoval process was in relation to influent C/N ratio, return ratio (R) and α. When the influentC/N ratio was relatively high, namely m≥α, the TN removal efficiency was increased with increasing of R; When the influent C/N ratio was relatively low, namely m<α, there was acritical return ratio R_m, when R<R_m, the TN removal efficiency of the process was increasedwith increasing of R, and when R≥R_m, the TN removal efficiency of the process was a fixedvalue and had nothing to do with R;
     (3) There was an optimum value of α in the flow rate distribution and the volume designof each treatment unit of the step feeding A/O biological nitrogen removal process. Bynumerical simulation based on the activated sludge model NO.1(ASM1), α could equal to7mgCOD/mgNO_3~-—N. By experimental verification, it was proved that the value of α equaledto7mgCOD/mg was appropriate;
     (4) Under the equal flow rate distribution mode, R had certain effects on the TN removalefficiency of the three-step feeding A/O biofilm nitrogen removal process. When R was lowerthan3/4, the TN removal efficiency of the process was increased with increasing of R, andwhen R equaled to1, the TN removal efficiency of the process was just a little lower than thatof when R was3/4;
     (5) When the COD andNH+4Nconcentration of the influent were1000mg/L and100mg/L respectively, hydraulic retention time was36h, and return ratio was1/3, the TNremoval efficiency of the three-step feeding A/O biofilm nitrogen removal process under theequal flow rate distribution mode and the optimization mode were80.3%and88.8%respectively. The method proposed in this study, which optimized the flow rate distributionand the volume distribution of each treatment unit of the process simultaneously, can improvethe TN removal efficiency of the process;
     (6) The multi-substrate and multi-species zero-order1-D biofilm kinetic modelconstructed in this study was applicable to simulate the steady operation result of thethree-step feeding A/O biofilm nitrogen removal process, and the model can properly simulatethe effluent quality of each treatment unit of the process. When the operation parameter of theprocess was varied, the model can simulate the dynamic variation of the water quality and thebiomass in the reactor which was help for understanding the biochemical phenomenon in thereactor and had practical meaning for guiding the experiment;
     (7) Wastewater discharged from the expressway service area was domestic wastewaterwith high-strength COD andNH+4N, and in design of expressway service area wastewatertreatment facilities, the value of the hourly variation factor should not be decided by Code forDesign of Outdoor Wastewater Engineering(GB50014-2006) or that of conventional smallflow rate domestic wastewater. More uniform distribution of the traffic volume into the service area weakened the hourly variation intensity of the wastewater flow rate.
引文
[1] Schindler D.W. and Hecky R. E. Eutrophication: More Nitrogen Data Needed [J].Science,2009,324(5928):721-722
    [2] GB3838-2002.地表水环境质量标准[S].北京:中国环境科学出版社,2003
    [3]中华人民共和国环境保护部.2010年《中国环境状况公报》[EB/OL],http://www.zhb.gov.cn/gzfw/xzzx/wdxz/,2011-06-03
    [4]中华人民共和国环境保护部,中华人民共和国统计局,中华人民共和国农业部.三部门联合发布《第一次全国污染源普查公报》[EB/OL],http://www.zhb.gov.cn/zhxx/hjyw/201002/t20100210_185661.htm,2010-02-10
    [5]胡宝兰.新型生物脱氮技术的基础研究[D].杭州:浙江农业大学,2001
    [6] GB8978-1996.污水综合排放标准[S].北京:中国环境科学出版社,1997
    [7]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004
    [8] Gujer W. Nitrification and Me: A Subjective Review [J]. Water Research,2010,44(1):1-19.
