用户名: 密码: 验证码:
颗粒污泥用于污水生物除磷及剩余污泥中磷回收技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是引起水体富营养化的重要因素,同时也是一种日益匮乏的不可再生资源,因此,从含磷污水中去除并回收磷是实现磷资源可持续利用的良策。
     本文将好氧颗粒污泥技术应用到污水强化生物除磷(EBPR)工艺中,控制低有机负荷率,按照EBPR工艺的运行方式,成功培养出一种以聚磷菌为主体的聚磷好氧颗粒污泥。与传统EBPR工艺相比,形成的聚磷好氧颗粒污泥能够实现很好的除磷性能,具有含磷量高和沉降性能好等优点,并证实采用低有机负荷率适合作为聚磷好氧颗粒污泥的培养策略。
     采用较低的有机负荷率会降低微生物的生长速率,从而增加反应器的启动时间,为了弥补这一不足,本文研究了聚磷好氧颗粒污泥的储存及活性恢复特性,考察以成熟的聚磷好氧颗粒污泥作为接种污泥来缩短反应器启动时间的可行性。实验结果表明聚磷好氧颗粒污泥独特的颗粒结构使其具有良好的储存性能,经过2个月的储存,能够维持颗粒结构的完整性,重新启动后可以迅速恢复原有的颗粒特性和除磷性能,并证实低温密封更适合聚磷好氧颗粒污泥的储存。
     研究了碳源种类等因素对聚磷好氧颗粒污泥厌氧释磷能力的影响,确定了乙酸钠为碳源,温度为25℃和pH=7~8时最适合污泥厌氧释放磷酸盐。实验结果表明在碳源不足时硝酸盐的存在会抑制污泥厌氧释磷,这主要是由反硝化与释磷反应的底物竞争所导致。实验过程中发现柠檬酸钠对聚磷好氧颗粒污泥厌氧释磷有促进作用,通过考察柠檬酸钠对ED途径和EMP途径的关键酶活性的影响,证实柠檬酸钠可以通过调节糖原降解途径从而促进磷酸盐的释放。
     热处理也是一种能够使污泥释放磷酸盐的有效方法,考察了不同的热处理温度下聚磷好氧颗粒污泥的磷、碳、氮的释放特性。通过对比厌氧释磷和热处理释磷两种方法各自的优缺点,提出了一种将这两种污泥释磷方法相结合的污泥厌氧-热处理集成工艺,将热处理过程中释放的有机物作为厌氧释磷所必需的碳源,可以降低厌氧释磷添加药剂的成本,以及污泥热处理后有机物的排放量。基于稳定运行状态下各物质的质量平衡关系,建立了该工艺的数学模型,并通过批次实验确定了各工艺参数。按照已确定的工艺参数,研究了该工艺的实际运行性能,结果表明该工艺可以使污泥释放出59%的磷用于回收,处理后的污泥质量降低了37.7%,与单独应用热处理释磷方法相比有机物排放量降低了43.5%。
Phosphorus is one of the most common pollutants that could cause water eutrophication. Meanwhile, phosphorus is also a kind of unsustainable and increasing shortage resources. Therefore, phosphorus recovery from wastewater is a meaningful strategy in order to realize phosphorus sustainable utilization.
     The technology of aerobic granular sludge was applied to enhanced biological phosphorus removal (EBPR) process from wastewater in this study. Phosphate-accumulating aerobic granules dominated by phosphate accumulating organisms (PAOs) were achieved in EBPR process operated under low organic loading rate. The cultured aerobic granules present good phosphorus removal performance and have numerous advantages such as higher phosphorus content and better settleability as compared to conventional activated sludge flocs in EBPR process. This result proved that aerobic granules could be obtained by controlling low organic loading rate.
     Low organic loading rate could decrease the microbial growth rate and increase the start-up time of the biological water treatment process. The influence of two-month storage under different conditions on the storage and subsequent reactivation performance of aerobic granules was investigated in order to validate the possibility that using cultured mature aerobic granules as seed sludge to speed up the formation of aerobic granules and reduce the start-up time. A specific inner rod-shaped bacteria aggregate tightly wrapped by filamentous bacteria structure provides phosphate-accumulating aerobic granules excellent storage performance. After two months storage, aerobic granules could maintain their structure integrity and quickly restored their original granular characteristics and phosphate removal ability. It was confirmed that low temperature and anaerobic storage conserve the structure integrity during storage and promote the reviving behaviors of phosphate-accumulating aerobic granules during reactivation.
