用户名: 密码: 验证码:
液固分离器多相流仿真研究与结构优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤泥水处理是一个固-液分离和固-液回收的过程。为了解决煤泥水的流失浪费和减轻排放出的煤泥水对环境的污染,选煤工作者们都在努力寻求一种可行、高效的办法,尤其是一种能对这些排放出的煤泥水进行有效处理的新型设备。
     另外,在污水处理方面,现在污水处理厂的活性污泥分离浓缩通常都是使用常规的重力沉降装置,即沉淀池实现固液分离。其优点为处理量大,浓缩、分离效果也很好,但存在占地面积过大,污水停留时间长,处理效率低等不足,污泥回流消耗也很大。
     针对以上污水处理的不足之处,应该在污水进入沉淀池之前先利用水力旋流器对污水进行分离浓缩,这样会提高污水含泥量和降低相应循环流量,减少沉淀池底泥的负荷量,减轻沉淀池负担和减少沉淀池面积。
     鉴于以上情况,我们选择了利用旋流分离原理来完成作业的固-液旋流分离器。固-液旋流分离器是一种离心分离装置,是利用不互溶介质间的密度差而进行离心分离的。
     CFD数值模拟作为一种新的研究方法,利用它能够充分地认识流体机械内部的流动情况,可以缩短设计周期、减少设计费用。
     本文采用CFD软件中的RNG K-ε湍流模型,基于控制体积法实现对输送方程的离散化,应用SIMPLE算法,采用基于两相流的混合模型(mixture model)对固-液旋流分离器内部流场进行了数值模拟。通过对模拟计算结果分析研究,得到了固-液旋流分离器内压力场、速度场和固相浓度等流场特性参数的分布规律,同时分析了流量、转速、分流比等对分离效率的影响,分析了固-液旋流分离器内部流场的分布规律和固-液两相流的分离特性。在模拟计算的基础上,结合理论分析,对固-液水力旋流器的旋流腔、旋转栅结构、底流口直径及溢流管伸入长度等相关部件结构参数进行优选。
     在对各种固液分离设备进行研究的基础上,分析了其分离机理、结构特点、优缺点等,在此基础上对固-液旋流分离器进行结构设计。研究物性参数、操作参数对分离器分离性能的影响,确定合理的结构方案。通过对固-液旋流分离器内部流场的深入研究,掌握流体的运动规律,能够为今后的结构设计和尺寸优化提供理论指导。为从理论上对旋流器进行深入研究、设计高效分离设备提供了一条新途径。
The slime water treatment is a solid-liquid separation and solid-liquid recovery process. In order to solve the loss and waste of slime water and reduce the pollution of slime water discharged to environment,coal separation workers were trying to find a viable and efficient approach. In particular,a kind of new equipment is found that it can deal with the slime water effectively discharged.
     In addition, in the sewage treatment,the conventional gravity sedimentation device is used for separation and concentration of the activated sludge in the sewage treatment plant, that is the sedimentation pools to achieve solid-liquid separation. Its advantage is the large handling capacity, good result of concentration and separation,but there is some shortcomings in large floor space,long stay time of sewage water,low efficiency in sewage treatment, large sludge circumfluence consuming.
     Aim at the shortcomings in Sewage treatment, Sewage water should be separated and concentrated before entering the sedimentation pool through using hydro cyclone.
     It will enhance the sludge volume of sewage water, to low the cycling flow rate, to reduce loading sludge volume in the Bottom of the Sedimentation pools, to reduce the burden of the Sedimentation pools and decrease the area of sedimentation pools.
     In light of the above, we have chosen solid-liquid hydro cyclone using cyclone-separating principle to complete the work. The solid-liquid hydro cyclone is a kind of Centrifugal separating device and separation is achieved using the difference of the magnitude of the density.
