用户名: 密码: 验证码:
一体式A/O反应器同步除碳脱臭运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污水处理一体化装置具有投资省、占地少、能耗低、处理效果好、管理简便等优点,是一种适合我国国情的污水处理新方向。本研究将升流式厌氧污泥床与复合式生物膜—活性污泥反应器相结合,开发了新型一体式A/O反应器,该系统不仅可以实现传统工艺的有机物去除功能,还能利用好氧段的曝气及微生物作用,有效去除厌氧段产生的恶臭气体,具有同步除碳脱臭的优势。在自主开发一体式A/O反应器的基础上,对反应器启动、除碳和脱臭运行特性进行了深入的研究,以提高一体化工艺系统的处理功能、效率和稳定性。
     探讨了采用好氧活性污泥对厌氧反应器进行启动的过程,通过适当控制进水负荷,可以在短时(80 d)内完成反应器启动及厌氧颗粒污泥的培养,颗粒粒径主要集中在0.5-1.0 mm,沉降速度为10-45 m/h。通过比较不同填料及其填充方式对好氧段启动的影响,选择了适于本工艺的专利填料ZL96251960.X和堆积填充方式,该填料特有的网状交织结构为微生物生长提供了粗糙的表面和与氧气及营养物质充分接触的空隙。
     一体式A/O反应器在有机负荷为5.33-14.4 kgCOD/m3·d时,COD去除率均可以达到94%以上,反应器最适运行负荷为9.0-14.4 kgCOD/m3·d。利用一体式A/O反应器进行同步除碳脱臭,COD和TOC去除率分别可以达到96.6%和97.1%以上;出气中H2S浓度符合我国工业企业设计卫生标准时,最大进水SO42-浓度为150 mg/L,此时气相中H2S和水相中S2-的去除率分别可以达到95.4%和99%以上。
     静态试验结果表明,生物氧化作用对硫化物的氧化速率是化学氧化速率的4-5倍,低浓度硫化物不影响有机物的降解,而有机物浓度增大不利于硫化物的氧化去除,硫化物浓度为40-250 mg/L时,硫化物的降解速率与其浓度无关。物料平衡分析得到,TOC和TC的平衡百分比分别为85.57%和84.40%,进水TOC主要以CO2的形式(67.58%)被去除,进水硫化物通过生物氧化作用主要转化为硫酸盐(88.88%),小部分被氧化成单质硫(10.93%)。
Integrated wastewater treatment system became a promising process in our country due to its economic feasibility, lower requirement for land and energy, high removal efficiency and easiness for management. In this study, a novel integrated A/O reactor was developed which was consist of an Upflow Anaerobic Sludge Blanket and a Hybrid Biological Reactor. In an integrated A/O reactor, the organic pollutant could be removed as in the conventional wastewater treatment process, while the odor emitting from the anaerobic compartment could be treated directly in the aerobic compartment by sparging and microorganisms. Therefore, the integrated reactor was suitable for the simultaneous organic pollutant removal and odor elimination. In order to improve the function, efficiency and stability of the integrated system, reactor start-up and performance for the simultaneous organic pollutant removal and odor elimination were investigated.
     During the start-up of the anaerobic compartment, cultivation of anaerobic granular sludge with aerobic activated sludge as seed could be achieved in 80 days by controlling the COD loading rate properly. Diameter of the granular particles was 0.5-1.0 mm, and the sedimentation velocity was 10-45 m/h. Different carriers and their filling patterns were studied, and the aerobic compartment obtained the best performance when Patent Carrier ZL96251960.X was stacked in. Its interlaced reticulation provided coarse surface and interspace for microorganisms to attach and contact with oxygen and nutrition
     The COD removal efficiency of the integrated A/O reactor was higher than 94% when the loading rate ranged from 5.33 kgCOD/m3·d to 14.4 kgCOD/m3·d. The best reactor performance was obtained at loading rate of 9.0-14.4 kgCOD/m3·d when the removal efficiency of COD was maximum. When treating organic pollutant and odor together, the removal efficiency of COD, TOC, H2S gas and aqueous S2- was above 96.6%, 97.1%, 95.4% and 99%, respectively. The maximum influent SO42- concentration was 150 mg/L when the outlet H2S could meet the required standard.