    [9] U.S. Environmental Protection Agency (USEPA). Nitrogen Control Manual [Z].EPA/625/R-93/010U.S. Environmental Protection Agency, Office of Research andDevelopment, Washington, DC.1993
    [10] U.S. Environmental Protection Agency (USEPA). Process Design Manual for NitrogenControl [Z]. EPA/625/R-93/010U.S. Environmental Protection Agency, Office ofResearch and Development, Washington, DC.1975
    [11] Jetten M. S. M., Strous M., Van de Pas-Schoonen K. T., et al. The AnaerobicOxidation of Ammonium [J]. FEMS Microbiology Reviews,1998,22(5):421-437
    [12] Zehr J. P., and Ward B. B. Nitrogen Cycling in the Ocean: New Perspectives onProcesses and Paradigms [J]. Applied and Environmental Microbiology,2002,68(3):1015-1024
    [13]廖德祥.全程自养生物脱氮基础研究及污泥颗粒化培养[D].长沙:湖南大学,2008
    [14]周群英,高廷耀.环境工程微生物学[M].第二版.北京:高等教育出版社,2000
    [15] Ling J. Nitrification and the Impact of Organic Matter in Fixed-Film Biofilters:Application to Recirculating Aquaculture Systems [D]. Washington D. C.: Washingtonstate university,2005
    [16] Rittmann B. E. and McCarty P. L.环境生物技术—原理与应用[M].文湘华,王建龙等译.北京:清华大学出版社,2004
    [17] Tavares C., Rocha R. and Guedes T. Nitrification and Denitrification Processes forBiologic Treatment of Industrial Effluents [J]. Applied Biochemistry andBiotechnology,2001,91-93(1-9):437-446
    [18]张小玲.短程硝化-反硝化生物脱氮与反硝化聚磷基础研究[D].西安:西安建筑科技大学,2004
    [19] Ergas S. J. and Reuss A. F. Hydrogenotrophic Denitrification of Drinking Water Usinga Hollow Fiber Membrane Bioreactor [J]. Journal of Water Supply: Research andTechnology,2001,50(3):161-171
    [20] Byun I., Park J. and Park T. A New Method of Autotrophic Denitrification with SpentSulfidic Caustic as Substrate and Alkalinity Source [J]. Biotechnology and BioprocessEngineering,2008,13(1):89-95
    [21] Broda E. Two Kinds of Lithotrophs Missing in Nature [J]. Journal of BasicMicrobiology,1977,17(6):491-493
    [22] Mulder A., Van de Graaf A. A., Robertson L. A., et al. Anaerobic AmmoniumOxidation Discovered in a Denitrifying Fluidized Bed Reactor [J]. FEMSMicrobiology Ecology,1995,16(3):177-184
    [23] Van de Graaf A. A., Mulder A., de Bruijn P., et al. Anaerobic Oxidation of AmmoniumIs a Biologically Mediated Process [J]. Applied and Environmental Microbiology,1995,61(4):1246-1251
    [24] Noophan P., Sripiboon S., Damrongsri M., et al. Anaerobic Ammonium Oxidation byNitrosomonas spp. and Anammox Bacteria in a Sequencing Batch Reactor [J]. Journalof Environmental Management,2009,90(2):967-972
    [25]高廷耀,顾国维,周奇.水污染控制工程(下册)[M].第三版.北京:高等教育出版社,2007
    [26] Kayser R. Environmental Biotechnology: Concepts and Application [M]. Chapter3In:Activated Sludge Process, edited by J rdening H. J. and Winter J., Weinheim:Wiley-VCH Verlag GmbH&Co. KGaA,2005,79-119
    [27] Van Loosdrecht M. C. M. and Jetten M. S. M. Microbiological Conversions inNitrogen Removal [J]. Water Science and Technology,1998,38(1):1-7
    [28] Robertson L. A. and Kuenen J. G. Combined Heterotrophic Nitrification and AerobicDenitrification in Thiosphaera Pantotropha and Other Bacteria [J]. Antonie VanLeeuwenhoek,1990,57(3):139-152
    [29] Vesilind P. A. Wastewater Treatment Plant Design [M]. Padstow, Cornwall, GreatBritain: TJ International Ltd,2003
    [30] Christensen M. H. and Harremo s P. Biological Denitrification in Water Treatment: aLiterature Study [R]. Denmark: Department of Sanitation Engineering: TechnicalUniversity of Denmark,1972
    [31] Ludzack F. J. and Ettinger M. B. Controlling Operation to Minimize Activated SludgeEffluent Nitrogen [J]. Journal of Water Pollution Control Federation,1962,34(9):920-931
    [32]张自杰.排水工程(下册)[M].第四版.北京:中国建筑工业出版社,2000
    [33]沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].第二版.北京:中国环境科学出版社,2006
    [34] Barnard J. L. Biological Denitrification [J]. Journal of Water Pollution Control,1973,72(6):705-720
    [35] Barnard J. L. The Bardenpho Process [M]. Chapter6In: Advances in Water andWastewater Treatment Biological Nutrient Removal, edited by Wanielista M. P. andEckenfelder W. W., Michigan: Ann Arbor Science Publisher,1978,79-114
    [36] Rittman B.E. and Langeland W. E. Simultaneous Deinitrification with Nitrification inSingle-Channel Oxidation Ditch [J]. Journal of Water Pollution Control Federation,1985,57(4):300-308.