     Effects of some parameters such as kinds of carbon resource etc. on phosphate-releasing performance of phosphate-accumulating aerobic granules were investigated. The optimal phosphate-releasing conditions were sodium acetic as carbon resource, 25℃and pH=7~8. The results suggested that the existence of nitrate could inhibit phosphate release of phosphate-accumulating aerobic granules when the carbon resource sodium acetic was deficient, which was due to the competition to the carbon resource between denitrification process and phosphate release process. It was discovered that sodium citrate could enhance the phosphate release of phosphate-accumulating aerobic granules. The influences of sodium citrate on the key enzymes’activities involving in ED and EMP pathway were investigated and the result confirmed that sodium citrate could enhance the phosphate release through mediating the metabolic pathway of glycogen.
     Heat treatment to sludge is an effective phosphate-releasing way. The phosphate, carbon and nitrogen release properties of phosphate-accumulating aerobic granules were investigated under different temperature. A combinative phosphate recovery process of heat treatment and anaerobic phosphate release was proposed by comparing their advantages and disadvantages. The organics released by the granules during heat treatment were used as the carbon resource for the granules during anaerobic phosphate release process, which decreased not only the cost of carbon resource addition during anaerobic phosphate release process but also the organics discharge after heat treatment. A steady model for this proposed phosphate recovery process was established based on the mass balance relationship and the model parameters were experimentally confirmed. The proposed phosphate recovery process was conducted to investigate the phosphate recovery performance. The results suggested that via this phosphate recovery process 59% phosphate released by the granules could be used for recovery, the mass of sludge discharge decreased 37.7% and the organics discharge decreased 43.5% as compared to that only via heat treatment.
引文
[1]荆肇乾,吕锡武.污水处理中磷回收理论与技术[J].安全与环境工程,2005,12(1):29-32.
    [2]郝晓地,甘一萍.排水研究新热点—从污水处理过程中回收磷[J].排水给水,2003,29(1):20-24.
    [3]刘颐华.我国与世界磷资源及开发利用现状[J].磷肥与复肥,2005,20(5):1-5.
    [4] Steen I. Phosphorus availability in the 21st century: Management of a non-renewable resource[J]. Phosphorus & Potassium,1998,217:25-31.
    [5]周峰.鸟粪石沉淀法回收废水中磷的研究[D].福建:华侨大学,2006.
    [6]胡慧蓉,郭安,王海龙.我国磷资源利用现状与可持续利用的建议[J].磷肥与复肥,2007,22(2):1-5.
    [7]吴初国.我国磷矿资源形势与可持续供应的对策建议[J].化肥工业,2004,31(4):3-5.
    [8]袁俊宏.我国磷资源现状及资源保障程度分析[J].中国矿业,2003,12(4):86-89.
    [9]郑雁.以雪硅钙石为晶种回收废水中磷及其再利用研究[D].北京:中国地质大学,2009.
    [10]徐洪斌,马勇光.磷资源合理利用及回收[J].安全与环境工程,2008,15(3):62-64.
    [11] Doyle J D,Parsons S A. Struvite formation,control and recovery[J]. Water Research,2002,36(16):3925-3940.
    [12] Liberti L,Petruzzelli D,Florio L. REM NUT ion exchange plus struvite precipitation process [J]. Environmental Technology,2001,22(11):1313-1324.
    [13]王建龙,文湘华.现代环境生物技术[M].北京:清华大学出版社,2001.
    [14]张自杰.排水工程(下)[M].北京:中国建筑工业出版社,2000.
    [15]孙体昌,崔志广,黄国忠,等.用沉淀气浮法从回流液中回收氨氮和磷的研究[J].工业水处理,2005,25(3):45-48.
    [16]邹安华,孙体昌,宋存义,等.污水处理厂回流液中回收磷酸铵镁的试验研究[J].给水排水,2006,32:115-118.
    [17]郝晓地,汪慧贞,钱易,等.欧洲城市污水处理技术新概念—可持续生物除磷脱氮工艺(下)[J].给水排水,2002,28(7):5-8.
    [18] Britton A,Koch FA,Mavinic DS,et al. Pilot-scale struvite recovery from anaerobic digester supernatant at an enhanced biological phosphorus removal wastewater treatment plant[J]. Journal of Environmental Engineering and Science,2005,4(4):265-277.