     When microorganisms were present, the oxidation rate of sulfide was 4 to 5 times of that of chemical oxidation. The degradation of organic compounds would not be affected by sulfide of lower concentration, but oxidation of sulfide would become slower as the concentration increase of organic compounds. Degradation rate of sulfide did not depend on concentration ranging from 40 mg/L to 250 mg/L. Using mass balance of C and S, it was known that the organic pollutant mainly converted to CO2 (67.58%) to leave the aqueous system, while the main oxidation product of sulfide was SO42- (88.88%) with the left to sulfur (10.93%).
引文
1王会肖,王红瑞.中国水环境水生态的若干问题及其对策.科学对社会的影响. 2006, (1): 21-26.
    2吴忆宁.一体式A/O反应器处理高浓度有机废水的研究.哈尔滨工业大学博士学位论文. 2006: 2-3, 13-14.
    3张亚雷,赵建夫,吴勇,蒋住武. AmOn一体化污水生物处理装置的开发.中国给水排水. 2005, 21(1): 72-74.
    4何晶晶,邵立明.硫化物恶臭气体的生物处理机理与应用.上海环境科学. 1998, 17(6): 12-16.
    5《环境科学大辞典》编辑委员会.环境科学大辞典.北京:中国环境科学出版社, 1991: 749.
    6许怡,杜国勇,赵立志.生物法处理废水的现状与展望.环境技术. 2004, 6: 40-43.
    7薛嘉,黄钧.废水处理一体化生物反应器的发展.应用与环境生物学报. 2006, 12(4): 595-599.
    8李英华,孙铁珩,李海波,李晓东.生化一体化反应器的应用及发展.安徽农业科学, 2008, 36(28): 12474-12476, 12536.
    9李晓东,孙铁珩,李海波,马铮铮,王松.低温处理生活污水的复合厌氧工艺研究.安全与环境学报. 2008, 8(1): 40-43.
    10 X. H. Wen, H. J. Ding, X. Huang, R. P. Liu. Treatment of Hospital Wastewater Using a Submerged Membrane Bioreactor. Process Biochemistry, 2004, 39(11): 1427-1431.
    11李婷婷,王兴戬,刘天顺,李永峰.一体式膜生物反应器处理中药废水的试验研究.哈尔滨商业大学学报(自然科学版). 2009, 25(4): 419-423.
    12 R. Del Pozo, V. Diez. Integrated Anaerobic-Aerobic Fixed-Film Reactor for Slaughterhouse Wastewater Treatment. Water Research. 2005, 39(6): 1114 -1122.
    13梅丽,杨平,郭勇.厌氧—好氧一体化反应器固定化微生物处理茶多酚废水实验研究.四川大学学报(工程科学版). 2007, 39(1): 84-87.
    14苏国先,周兴求,伍健东,刘万义.新型高效污水处理设备——集成一体化生物转筒反应器.环境污染治理技术与设备. 2003, 4(2): 77-80.
    15陈元彩,肖锦,詹怀宇.絮凝和生化一体化反应器处理纸浆漂白废水.环境科学. 2000, 21(2): 94-97.
    16 F. Fdz-Polanco, F. J. Real, P. A. Garcia. Behavior of an Anaerobic/Aerobic Pilot Scale Fluidized Bed for the Simultaneous Removal of Carbon and Nitrogen. Water Science and Technology. 1994, 29(10-11): 339-346.
    17徐春晖,吕锡武.五箱一体化活性污泥法除磷脱氮性能初步研究.给水排水. 2004, 30(9): 4-7.
    18邓荣森,张景波,王涛,李伟民,郎建,郭兴芳.新型一体化氧化沟工艺及其运行方式的探讨.给水排水. 2002, 28(8): 4-7.
    19肖隆文,匡敬忠.开发厌氧/好氧序批式一体化反应器的构想.中国给水排水. 2002, 18(1): 39-40.
    20 D. J. Zhang, P. L. Lu, T. R. Long, W. Verstraete. The Integration of Methanogensis with Simultaneous Nitrification and Denitrification in a Membrane Bioreactor. Process Biochemistry. 2005, 40(2): 541-547.
    21周琪,顾国维,赵建夫,陈伟德,朱文龙.厌氧—好氧一体净化器处理生活污水的研究.同济大学学报(自然科学版). 1995(4): 398-402.