    [37] Abeling U. and Seyfried C. F. Anaerobic-Aerobic Treatment of High-StrengthAmmonium Wastewater-Nitrogen Removal via Nitrite [J]. Water Science andTechnology,1992,26(5-6):1007-1015
    [38] Hellinga C., Schellen A. A. J. C., Mulder J. W., et al. The SHARON Process: AnInnovation Method for Nitrogen Removal from Ammonium Rich Wastewater [J].Water Science and Technology,1997,37(9):135-142
    [39] Laanbroek H. J. and Gerards S. Competition for Limiting Amounts of OxygenBetween Nitrosomonas Europaea and Nitrobacter Winogradsky Grown in MixedContinuous Cultures [J]. Archives of Microbiology,1993,159(5):453-459
    [40] Mulder J. W., Van Loostrecht M. C. M., Hellinga C., et al. Full-Scale Application ofthe SHARON Process for Treatment of Rejection Water of Digested SludgeDewatering [J]. Water Science and Technology,2001,43(11):127-134
    [41] Van Kempen R., Mulder J. W., Uijterlinde C. A., et al. Overview: Full ScaleExperience of the SHARON Process for Treatment of Rejection Water of DigestedSludge Dewatering [J]. Water Science and Technology,2001,43(11):127-134
    [42]郝晓地.可持续污水—废物处理技术[M].北京:中国建筑工业出版社,2006
    [43] Van Dongen U., Jetten M. S. M., Van Loosdrecht M. C. M. The SHARON-AnammoxProcess for Treatment of Ammonium Rich Wastewater [J]. Water Science andTechnology,2001,44(1):153-160
    [44]汪慧真,吴俊奇,高志明.半硝化—厌氧氨氧化脱氮新工艺[J].环境工程,2001,19(5):2,7-9
    [45]叶建峰,徐祖信,薄国柱.新型生物脱氮工艺—OLAND工艺[J].中国给水排水,2006,22(4):6-8
    [46] Sliekers A. O., Derwort N., Campos Gomez J. L., et al. Completely AutotrophicAmmonia Removal over Nitrite in One Reactor [J]. Water Research,2002,36(10):2475-2482
    [47] Third K. A., Sliekers A. O., Kuenen J. G., et al. The CANNON System (CompletelyAutotrophic Nitrogen-Removal over Nitrite) Under Ammonium Limitation:Interaction and Competition Between Three Group of Bacteria [J]. Systematic andApplied Microbiology,2001,24(4):588-596
    [48] G rgün E., Artan N., Orhon D., et al. Evaluation of Nitrogen Removal by StepFeeding in Large Treatment Plants [J]. Water Science and Technology,1996,34(1-2):253-260
    [49] Moreno O. Design of the Step-Feed Activated Sludge Process [D]. Montreal, Canada:McGill University,1987
    [50] Cooper P. E., Collinson B. and Green M. K. Recent Advances in Sewage EffluentDenitrification: PartⅡ, Water Pollution Control,1977,76(4):389-398
    [51] Miyaji Y., Iwasaki M. and Serviga Y. Biological Nitrogen Removal by Step-FeedProcess [J]. Progress in Water Technology,1980,12(6):193-202
    [52] Schlegel S. Nitrifikation und Denitrifikation in Einstufigen Belegungsanlagen;Betriebsergebnisse der Kl ranlage Lüdinghausen [J]. gwf Wasser Abwasser,1983,124,428-434
    [53]邱慎初,丁堂堂.分段进水的生物除磷脱氮工艺[J].中国给水排水,2003,19(4):32-36
    [54]王社平,于莉芳,韩光辉,等. A/O分段进水生物脱氮技术分析[J].工业用水与废水,2006,37(1):7-9,26
    [55] Ge S. J., Peng Y. Z., Wang S. Y., et al. Enhanced Nutrient Removal in a Modified StepFeed Process Treating Municipal Wastewater with Different Inflow Distribution Ratiosand Nutrient Ratios [J]. Bioresource Technology,2010,101(23):9012-9019
    [56]葛士建,彭永臻,曹旭,等.改良UCT分段进水工艺处理生活污水性能优化研究[J].环境科学,2011,32(7):2006-2012
    [57] Pai T. Y., Tsai Y. P., Chou Y. J., et al. Microbial Kinetic Analysis of Three DifferentTypes of EBNR Process [J]. Chemosphere,2004,55(1):109-118
    [58] Ayoub G. M. and Saikaly P. The Combined Effect of Step-Feed and Recycling on RBCPerformance [J]. Water Research,2004,38(13):3009-3016
    [59] Zhu G. B., Peng Y. Z., Wang S. Y., et al. Development and Experimental Evaluation ofa Steady-State Model for the Step-Feeding Biological Nitrogen Removal Process [J].Chinese Journal of Chemical Engineering,2007,15(3):411-417
    [60] Wang S. P., Yu L. F., Han G. H., et al. A Pilot Study on a Step-Feeding Anoxic/OxicActivated Sludge System [J]. Water Science and Technology,2006,53(9):95-101