    [19] Barat R,van Loosdrecht MCM. Potential phosphorus recovery in a WWTP with the BCFS? process: Interactions with the biological process[J]. Water Research,2006,40(19):3507-3516.
    [20]王绍贵,张兵,汪慧贞.以鸟粪石的形式在污水处理厂回收磷的研究[J].环境工程,2005,23(3):78-80.
    [21]王印忠,曹相生,孟雪征,等.脱水滤液中Mg2+、PO43-和NH4+浓度对鸟粪石形成的影响[J].中国给水排水,2007,23(19):6-9.
    [22] Battistoni P,De Angelis A,Pavan P,et al. Phosphorus removal from a real anaerobic supernatant by struvite crystallization[J]. Water Research,2001,35(9):2167-2178.
    [23] Kuroda A,Takiguchi N,Gotanda T,et al. A simple method to release polyphosphate from activated sludge for phosphorus reuse and recycling[J]. Biotechnology and Bioengineering,2002,78(3):333-338.
    [24] Takiguchi N,Kuroda A,Kato J,et al. Pilot plant tests on the novel process for phosphorus recovery from municipal wastewater[J]. Journal of chemical engineering of Japan,2003,36(10):1143-1146.
    [25]薛涛,黄霞,郝王娟.剩余污泥热处理过程中磷、氮和有机碳的释放特性[J].中国给水排水,2006,22(23):22-25.
    [26] Xue T,Huang X. Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge[J]. Journal of Environmental Sciences,2007,19(10):1153-1158.
    [27] Takiguchi N,Kishino M,Kuroda A,et al. Effect of mineral elements on phosphorus release from heated sewage sludge[J]. Bioresource Technology,2007,98(13):2533-2537.
    [28]吉芳英,罗固源.排出厌氧富磷污水生物化学除磷脱氮ERP_SBR系统研究[J].水处理技术,2005,31(1):57-61.
    [29] Saktaywin W,Tsuno H,Nagare H,et al. Advanced sewage treatment process with excess sludge reduction and phosphorus recovery[J]. Water Research,2005,39(5):902-910.
    [30] Liao PH,Wong WT,Lo KV. Release of phosphorus from sewage sludge using microwave technology[J]. Journal of Environmental Engineering and Science,2005,4(1):77-81.
    [31] Takahashi M,Kato S,Shima H,et al. Technology for recovering phosphorus from incinerated wastewater treatment sludge[J]. Chemosphere,2001,44(1):23-29.
    [32] Hino A,Hirai T,Komasawa I. The recovery of phosphorus value from incineration ashes of sewage sludge using solvent extraction[J]. Kagaku Kogaku Ronbunshu,1998,24(2):273-278.
    [33] Lundin M,Olofsson M,Pettersson GJ,et al. Environmental and economic assessment of sewage sludge handling options[J]. Resources,Conservation and Recycling,2004,41(4):255-278.
    [34] Svanstrom M,Froling M,Olofsson M,et al. Environmental assessment of supercritical water oxidation and other sewage sludge handling options[J]. Waste Management & Research,2005,23(4):356-366.
    [35] Stendahl K,Jafverstrom S. Phosphate recovery from sewage sludge in combination with supercritical water oxidation[J]. Water Science and Technology,2003,48(1):185-190.
    [36] Boehler M,Siegrist H. Potential of activated sludge ozonation. Water Science and Technology,2007,55(12):181-187.
    [37] Jeanmaire N,Evaqns T. Refixation of phosphates released during bio-P sludge handling as struvite or aluminum phosphate. Environmental Technology,2001,22(11):1355-1361.
    [38]郝晓地.可持续污水-废物处理技术[M].北京:中国建筑工业出版社,2006.
    [39]荣宏伟,陈志强,吕炳南.有机碳源对生物除磷的影响[J].南京理工大学学报,2004,28(4):440-444.
    [40]柴延丽,周岳溪,王海燕,等.MDAT-IAT同步脱氮除磷工艺活性污泥在不同基质中的厌氧释磷特性研究[J].环境科学学报,2005,25(7):913-917.
    [41]侯红勋,王淑莹,闫骏,等.不同碳源类型对生物除磷过程释放磷的影响[J].化工学报,2007,58(8):2081-2086.