    22彭宗银.厌氧—好氧一体化生活污水处理装置.重庆环境科学. 1999, 21(10): 60-62.
    23刘旭东,杨正松,张健. A/O一体式曝气生物滤池处理生活污水.工业安全与环保. 2002, 28(05): 14-17.
    24肖鸿,杨平,郭勇.厌氧—好氧一体化反应器处理高浓度有机废水的运行特性研究.四川环境. 2005, 24(2): 4-7, 10.
    25薛嘉,黄钧,李毅军.厌氧好氧一体化生物反应器处理发酵废水的研究.应用与环境生物学报. 2007, 13(3): 414-418.
    26蒋展鹏,钟燕敏,师绍琪.一体化A/O生物膜反应器处理生活污水.中国给水排水. 2002, 18(8): 9-12.
    27姜苏,周集体,郭海燕,张志勇.一体化A/O生物膜法处理生活污水.中国给水排水. 2004, 20(5): 56-58.
    28沈培明,陈正夫,张东平.恶臭的评价与分析.北京:化学工业出版社. 2005:
    2-5.
    29丁颖.生物滤器处理恶臭气体及其微生物生态研究.浙江大学博士学位论文. 2007: 1-2.
    30 R. Dehghanzadeh, A. Torkian, B. Bina, H. Poormoghaddas, A. Kalantary. Biodegradation of Styrene Laden Waste Stream Using a Compost-Based Biofilter. Chemosphere. 2005, 60(3): 434-439.
    31 A. J. Savage, S. F. Tyrrel. Compost Liquor Bioremediation Using Waste Materials as Biofiltration Media. Bioresource Technology. 2005, 96(5): 557-564.
    32贾汉东,孟祥茹,刘立松.高铁酸盐溶液除臭效果的研究.环境污染与防治. 2002, 24(2): 82-84.
    33陈凡植,颜幼平,蓝惠霞.电除尘器脱除臭味物质的实践与理论探讨.过滤与分离. 2002, 10(4): 31-32, 46.
    34 J. E. Burgess, S. A. Parsons, R. M. Stuetz. Development in Odour Control and Waste Gas Treatment Biotechnology: A Review. Biotechnology Advances, 2001, 19(1): 35-63.
    35 O. Asao, G. I. Wang. Deodorization Performance of Charcoal Particles Loaded with Orthophosphoric Acid against Ammonia and Trimethylamine. Carbon. 2002, 40(9): 1391-1399.
    36姜安玺,王晓辉,杨义飞,孟雪征.生物处理硫系恶臭气体的现状及展望.哈尔滨建筑大学学报. 2001, 34(1): 45-48.
    37 M. A. Deshusses. Biological Waste Air Treatment in Biofilters. Current Opinion of Biotechnology. 1997, 8(3): 335-339.
    38李莎璐,蒋文举,金燕,魏文韫.微生物脱臭研究应用进展.环境科学与技术. 2007, 30(5): 108-110, 114.
    39 J. S. Devinny. Clearing the Air Biologically. Civil Engineering. 1998, 68(9): 46-49.
    40 D. E. Chitwood, J. S. Devinny. Evaluation of a Two-Stage Biofilter for Treatment of POTW Waste Air. Environmental Progress. 2004, 18(3): 212-221.
    41苗茂谦,宋智杰,仪慧兰,朱永军,乔海星,郭汉贤.生物法处理含H2S气体的研究进展.化工进展. 2009, 28(8): 1289-1295.
    42 D. H. Zitomer, J. DShrout. High-Sulfate, High-Chemical Oxygen Demand Wastewater Treatment Using Aerated Methanogenic Fluidized Beds. Water Environment Research. 2000, 72(1): 90-97.
    43邓良伟,唐一.生物脱硫机理及其研究进展.上海环境科学. 1998, 17(5): 35-39.
    44李志章,徐晓军,陈斌,杨家文.硫化氢气体的生物脱除方法研究.昆明冶金高等专科学校学报. 2007, 23(3): 58-63.
    45 C. Rattanapan, D. Kantachote, R. Yan, P. Boonsawang. Hydrogen Sulfide Removal Using Granular Activated Carbon Biofiltration Inoculated with Alcaligenes Faecalis T307 Isolated from Concentrated latex wastewater. International Biodeterioration & Biodegradation. 2010, 64: 383-387.