    [61] Larrea L., Larrea A., Ayesa E., et al. Development and Verification of Design andOperation Criteria for the Step Feed Process with Nitrogen Removal [J]. WaterScience and Technology,2001,43(1):261-268
    [62] G rgün E., Artan N., Orhon D., et al. Simulation of Nitrogen Removal by StepFeeding for Istanbul Wastewaters [J], Water Science and technology,1996,33(12):259-264
    [63] Zhu G. B., Peng Y. Z., Wang S. Y., et al. Effect of Influent Flow Rate Distribution onthe Performance of Step-Feed Biological Nitrogen Removal Process [J]. ChemicalEngineering Journal,2007,131(1-3):319-328
    [64] Tang C. C., Kuo J. and Weiss J. S. Maximum Nitrogen Removal in the Step-FeedActivated Sludge Process [J]. Water Environmental Research,2007,79(4):367-374
    [65] Fujii S. Theoretical Analysis on Nitrogen Removal of the Step-Feed Anoxic-OxicActivated Sludge Process and Its Application for Optimal Operation [J]. Water Scienceand Technology,1996,34(1-2):459-466
    [66]孙亚男,彭永臻,王伟.不同流量分配比下分段进水脱氮工艺的性能研究[J].中国给水排水,2008,24(5):18-21,26
    [67]王伟,彭永臻,孙亚男,等.分段进水A/O工艺流量分配方法与策略研究[J].环境工程学报,2009,3(1):89-92
    [68]王伟,王淑莹,孙亚男,等.分段进水A/O工艺流量分配专家系统的建立与应用[J].化工学报,2008,59(10):2608-2615
    [69]鞠兴华,王社平,王怡,等.遗传算法优化分段进水生物脱氮工艺的流量分配[J].中国给水排水,2006,22(21):89-92
    [70]王社平,彭党聪,朱海荣,等.城市污水分段进水A/O脱氮工艺试验研究[J].环境科学研究,2006,19(3):75-80
    [71]王伟,王淑莹,孙亚男,等.多段A/O工艺流量及体积分配方法与优化控制策略[J].北京工业大学学报,2009,35(2):240-245
    [72]王伟,王淑莹,孙亚男,等.流量分配对分段进水A/O工艺脱氮性能的影响[J].环境科学,2009,30(1):2608-2615
    [73]祝贵兵,彭永臻,吴淑云,等.分段进水生物脱氮工艺的优化控制运行研究[J].中国给水排水,2006,22(21):1-5
    [74] Zhu G. B., Peng Y. Z., Zhai L. M., et al. Performance and Optimization of BiologicalNitrogen Removal Process Enhanced by Anoxic/Oxic Step Feeding [J] BiologicalEngineering Journal,2009,43(3):280-287
    [75]祝贵兵,彭永臻,吴淑云,等.碳氮比对分段进水生物脱氮的影响[J].中国环境科学,2005,25(6):641-645
    [76]吴淑云,祝贵兵,彭永臻.分段进水生物脱氮工艺最高脱氮率的探讨[J].哈尔滨工业大学学报,2007,39(4):594-598
    [77] Guo J. H., Peng Y. Z., Yang Q., et al. Theoretical Analysis and Enhanced NitrogenRemoval Performance of Step-Feed SBR [J]. Water Science and Technology,2008,58(4):795-802
    [78] Zhu G. B. and Peng Y. Z. Theoretical Evaluation on Nitrogen Removal of Step-FeedAnoxic/Oxic Activated Sludge Process [J]. Journal of Harbin Institute of Technology,2006,13(3):263-266
    [79] Vaiopoulou E. and Aivasidis A. A Modified UCT Method for Biological NutrientRemoval: Configuration and Performance [J]. Chemosphere,2008,72(7):1062-1068
    [80] Vaiopoulou E., Melidis P. and Aivasidis A. An Activated Sludge Treatment Plant forIntegrated Removal of Carbon, Nitrogen and Phosphorus [J]. Desalination,2007,211(1-3):192-199
    [81] Ge S. J., Peng Y. Z., Wang S. Y., et al. Enhanced Nutrient Removal in a Modified StepFeed Process Treating Municipal Wastewater with Different Inflow Distribution Ratiosand Nutrient Ratios [J]. Bioresource Technology,2010,101(23):9012-9019.
    [82] Peng Y. Z. and Ge S. J. Enhanced Nutrient Removal in Three Types of Step FeedingProcess from Municipal Wastewater [J]. Bioresource Technology,2011,102(11):6405-6413
    [83] Liang H. W., Gao M., Liu J. X., et al. A Novel Integrated Step-Feed Biofilm Processfor the Treatment of Decentralized Domestic Wastewater in Rural Areas of China [J].Journal of Environmental Sciences,2010,22(3):321-327
    [84] Lin Y. F. and Jing S. R. Characterization of Denitrification and Nitrification in aStep-Feed Alternation Anoxic-Oxic Sequencing Batch Reactor [J]. WaterEnvironmental Research,2001,73(5):526-533
    [85] Lu L., Zhang S., Li H., et al. A Reformed SBR Technology Integrated with Two-StepFeeding and Low-Intensity Aeration for Swine Wastewater Treatment [J].Environmental Technology,2009,30(3):251-260.