     In this paper, RNG K-εturbulence model in CDF software is selected. The discrimination method of transport equation based on Control volume method is implied. SIMPLE algorithm is implied. Internal flow field of the solid-liquid hydro cyclone was simulated through selecting mixture model based on two-phase flow. Through the analysis of simulation results, distribution of flow field feature parameters were obtained, such as pressure field, velocity field and the solid-phase concentration. At the same time, impact of flow rate, speed and diffluent ratio to separation efficiency was analyzed. Distribution of internal flow field and Solid-liquid two-phase flow characteristics of the separation was analyzed. At the basis of simulation and theoretical analysis combined the structure parameters of the Cyclone chamber, rotating pale, diameter of down-flow outlet and the insertion depth overflow tube was optimized On the solid-liquid hydro cyclones.
     At the basis of research to a variety of solid-liquid separation equipment research,the Separation mechanism and Structural characteristics advantages and disadvantages was analyzed. On this basis, structural design of the solid-liquid hydro cyclones was achieved.
     The impact of physical parameters and operation parameters to separation performance was studied. The reasonable structural program was determined. Through Further studies to the internal flow field of the solid-liquid cyclone separator, the movement regular of the fluid was grasped and this can provide theoretical guidance to the structural design and size optimization in the future. This can provide a path for the purpose of the depth-study to the solid-liquid cyclone separator theoretically and the design of the high efficient separation equipment.
引文
[1]王卫国,周慎杰.圆柱旋流器液固两相流场的数值模拟[J].煤矿机械,2006,27(2):224-226.
    [2]章棣.分离机械选7T1-J与使用手册[M].北京:机械工业出版社,1998:52-64.
    [3]徐上峰.液-液离心分离设备性能研究[D].大连:大连理工大学,2006.
    [4]王超.旋转叶轮式动态水力旋流器的性能研究[D].大连:大连理工大学,2008:7-8.
    [5]赵春波,杨德武,张昌林.管式分离机固-液两相的数值模拟[J].过滤与分离,2007,1:22-25.
    [6]俞如友.离心分离设备的进展及无基础离心机[J].医药工程设计,1993,3:1- 5.
    [7]俞如友.生物技术中的离心分离[J].工业微生物,1991,6:20-28.
    [8] Axelsson H. Recent trends in disc bowl centrifuge development [J]. FiltrSep, 2000, 37(4): 20-23.
    [9] Rose P. Separation solutions for the global brewing industry [J]. FiltrSep, 2003, 40(5): 20-22.
    [10] Elsevier Ltd. Compact centrifugal separation system [J]. Filter Sep, 2004, 41(10): 9.
    [11]俞如友.碟式分离机转鼓材料剖析[J].医药工程设计,1992,(3):39-43.
    [12]俞如友.离心分离设备的进展及无基础离心机[J].医药工程设计,1993,(3):1-5.
    [13]李树君,高源,孙赞等.水力旋流器在食品工业中的应用[J].农业机械学报,2001,32(5):103-106.
    [14] Young G, Wakley W, Taggart D, etal. Oil-water separation using hydrocyclone: an experimental search for optimum dimensions[J]. Petroleum Science and Engineer, 1994,1:37-39.
    [15]赵庆国,张明贤.水力旋流器分离技术[M].北京:化学工业出版社,2003:50- 55.
    [16]褚良银.固液分离用水力旋流器的设计[J].化工装备技术,1995,16(1):25- 32.
    [17] B. Firth. Hydrocyclone in dewatering circuits [J].Minerals Engineering.2003, 16(1):5-12.
    [18]罗茜,余仁焕,徐继润.固液分离[M].冶金工业出版社,1997.
    [19] J.S.Onkto. Cycloneseparator scaling revisited [J]. Powder technology.1996, 87:9-10.
    [20] A.AveiandI. Knaagoz. A mathematical model of the determination of a cyclone Performance [J] . HeatMassTransefer.2000, 27(2):263~272.
    [21] Martin Thew. Hydrocyclone redesign for liquid-liquid separation [J]. The chemical engineer July/August 1986,17(7):17-23.
    [22] Johnson R A, Gibson w E, Libby D R. Performance of liquid-liquid cyclones [J]. Ind. Eng. Chem. Fundamental s, 1976, 15 (2): 110-115.