    46 C. P. Huang, Y. C. Chung, B. M. Hsu. Hydrogen Sulfide Removal by Immobilized Autotrophic and Heterotrophic Bacteria in the Bioreactors. Biothechonolgy Techniques. 1996, 10(8): 595-600.
    47徐桂芹,姜安玺,张英民,闫波.假单胞菌固定化除硫化氢臭气的试验研究.给水排水. 2005, 31 (2): 41-43.
    48姜安玺,王晓辉,刘波,相会强,闫波.硫系高效脱臭菌的分离及其特性研究.高技术通讯. 2002, (2): 103-106.
    49杨义飞,姜安玺,王晓辉,何丽荣.利用异养菌脱除H2S恶臭的实验研究.哈尔滨建筑大学学报. 2002, 35 (1): 73-76.
    50李志章,徐晓军,陈斌,杨家文.硫化氢气体的生物脱除方法研究.昆明冶金高等专科学校学报. 2007, 23(3): 58-63.
    51姜安莹,杨义飞,王晓辉,何丽荣,刘波.人工筛选菌脱除H2S恶臭气体的实验研究.中国环境科学. 2002, 22 (4): 313-315.
    52刘波,姜安玺,程养学,李政.不同生物脱臭填料生物膜成长特性.城市环境与城市生态. 2003, 16(6): 277-279.
    53任爱玲,郭斌,王晓辉,郭静,周葆华. PVC弹性填料生物膜法处理含H2S气体.化工环保. 2000, 20 (4): 25-28.
    54邵立明,何品晶,傅钟,李国建.固定化微生物处理含H2S气体的试验研究.环境科学. 1999, 20(1): 19-22.
    55 H. Q. Duan, Lawrence C.C. Koe, R. Yan, X. G. Chen. Biological Treatment of H2S Using Pellet Activated Carbon as a Carrier of Microorganisms in a Biofilter. Water Research. 2006(40): 2629-2636.
    56 H. K. Jung, R. R. Eldon, S. P. Hung. Biological Oxidation of Hydrogen Sulfide under Steady and Transient State Conditions in an Immobilized Cell Biofilter. Bioresource Technology. 2008, (99): 583-588.
    57 J. S. Reyes-Avila, E. Razo-Flores, J. Gomez. Simultaneous Biological Removal of Nitrogen, Carbon and Sulfur by Denitrification. Water Research. 2004, 38(14-15): 3313-3321.
    58 R. Beristain-Cardoso, A. C. Texier, R. Sierra-Alvarez, J. A. Field, E. Razo-Flores, J. Gomez. Simultaneous Sulfide and Acetate Oxidation under Denitrifying Conditions Using an Inverse Fluidized Bed Reactor. Journal of Chemical Technology and Biotechnology. 2008, 83(3): 1197-1203.
    59郭静,王召,张大群,王馨.复合式生物膜反应器脱臭及降解COD初步研究.给水排水. 1999, 25(12): 14-17.
    60廖嘉玲.微生物烟气脱硫尾液中硫化物好氧氧化技术研究.四川大学硕士学位论文. 2006: 24-34.
    61毕蕾.升流式厌氧反应器中水利剪切力对颗粒污泥的影响研究.清华大学工学硕士学位论文. 2007: 26-27.
    62贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社. 1998.
    63 W. M. Wu., J. C. Hu, X. S. Gu, Y. Z. Zhao, H. Zhang, G. G. Gu. Cultivation of Anaerobic Granular Sludge in UASB Reactors with Aerobic Activated Sludge as Seed. Water Research. 1989, 21(7): 789-799.
    64吴唯民,胡纪萃,顾夏声,朱学庆.好氧活性污泥中的产甲烷菌.环境科学学报. 1987, 7(1): 100-106.
    65 J. E. Schimidt, B. K. Ahring. Granular Sludge Formation in Upflow Anaerobic Sludge Blanket (UASB) Reactors. Biotechnology and Bioengineering. 1996, 49(3): 229-246.
    66许敬亮,高勇生,陈立伟,陈军,理顺鹏.运行负荷对酶制剂废水厌氧颗粒污泥形成的影响.环境科学学报. 2005, 25(3): 379-384.
    67沈耀良译.升流式厌氧污泥床反应器中颗粒污泥的特性.国外环境科学技术. 1992, (1): 12-17.