    [42] Hrenovic J,Orhan Y,Buyukgungor H.Characterization of enhanced biological phosphorus release and removal by activated sludge[J]. Acta Chimica Slovenica,2003,50(4):697-714.
    [43] Hollender J,van der Krol D,Kornberger L,et al.Effect of different carbon sources on the enhanced biological phosphorus removal in a sequencing batch reactor[J].World Journal of Microbiology and Biotechnology,2002,18:355-360.
    [44] Jeon CO,Park JM.Enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose as a sole carbon source[J].Water Research,2000,34(7):2160-2170.
    [45] Kargi F,Ahmet U,Baskaya HS.Phosphate uptake and release rates with different carbon sources in biological nutrient removal using a SBR[J] . Journal of Environmental Management,2005,76(1):71-75.
    [46]刘燕,陈银广,郑弘,等.乙酸丙酸比例对富集聚磷菌生物除磷系统影响研究[J].环境科学学报,2006,26(8):1278-1283.
    [47] Li HJ,Chen YG,Gu GW.The effect of propionic to acetic acid ratio on anaerobic-aerobic (low dissolved oxygen) biological phosphorus and nitrogen removal[J].Bioresource Technology,2008,99(10):4400-4407.
    [48]李洪静,陈银广,顾国维.丙酸的加入对厌氧-低氧同时生物除磷脱氮系统的影响[J].环境科学,2007,28(8):1681-1686.
    [49] Canizares P,De Lucas A,Rodriguez L,et al.Anaerobic uptake of different organic substrates by an enhanced biological phosphorus removal sludge[J].Environmental Technology,2000,21:397-405.
    [50] Panswad T,Tongkhammak N,Anotai J.Estimation of intracellular phosphorus content of phosphorus-accumulating organisms at different P : COD feeding ratios[J].Journal of Environmental Management,2007,84:141-145.
    [51]薛涛,黄霞.高磷负荷对生物除磷系统的影响[J].清华大学学报(自然科学版),2007,47(12):2146-2148.
    [52]郑燕清,周建华.除磷工艺中厌氧释磷和好氧吸磷的影响因素[J].中国市政工程,2007,1:48-50.
    [53]杨琴,吉芳英,罗固源.活性污泥外循环SBR系统外循环污泥释磷能力研究[J].重庆环境科学,2002,24(6):57-62.
    [54] Boswell CD,Dick RE,Macaskie LE.The effect of heavy metals and other environmental conditions on the anaerobic phosphate metabolism of Acinetobacter johnsonii[J].Microbiology,1999,145:1711-1720.
    [55] Chen YG , Gu GW . Effect of changes of pH on the anaerobic/aerobic transformations of biological phosphorus removal in wastewater fed with a mixture of propionic and acetic acids[J] . Journal of Chemical Technology and Biotechnology,2006,81:1021-1028.
    [56] Schuler AJ,Jenkins D.Effects of pH on enhanced biological phosphorus removal metabolisms[J].Water Science and Technology,2002,46(4-5):171-178.
    [57]郭琇,孟昭辉,董晶颢.厌氧池中pH值对生物除磷的影响[J].哈尔滨商业大学学报(自然科学版),2005,21(3):292-297.
    [58]郑弘,陈银广,杨殿海,等.污水起始pH值对序批式反应器(SBR)中增强生物除磷过程的影响研究[J].环境科学,2007,28(3):512-516.
    [59] Bond PL,Keller J,Blackall LL.Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal . A possible mechanism of intracellular pH control[J].Biotechnology and Bioengineering,1999,63(5):507-515.
    [60] Helmer C,Kunst S.Low temperature effects on phosphorus release and uptake by microorganisms in EBPR plants[J].Water Science and Technology,1998,37(4-5):531-539.
    [61] Kumar P,Mehrotra I,Viraraghavan T.Temperature response of biological phosphorus-removing activated sludge[J].Journal of Environmental Engineering,1998,214(2):192-196.
    [62] Artan N,Tasli R,Ozgur N,et al.The fate of phosphate under anoxic conditions in biological nutrient removal activated sludge systems[J].Biotechnology Letters,1998,20(11):1085-1090.
    [63] Lee SH,Ko JH,Kim JR,et al.Identification of the adverse effect of nitrate on the phosphate release rate and improvement of EBPR process models[J].Water Science and Technology,2006,53(4-5):115-123.