    [86] Lemaire R., Marcelino M., Yuan Z. G., et al. Achieving the Nitrite Pathway UsingAeration Phase Length Control and Step-Feed in a SBR Removing Nutrients FromAbattoir Wastewater [J]. Biotechnology and Bioengineering,2008,100(6):1228-1236
    [87] Lemaire R., Yuan Z. G., Bernet N., et al. A Sequencing Batch system for High-LevelBiological Nitrogen and Phosphorous Removal from Abattoir Wastewater [J].Biodegradation,2009,20(3):339-350.
    [88] Han Z. Y., Wu W. X., Ding Y., et al. Optimization of Main Factors Associated withNitrogen Removal in Hybrid Sludge Sequencing Batch Reactor with Step-Feeding ofSwine Wastewater [J]. Journal of Environmental Science and Health Part A,2008,43(2):161-170
    [89] Puig S., Vives M. T., Crominas L., et al. Wastewater Nitrogen Removal in SBRs,Applying a Step-Feed Strategy: from Lab-Scale to Pilot-Plant Operation [J]. WaterScience and Technology,2004,50(1):89-96
    [90] Lee Y. W., Kim Y. J., Chang N. I., et al. Development of Sequencing Batch Reactorwith Step Feed and Recycle [J], Water Science and Technology,2007,55(1-2):477-484
    [91] Saikaly P. and Ayoub G. M. Ammonia Nitrogen Removal in Step-Feed RotatingBiological Contactors [J]. Water, Air and Soil Pollution,2003,150(1-4):177-191
    [92] Ayoub G. M. and Saikaly P. The Combined Effect of Step-Feed and Recycling on RBCPerformance [J]. Water Research,2004,38(13):3009-3016
    [93] Ayoub G. M., Saikaly P., El-Fadel M. et al. Impact of Step-Feed on COD and BOD5Removal in Rotating Biological Contactors [J]. Environmental Engineering Science,2004,21(5):558-568
    [94]马娟,彭永臻,王淑莹,等. CAST分段进水深度脱氮性能及在线控制[J].中南大学学报(自然科学版),2010,41(2):793-798
    [95] Ma J., Peng Y. Z., Wang S. Y., et al. Denitrifying Phosphorus Removal in a Step-FeedCAST with Alternating Anoxic-Oxic Operational Strategy [J]. Journal ofEnvironmental Sciences,2009,21(9):1169-1174
    [96] Chang H. Y. and Ouyang C. F. Step Feeding Strategy for Enhancing Nitrogen andPhosphorus Removal in AOAO Process [J]. Journal of Environmental Science andHealth. Part A, Toxic/Hazardous Substances and Environmental Engineering,2001,36(4):587-598
    [97] Wang W., Han H. J. Yuan M., et al. Treatment of Coal Gasification Wastewater by aTwo-Continuous UASB System with Step-Feed for COD and Phenols Removal [J].Bioresource Technology,2011,102(9):5454-5460
    [98] Stefanakis A. I., Akratos C. S. and Tsihrintzis V. A. Effect of Wastewater Step-Feedingon Removal Efficiency of Pilot-Scale Horizontal Subsurface Flow ConstructedWetlands [J]. Ecological Engineering,2011,37(3):431-443.