    68李宗义,王海磊,程彦伟,王鸿磊,李培睿.成熟厌氧颗粒污泥的结构及其特征.微生物学通报. 2003, 30(3): 56-59.
    69丁丽丽,任洪强,华兆哲,陈坚.内循环式厌氧反应器启动过程中颗粒污泥的特性.环境科学. 2001, 22(3): 30-34.
    70 H. Satoh, Y. Miura, I. Tsushima, S. Okabe. Layered Structure of Bacterial and Archaeal Communities and Their in Situ Activities in Anaerobic Granules. Applied and Environmental Microbiology. 2007, 73(22): 7300-7307.
    71赵一章,张辉,唐一,邓宇,连莉文.高活性厌氧颗粒污泥微生物特性和形成机理的研究.微生物学报. 1994, 34(1): 45-54.
    72傅山岗,李宗义.厌氧颗粒污泥的超微结构分析.生物技术. 2004, 14(4): 69-71.
    73郭晓磊,胡勇有,高孔荣.厌氧颗粒污泥及其形成机理.给水排水, 2000, 26(1): 33-38.
    74 W. M. Wu, M. K. Jain, J. G. Zeikus. Formation of Fatty Acid Degrading, Anaerobic Granules by Defined Species. Applied Environmental Microbiology. 1996, 62(6): 2037-2044.
    75 L. Florencio, J. A. Field, G. Lettinga. Substrate Competition between Methanogens and Acetogens during the Degradation of Methanol in UASB Reactors. Water Research. 1995, 29(3): 915-922.
    76 R. Blaszczyk, D. Gardner, N. Kosaric. Response and Recovery of Anaerobic Granules from Shock Lodaing.Water Research. 1994, 28(3): 675-680.
    77 R. E. Speece.工业废水的厌氧生物技术.北京:中国建筑工业出版社. 2002: 19.
    78 H. Q. Yu, H. H. P. Fang, J. H. Tay. Effects of Fe2+ on Sludge Granulation in Upflow Anaerobic Sludge Blanket Reactors. Water Science and Technology. 2000, 41(12): 199-205.
    79董春娟,吕炳南,苏秀英.废水厌氧处理系统微量金属生物有效度及影响因素.化工环保. 2004, 24(3): 190-193.
    80 K. Kwok, C. Picioreanu, S. L. Ong, M. C. M. van Loosdrecht, W. J. Ng, J. J. Heijnen. Influence of Biomass Production and Detachment Forces on Biofilm Structures in a Biofilm Airlift Suspension Reactor. Biotechnology and Bioengineering. 1998, 58(4): 400-407.
    81郭天赐,王怡,张引中,彭党聪.不同填充率对移动床生物膜反应器的产泥性能影响研究.环境工程学报. 2009, 3(2): 249-252.
    82俞汉青,顾国维.生物膜反应器挂膜方法的试验研究.中国给水排水, 1992, 8(3): 13-17.
    83韩洪军,刘淑彦,张宝杰.水解酸化处理啤酒废水的试验研究.哈尔滨建筑大学学报. 1999, 32(6): 97-99.
    84 C. J. N. Buisman, P. Uspeert, A. Janssen, G. Lettinga. Kinetic of Chemical and Biological Sulphide Oxidation in Aqueous Solution. Water Research. 1990, 24(5): 667-671.
    85贡俊,张肇铭.脱氮硫杆菌氧化硫化氢过程中的生物氧化和化学氧化.环境科学学报. 2006, 26(3): 477-482.
    86 A. Gonzalez-Sanchez, S. Revah. The Effect of Chemical Oxidation on the Biological Sulfide Oxidation by an Alkaliphilic Sulfoxidizing Bacterial Consortium. Enzyme and Microbial Technology. 2007, 40(2): 292-298.
    87胡洪营,张旭,黄霞等.环境工程原理.北京:高等教育出版社. 2005: 28.
    88 A. J. H. Janssen, P. N. L. Lens, A. J. M. Stams, C. M. Plugge, D. Y. Sorokin, G. Muyzer, H. Dijkman, E. van Zessen, P. Luimes, C. J. N. Buisman. Application of Bacteria Involved in the Biological Sulfur Cycle for Paper Mill Effluent Purification. Science of the Total Environment. 2009, 407: 1333-1343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700