    [64] Zou H,Du GC,Ruan WQ,et al.Role of nitrate in biological phosphorus removal in a sequencing batch reactor[J] . World Journal of Microbiology and Biotechnology,2006,22:701-706.
    [65] Van Niel EWJ,Appeldoorn KJ,Zehnder AJB,et al.Inhibition of anaerobic phosphate release by nitric oxide in activated sludge[J].Applied and Environmental Microbiology,1998,64(8):2925-2930.
    [66] Ko KB,Park NY,Oh YK,et al.Denitrification and phosphorus release under anoxic conditions in an anoxic-anaerobic-aerobic BNR process[J] . Environmental Technology,2003,24:693-702.
    [67]夏宏生.外加电场生物去污除磷的试验研究[J].环境科学与技术,2006,29(12):18-19.
    [68] Tsai YP,You SJ,Pai TY,et al.Effect of Cd(II) on different bacterial species present in a single sludge activated sludge process for carbon and nutrient removal[J].Journal of Environmental Engineering,2006,132(2):173-180.
    [69] Chang WC,Jou SJ,Chien CC,et al.Effect of chlorination bulking control on water quality and phosphate velease/uptake in an anaerobic-oxic activated sludge system[J].Water Science and Technology,2004,50(8):177-183.
    [70] Mishima K,Nakamura M. Self-immobilization of aerobic activated sludge—a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment[J]. Water Science and Technology,1991,23(4):981-990.
    [71] Morgenroth E,Sherden T,van Loosdrecht M C M,et al. Aerobic granular sludge in a sequencing batch reactor[J]. Water Research, 1997,31 (12):3191-3194.
    [72]王暄.厌氧-好氧SBR中颗粒污泥胞内储存及脱氮除磷特性[D].天津:天津大学,2005.
    [73] Tijhuis L,Huisman J L,Hekkelman H D,et al. Formation of nitrifying biofilms on small suspended particles in airlift reactors[J]. Biotechnology and Bioengineering,1995,47(5):585-595.
    [74]卢珊.颗粒污泥SBR中污泥稳定性及处理生活污水的试验研究[D].天津:天津大学,2007.
    [75]王建龙,张子健,吴伟伟.好氧颗粒污泥的研究进展[J].环境科学学报,2009,29(3):449-473.
    [76]竺建荣,刘纯新,何建中,等.厌-好氧交替工艺的生物除磷特性研究[J].环境科学学报,1999,19(4):394-398.
    [77]竺建荣,刘纯新.好氧颗粒活性污泥的培养及理化特性研究[J].环境科学,1999,20(2):38-41.
    [78] Dulekgurgen E,Ovez S,Artan N,et al. Enhanced biological phosphate removal by granular sludge in a sequencing batch reactor[J]. Biotechnology Letters,2003,25(9):687-693.
    [79] Dulekgurgen E,Yesiladali K,Ovez S,et al. Conventional morphological and functional evaluation of the microbial populations in a sequencing batch reactor performing EBPR[J]. Journal of Environmental Science and Health,Part A:Toxic/Hazardous Substances & Environmental Engineering,2003,38(8):1499-1515.
    [80]由阳,彭轶,袁志国,等.富含聚磷菌的好氧颗粒污泥的培养与特性[J].环境科学,2008,29(8):2242-2248.
    [81] Lin YM , Liu Y , Tay JH. Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors[J]. Applied Microbiology and Biotechnology,2003,62(4):430-435.
    [82] Liu Y,Lin YM,Tay JH. The elemental compositions of P-accumulating microbial granules developed in sequencing batch reactors[J]. Process Biochemistry ,2005,40(10):3258-3262.
    [83]高景峰,郭建秋,毕环宇,等.间歇式除磷好氧颗粒污泥反应器的快速启动[J].环境工程,2008,26(1):15-18.
    [84]卢然超,张晓健,张悦,等.SBR工艺运行条件对好氧污泥颗粒化和除磷效果的影响[J].环境科学,2001,22(2):87-90.
    [85] Chen Y,Jiang WJ,Liang DT,et al. Aerobic granulation under the combined hydraulic and loading selection pressures[J]. Bioresource Technology,2008,99(16):7444-7449.
    [86] de Kreuk M K,van Loosdrecht M C M. Selection of slow growing organisms as a means for improving aerobic granular sludge stability[J]. Water Science and Technology,2004,49(11-12):9-17.