    [23]赵东.水力旋流器发展概况及趋势[J].矿业工程,2007,5(4):15-16.
    [24]张士瑞,薛敦松.应用微型旋流器脱除催化裂化油浆残留固体的初步研究[J].石油炼制与化工,2008, 38(9):65-68.
    [25]张士瑞,薛敦松.分离超细催化剂颗粒的微型固液旋流器[J].石油化工,2007, 36 (12):234-238.
    [26]李中,袁惠新.旋流器内的传递特性及其应用[J].化工装备技术,2008,29(1):1-4.
    [27]李中,袁惠新.萃取设备的现状及发展趋势[J].过滤与分离,2007,17(4):41- 44.
    [28] Gay J. C., Triponey G., Bezard C. , Schummer P. , Rotary cyclones will improve oily water treatment and reduce requirement/weight on offshore platforms[C].Society of Petroleum Engineers ,SPE. 1987:16-17.
    [29]李太平,冯传令,阳仁俊.动态水力旋流技术发展综述[J].过滤与分离,2006,16(1):42-44.
    [30]任连城等.动态旋流技术的应用研究[J].石油矿场机械,2005,34(3):26-29.
    [31]赵力新,李枫,王尊策等.新型水处理装置—动态水力旋流器的试验研究[J].工业水处理,2000,20(1):44-45.
    [32]陈家庆,桑义敏.复合型动态水力旋流器的结构设计研究[J].北京石油化工学院学报,2005,13(1):27-33.
    [33] Jones P S.A Field Comparison of Static and Dynamic Hydrocyclones[C].SPE Production & Facilities, 1993:84-90.
    [34]张攀峰,邓松圣,张洁等.动态旋流分离技术研究进展[J].四川化工,2007,10(2):27-29.
    [35]蒋明虎,王尊策等.油水分离用复合式水力旋流器结构设计[J].流体机械,2002,30(6):17-19.
    [36]张攀峰,邓松圣,邱正阳等.动态旋流分离技术研究进展[J].化工自动化及仪表,2006,33(6):62-64.
    [37]刘晓敏,李枫,蒋明虎等.复合式水力旋流器油水分离实验研究[J].石油机械,2002, 30 (8):1-4.
    [38]孙春宝,张文明,李睿华等.高效分级机涡轮旋流器的设计与优化[J].矿山机械,1999:48-49.
    [39]杨润全.涡轮旋流分选机结构优化与流场数值模拟研究[D].太原:太原理工大学,2006.
    [40]张亚军. CFD技术在化工机械设计中的应用[J].贵州化工,2006,31(3):47-50.
    [41]蒋明虎,赵立新,李枫等.旋流分离技术[M].哈尔滨:哈尔滨工业大学出版社,2000:9-10.
    [42]孙春宝,张文明,李睿华等.高效分级机涡轮旋流器的设计与优化[J].矿山机械,1999,7:48-49.
    [43]郑洽馀,鲁钟琪.流体力学[M].北京:机械工业出版社,1980:7-12.
    [44]蒋明虎,王尊策,刘晓敏等.油水分离用复合式水力旋流器结构设计[J].流体机械,2002,30(6):17-20.
    [45]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [46]琚选择,李自力,孙卓辉等.液-液旋流器内近壁湍流处理方法及数值模拟[J].计算机与应用化学,2008,25(11):1379-1380.
    [47]梁政,吴世辉,任连城.论水力旋流器流场数值模拟中湍流模型的选择[J].天然气工业,2007,27(3):119-121.
    [48]林玮,王乃宁.旋风分离器内三维两相流场的数值模拟[J].动力工程,1999,19(l):72-76.
    [49]刘海生.油水分离旋流器分离性能及其优化设计软件的研究[D].西南石油大学,2006.
    [50] A J Hoekstra, J J Derksen and H E A Van Den Akker. An experimental and numerical study of turbulent swirling flow in gas cyclones[J], Chemical Engineering Science,1999,54(13):2055-2065.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700