    [99]张涛,宋新山.多点进水潜流湿地的水力效率及氮浓度空间变化[J].生态学杂志,2010,29(11):2210-2215
    [100] Rodgers M., Xiao L. W. and Mulqueen J. Horizontal-Flow Biofilm System with StepFeed for Nitrogen Removal [J]. Journal of Environmental Engineering,2007,133(6):569-574
    [101]李璐,温东辉,张辉,等.分段进水生物接触氧化工艺处理河道污水的试验研究[J].环境科学,2008,29(8):2227-2234
    [102]彭举威,韩相奎,康春莉,等.多点分区进水厌氧折流板反应器运行效能研究[J].环境科学,2009,30(9):2625-2629
    [103]王伟,彭永臻,殷芳芳,等.改进分段进水A/O生物脱氮工艺强化生物除磷[J].环境科学,2009,30(10):2968-2974
    [104]甘晓明,邢邵文,徐高田,等.倒置A2/O污水处理工艺的特点及应用实例[J].环境工程学报,2007,1(6):69-71
    [105]彭明国,薛春阳,陈毅中,等.分点进水对倒置A2/O工艺脱氮除磷效果的影响[J].环境工程学报,2010,4(12):2793-2796
    [106]庞金钊,彭旻珺.分点进水强化硝化反应的研究[J].天津工业大学学报,2010,29(6):50-53
    [107]张雁秋,李昂,李燕,等.分点进水脱氮除磷新工艺的理论基础和实践[J].中国给水排水,2008,24(24):13-15
    [108] Zhu G. B., Peng Y. Z., Wu S. Y., et al. Automatic Control Strategy for Step FeedAnoxic/Aerobic Biological Nitrogen Removal Process [J]. Journal of EnvironmentalSciences,2005,17(3):457-459
    [109] Zhu G. B., Peng Y. Z. Ma B. et al. Optimization of Anoxic/Oxic Step FeedingActivated Sludge Process with Fuzzy Control Model for Improving Nitrogen Removal[J]. Chemical Engineering Journal,2009,151(1-3):195-201
    [110] Guo J. H., Yang Q., Peng Y. Z., et al. Biological Nitrogen Removal with Real-TimeControl Using Step-feed SBR Technology [J]. Enzyme and Microbial Technology,2007,40(6):1564-1569
    [111] Zhu G. B., Peng Y. Z. and Wang S. Y. Hydraulic Method of Controlling SolidsRetention Time in Step-Feed Biological Nitrogen Removal Process [J]. EnvironmentalEngineering Science,2007,24(8):1112-1121
    [112]王伟,彭永臻,王海东,等.溶解氧对分段进水生物脱氮工艺的影响[J].中国环境科学,2006,26(3):293-297
    [113]王伟,彭永臻,孙亚男.污泥回流比对分段进水A/O生物脱氮工艺的影响[J].中国环境科学,2008,28(2):116-120
    [114] Zhu G. B., Peng Y. Z., Wu S. Y., et al. Simultaneous Nitrification and Denitrification inStep Feeding Biological Nitrogen Removal Process [J]. Journal of EnvironmentalScience,2007,19(9):1043-1048
    [115] Lee S. Y., Kim H. G., Park J. B., et al. Denaturing Gradient Gel ElectrophoresisAnalysis of Bacterial Populations in5-Stage Biological Nutrient Removal Processwith Step Feed System for Wastewater Treatment [J]. The Journal of Microbiology,2004,42(1):1-8
    [116] Lee H. W., Lee S. Y., Lee J. O., et al. The Microbial Community Analysis of a5-StageBNR Process with Step Feed System [J]. Water Science and Technology,2003,48(8):135-141
    [117] Pai T. Y., Tsai Y. P., Chou Y. J., et al. Microbial Kinetic Analysis of Three DifferentTypes of EBNR Process [J]. Chemosphere,2004,55(1):109-118
    [118] Lee S. H., Ko J. H., Poo K. M., et al. Practical Approach to Parameter Estimation forASM3+Bio-P Module Applied to Five-Stage Step-Feed EBPR Process [J]. WaterScience and Technology,2006,53(1):139-148
    [119] Lee S. H., Ko J. H., Park J. B., et al. Use of Activated Sludge Model NO.3and Bio-PModule for Simulating Five-Stage Step-Feed Enhanced Biological PhosphorusRemoval Process [J]. Korean Journal of Chemical Engineering,2006,23(2):203-208.