    [87]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [88] APHA. Standard Methods for the Examination of Water and Wastewater,20th ed[M]. Washington DC. USA:American Public Health Association/American Water Works Association/Water Environment Federation,1998.
    [89] Rosenberg M,Gutnick D,Rosenberg E. Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity[J]. FEMS Microbiology Letters,1980,9(1):29-33.
    [90] Adav SS,Lee DJ,Show KY,et al. Aerobic granular sludge: Recent advances[J]. Biotechnology Advances,2008,26(5):411-423.
    [91] Liu Y,Wang ZW,Qin L,et al. Selection pressure-driven aerobic granulation in a sequencing batch reactor[J]. Applied Microbiology and Biotechnology,2005,67(1):26-32.
    [92] Qin L,Tay JH,Liu Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors[J]. Process Biochemistry,2004,39(5):579-584.
    [93] Kishida N,Tsuneda S,Kim JH,et al. Simultaneous Nitrogen and Phosphorus Removal from High-Strength Industrial Wastewater Using Aerobic Granular Sludge[J]. Journal of Environmental Engineering-Asce,2009,135(3):153-158.
    [94] Han ZY,Wu WX,Ding Y,et al. Optimization of main factors associated with nitrogen removal in hybrid sludge sequencing batch reactor with step-feeding of swine wastewater[J]. Journal of Environmental Science and Health,Part A:Toxic/Hazardous Substances & Environmental Engineering,2008,43(2):161-170.
    [95] Tay JH,Pan S,He YX,et al. Effect of organic loading rate on aerobic granulation. I: Reactor performance[J]. Journal of Environmental Engineering-Asce,2004,130(10):1094-1101.
    [96] Li ZH,Kuba T,Kusuda T. The influence of starvation phase on the properties and the development of aerobic granules[J]. Enzyme and Microbial Technology ,2006,38:670–674.
    [97] Liu YQ,Wu WW,Tay JH,et al. Starvation is not a prerequisite for the formation of aerobic granules[J]. Applied Microbiology and Biotechnology,2007,76(1):211-216.
    [98] Liu YQ,Tay JH. Characteristics and stability of aerobic granules cultivated with different starvation time[J]. Applied Microbiology and Biotechnology,2007,75(1):205-210.
    [99] Tay JH,Pan S,He YX,et al. Effect of organic loading rate on aerobic granulation. II : Characteristics of aerobic granules[J]. Journal of Environmental Engineering-Asce,2004,130(10):1102-1109.
    [100] Moy BYP,Tay JH,Toh SK,et al. High organic loading influences the physical characteristics of aerobic sludge granules[J]. Letters in Applied Microbiology,2002,34(6):407-412.
    [101] Liu Y,Yang SF,Tay JH. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria[J]. Journal of Biotechnology,2004,108(2):161-169.
    [102]张兰英,刘娜,孙立波,等.现代环境微生物技术[M].北京:清华大学出版社,2005.
    [103]李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社,2007.
    [104] Chen Y,Jiang W,Liang DT,et al. Structure and stability of aerobic granules cultivated under different shear force in sequencing batch reactors[J]. Applied Microbiology and Biotechnology,2007,76(5):1199-1208.
    [105] Liu Y,Liu QS. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors[J]. Biotechnology Advances,2006,24(1):115-127.
    [106] Liu Y,Yang SF,Tay JH,et al. Cell hydrophobicity is a triggering force of biogranulation[J]. Enzyme and Microbial Technology,2004,34(5):371-379.
    [107] Adav SS,Lee DJ,Tay JH. Activity and structure of stored aerobic granules[J]. Environmental Technology,2007,28(11):1227-1235.
    [108] Tay JH,Liu QS,Liu Y. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors[J]. Environmental Technology,2002(8):931-936.
    [109] Wang XH,Zhang HM,Yang FL,et al. Long-term storage and subsequent reactivation of aerobic granules[J]. Bioresource Technology,2008(17):8304-8309.
    [110]蔡春光,刘军深,蔡伟民.胞外多聚物在好氧颗粒化中的作用机理[J].中国环境科学,2004,24(5):623-626.
    [111] Liu YQ,Liu Y,Tay JH. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Applied Microbiology and Biotechnology,2004,65(2):143-148.
    [112] Tay JH,Liu QS,Liu Y.The role of cellular polysaccharides in the formation and stability of aerobic granules.Letters in Applied Microbiology,2001,33(3):1-5.