    [120] Rieger L., Koch G., Kuhni M., et al. The EAWAG Bio-P Module for Activated SludgeModel NO.3[J]. Water Research,2001,35(16):3887-3903
    [121] Zhu G. B., Peng Y. Z., Wang S. Y., et al. Comparative Study of Two BiologicalNitrogen Removal Processes A/O Process and Step-Feeding Process [J]. Journal ofSoutheast University(English Edition),2008,24(4):528-531
    [122]沈昌明.基于模拟的多段A/O工艺除磷能力强化措施研究[J].中国给水排水,2010,26(23):98-104
    [123]葛士建,彭永臻.连续流分段进水工艺生物脱氮除磷技术分析及优化控制[J].环境科学学报,2009,29(12):2465-2470
    [124]王伟,王淑莹,王海东,等.连续流分段进水生物脱氮工艺控制要点及优化[J].环境污染治理技术与设备,2006,7(10):83-87
    [125] deBarbadillo C., Carrio L., Mahoney K., et al. Practical Considerations for Design of aStep-Feed Biological Nutrient Removal System [J]. Florida Water Resource Journal,2002,(1):18-20,33-38
    [126]祝贵兵,彭永臻,周利,等.优化分段进水生物脱氮工艺设计参数[J].中国给水排水,2004,20(9):62-64
    [127] Johnson B. R., Goodwin S., Daigger G. T. et al. A Comparison Between the Theoryand Reality of Full-Scale Step-Feed Nutrient Removal Systems [J]. Water Science andTechnology,2005,52(10-11):587-596
    [128] Xu A. T., Young S. and Zhang Y. Q. Development, Laboratory and Pilot Testing of anInnovative Single Sludge Step-Feed Anoxic-Aerobic Nitrogen Removal Process [J].Journal of Environmental Engineering and Science,2008,7(4):385-394
    [129] Xu A. T., Young S. and Zhang Y. Q. The Implementation of Single Sludge Step-FeedAnoxic-Aerobic Process in a Domestic Wastewater Treatment Plant [J]. Journal ofEnvironmental Engineering and Science,2008,7(4):417-421
    [130] Filos J., Diyamandoglu V., Carrio A., et al. Full-Scale Evaluation of BiologicalNitrogen Removal in the Step-Feed Activated Sludge Process [J]. WaterEnvironmental Research,1996,68(2):132-142
    [131] Boyle C. A., Mckenzie C. J. and Morgan S. Internal Recycle to ImproveDenitrification in a Step Feed Anoxic/Aerobic Activated Sludge System [J]. WaterScience and Technology,2009,60(7):1661-1668
    [132] Schlegel S. Operational Results of Wastewater Treatment Plants with Biological N andP Elimination [J]. Water Science and Technology,1992,25(4-5):241-247
    [133] Kayser R., Stobbe G. and Werner M. Operation Results of the Wolfsburg WastewaterTreatment [J]. Water Science and Technology,1992,25(4-5):203-209
    [134]张希衡.水污染控制工程[M].修订版.北京:冶金工业出版社,1993
    [135]张建强.高效厌氧反应器处理高浓度生活污水[J].工业安全与环保,2008,34(10):3-5
    [136]张西旺,金奇庭.一体式MBR处理高氨氮小区生活污水中试研究[J].环境工程,2003,21(1):2,23-26
    [137]汪传新,王广华,隋军.改良MBR处理高氨氮生活污水及回用的中试研究[J].中国给水排水,2009,25(1):60-63
    [138]吴鹏崑,李煜华,许衍营,等.青岛市团岛污水处理厂工艺设计和运行总结[J].青岛建筑工程学院学报,2002,23(4):64-66
    [139]苗起璋. MBR技术处理高氨氮生活污水的研究[D].北京:北京交通大学,2008
    [140]王波,宋来洲. SBR-絮凝-微滤工艺处理高浓度生活污水的试验研究[J].工程建设与设计,2005,(10):44-46
    [141]张勤,周兴伟,周建.强化生物絮凝/三级人工湿地处理高浓度生活污水[J].中国给水排水,2009,25(1):1-4
    [142]王阿华. MBR在高速公路服务区污水处理中的应用现状[J].中国给水排水,2009,25(22):1-3
    [143]马强,聂荣,石峻青,等.动态膜生物反应器处理公路服务区污水[J].中国市政工程,2008,3:44-47,97
    [144]杨斌.高速公路服务区适用污水处理工艺与技术探讨[J].公路交通技术,2008,2:133-136
    [145]班福忱,李亚峰,程琳,等.高速公路服务区污水处理工程[J].中国给水排水,2008,24(16):75-77
    [146]班福忱,陈光,李慧星等.生物接触氧化法处理高速公路服务区污水工程实例[J].工业安全与环保,2008,34(5):33-34
    [147]孙杰,蔡则武.厌氧水解-ICEAS工艺处理高速公路服务区高浓度生活污水[J].武汉科技学院学报,2004,17(5):35-38
    [148]张少强,李小明,杨麟等.气浮+水解酸化-接触氧化处理高速公路服务区污水[J].工业水处理,2006,26(9):81-82
    [149]周秀汉,郑权,贺峰.人工湿地处理高速公路服务区污水研究[A].湖北省公路学会成立三十周年暨二○○八年学术年会论文集[C].2008.
    [150] IWA Task Group on Mathematical Modeling for Design and Operation of BiologicalWastewater Treatment.活性污泥数学模型[M].张亚雷,李咏梅译.上海:同济大学出版社,2002
    [151] Grady C. P. L., Daigger G. T. and Lim H. C.废水生物处理[M].张锡辉,刘勇弟译.第2版,改编与扩充.北京:化学工业出版社,2004
    [152]冯叶成,王建龙,钱易.生物脱氮新工艺研究进展[J].微生物学通报,2001,28(4):88-91
    [153] Turk O. and Mavinic D. S. Maintaining Nitrite Build-Up in a System Acclimated toFree Ammonia [J]. Water Research,1989,23(11):1383-1388
    [154] Van Benthum W. A. J., Derissen B. P., Van Loosdrecht M. C. M., et al. NitrogenRemoval Using Nitrifying Biofilm Growth and Denitrifying Suspended Growth in aBiofilm Airlift Suspension Reactor Coupled with a Chemostat [J]. Water Research,1998,32(7):2009-2018
    [155]李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社,2007
    [156]王建龙,彭永臻,高勇青,等.强化内源反硝化脱氮及污泥减量化研究[J].环境科学,2008,29(1):134-138
    [157]王少坡,彭永臻,于德爽,等.常温短程内源反硝化生物脱氮[J].北京工业大学学报,2005,31(3):288-302
    [158] Cheong D. Y., Hansen C. L. Effect of Feeding Strategy on the Stability of AnaerobicSequencing Batch Reactor Responses to Organic Loading Conditions [J]. BioresourceTechnology,2008,99(11):5058-5068
    [159]国家环境保护总局,水和废水监测分析方法委员会.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社,2002
    [160]杨平,潘永亮,何力.废水生物处理中生物膜的形成及动力学模型研究进展[J].环境科学研究,2000,13(5):50-53
    [161] IWA Task Group on Biofilm Modeling. Mathematical Modeling of Bioflims [M].Hove, UK: IWA Publishing,2006
    [162] Harris N. P. and Hansford G. S. A Study of Substrate Removal in a Microbial FilmReactor [J]. Water Research,1976,10(11):935-943
    [163] Harremo s P. The Significance of Pore Diffusion to Filter Denitrification [J]. Journalof Water Pollution Control Federation,1976,48(2):377-388
    [164] LaMotta E. J. Internal Diffusion and Reaction in Biological Films [J]. EnvironmentalScience and Technology,1976,10(8):765-769
    [165] Rittmann B. E. and McCarty P. L. Model of Steady-State-Biofilm Kinetics [J].Biotechnology and Bioengineering,1980,22(11):2343-2357
    [166] Rittmann B. E. and McCarty P. L. Substrate Flux into Biofilms of Any Thickness [J].Journal of Environmental Engineering,1981,107(4):831-849
    [167] Williamson K. and McCarty P. L. A Model of Substrate Utilization by Bacterial Films[J]. Journal of Water Pollution Control Federation,1976,48(1):9-24
    [168] Kissel J. C., McCarty P. L. and Street R. L. Numerical Simulation of Mixed-CultureBiofilm [J]. Journal of Environmental Engineering,1984,110(2):393-411
    [169] Wanner O. and Gujer W. Competition in biofilms [J]. Water Science and Technology,1984,17(2-3):27-44
    [170] Wanner O. and Gujer W. A Multispecies Biofilm Model [J]. Biotechnology andBioengineering,1986,28(3):314-328
    [171] Rittmann B. E. and Manem J. Development and Experimental Evaluation of aSteady-State, Multi-Species Biofilm Model [J]. Biotechnology and Bioengineering,1992,39(9):914-922
    [172] Yu T. and Bishop P. L. Stratification of Microbial Metabolic Processes and RedoxPetential Change in an Aerobic Biofilm Studied Using Microelectrodes [J]. WaterScience and Technology,1998,37(4-5):195-198
    [173] Amann R., Stromley R., Devereaux R., et al. Molecular and MicroscopicIdentification of Sulfate-Reducing Bacteria in Multispecies Biofilm [J]. Applied andEnvironmental Microbiology,1992,58(2):614-623
    [174] Lawrence J. R., Wolfaardt G. M. and Korber D. R. Determination of DiffusionCoefficients in Biofilm by Confocal laser Microscopy [J]. Applied and EnvironmentalMicrobiology,1994,60(4):1166-1173
    [175] Eblerl H. J., Parker D. F. and Van Loosdrecht M. C. M. A New DeterministicSpatio-Temporal Continuum Model for Biofilm Development [J]. Journal ofTheoretical Medicine,2001,3(3):161-175
    [176] Picioreanu C., Van Loosdrecht M. C. M. and Heijnen J. J. Mathematical Modeling ofBiofilm Structure with a Hybrid Differential-Discrete Cellular Automaton Approach[J]. Biotechnology and Bioengineering,1998,58(1):101-116
    [177] Harremo s P. Biofilm Kinetics. In: Water Pollution Microbiology, Vol2, edited byMitchell R., New York: Wiley-Interscience,1978
    [178] JTGB01-2003.公路工程技术标准[S].北京:人民交通出版社,2004
    [179]陈怡.高速公路附属设施污水处理探索[J].东北公路,1996,3:16-18
    [180] GB50014-2006.室外排水设计规范[S].北京:中国计划出版社,2006
    [181] GB/T50331-2002.城市居民生活用水量标准[S].北京:中国建筑工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700