    [113] Digance MF,Urbain V,Rybacki D,et al. Chemical description of extracellular polymers: implication on activated sludge floc structure[J]. Water Science and Technology,1998,38:45-53.
    [114] Tsuneda S,Jung J,Hayashi H. Influence of extracellular polymers on electrokinetic properties of heterothrophic bacterial cells examined by soft particle eletrophoresis theory[J]. Colloids and Surfaces B,2003,29:181-188.
    [115] Wang ZW,Li Y,Zhou JQ,et al. The influence of short-term starvation on aerobic granules[J]. Process Biochemistry,2006,41(12):2373-2378.
    [116] Lee CC,Lee DJ,Lai JY. Amylase activity in substrate deficiency aerobic granules[J]. Applied Microbiology and Biotechnology,2009,81(5):961-967.
    [117] Adav SS,Lee DJ,Lai JY. Proteolytic activity in stored aerobic granular sludge and structural integrity[J]. Bioresource Technology,2009,100(1):68-73.
    [118] Zeng P,Zhuang WQ,Tiong-Lee S,et al. The influence of storage on the morphology and physiology of phthalic acid-degrading aerobic granules[J]. Chemosphere,2007,69(11):1751-1757.
    [119] Zhang LL,Zhang B,Huang YF,et al. Re-activation characteristics of preserved aerobic granular sludge[J]. Journal of Environmental Sciences,2005,17(4):655-658.
    [120] Zhu JR,Wilderer PA. Effect of extended idle conditions on structure and activity of granular activated sludge[J]. Water Research,2003,37(9):2013-2018.
    [121] Garny K,Neu TR,Horn H. Sloughing and limited substrate conditions trigger filamentous growth in heterotrophic biofilms-Measurements in flow-through tube reactor[J]. Chemical Engineering Science,2009,64(11):2723-2732.
    [122] Lopez-Vazquez CM,Song YI,Hooijmans CM,et al. Short-term temperature effects on the anaerobic metabolism of glycogen accumulating organisms[J]. Biotechnology and Bioengineering,2007,97(3):483-495.
    [123] Filipe CDM,Daigger GT,Grady CPL. pH as a key Factor in the competition between glycogen-accumulating organisms and phosphorus-accumulating organisms[J]. Water Environment Research,2001,73(2):223-232.
    [124]李勇智,王淑滢,吴凡松,等.强化生物除磷体系中反硝化聚磷菌的选择与富集[J].环境科学学报,2004,24(1):45-49.
    [125]李夕耀,彭永臻,王淑莹,等.聚磷菌厌氧时吸收乙酸和丙酸的代谢模型[J].环境科学与管理,2008,33(8):37-42.
    [126] Maurer M,Gujer W,Hany R,et al. Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems[J]. Water Research,1997,31(4):907-917.
    [127] Pramanik J,Trelstad PL,Schuler AJ,et al. Development and validation of a flux-based stoichiometric model for enhanced biological phosphorus removal metabolism[J]. Water Research,1999,33(2):462-476.
    [128] Mino T,van Loosdrecht MCM,Heijnen JJ. Microbiology and biochemistry of the enhanced biological phosphate removal process[J]. Water Research,1998,32(11):3193-3207.
    [129] Goel A,Lee J,Domach MM,et al. Metabolic fluxes,pools,and enzyme measurements suggest a tighter coupling of energetics and biosynthetic reactions associated with reduced pyruvate kinase flux[J]. Biotechnology and Bioengineering,1999,64(2):129-134.
    [130]李兴江,姜绍通,潘丽军,等.秸秆水解液发酵产丁二酸高产菌株的选育及其代谢调控[J].化工学报,2008,59(12):3107-3114.
    [131]肖本益,阎鸿,魏源送.污泥热处理及其强化污泥厌氧消化的研究进展[J].环境科学学报,2009,29(4):673–682.
    [132]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998.
    [133] Hamers A,Mason CA,Hamer G. Death and lysis during aerobic thermophilic sludge treatment: characterization of recalcitrant products[J]. Water Research,1994,28(4):863-869.
    [134]霍贞,王芬,季民.污泥破解技术的研究与进展[J].工业水处理,2005,25(9):16-19.
    [135]邹雪.利用鸟粪石沉淀法从含磷废水中回收磷的实验研究[D].北京:北京交通大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700