用户名: 密码: 验证码:
还原型谷胱甘肽高产菌的胁迫生理特性与高密度发酵过程优化技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
还原型谷胱甘肽(y-glutamyl-L-cysteinylglycine, GSH)是一种非蛋白巯基化合物,广泛分布在各种生物活细胞内。GSH在细胞内参与了许多生理活动并起到非常重要的作用,最主要三种功能:(1)作为抗氧化剂,维持细胞内氧化还原状态;(2)在高等真核细胞中作为免疫增加剂;(3)作为解毒剂。这些特点使GSH广泛应用在疾病治疗上,比如肝硬化、糖尿病、神经退行性疾病和抗衰老等,因此GSH认为是生物体内最重要的一种能自我生产的抗疾病防卫小分子化合物。目前GSH作为一种药物广泛使用在医疗行业,如果产品价格能进一步降低,它在食品和化妆品行业也有很好的应用前景,因此GSH的市场需求在进一步扩大。但是,我国发酵法生产GSH仍停留在工业化试验阶段,尚未有企业成功实现发酵法生产GSH。为此,本论文针对国内目前GSH发酵生产过程中发酵水平和分离纯化技术所遇到的难题,基于多尺度参数相关分析,对GSH高产菌开展菌种生理特性和发酵过程优化研究,具体研究结果如下:
     1.GSH高产菌菌种鉴定和基本胁迫生理特性研究
     以GSH高产菌株的总DNA为模板,采用真菌通用引物,对其26S rDNA D1/D1区进行特异扩增,产物回收后测序,测序结果与NCBI的DNA数据库中已知菌种的26S rDNA序列进行比对,发现GSH高产菌株是一株酿酒酵母菌,命名为酿酒酵母T65。对此高产菌株和酿酒酵母W303A进行高浓度乙醇、葡萄糖、高温、高渗透压、营养饥饿、低pH、氧化胁迫和抗生素G418和Zecin毒性的耐受性分析,发现此高产菌株对测定的胁迫条件均表现出相对较好的耐受性。另外它能在酵母SD-URA培养基中生长,说明此高产菌株不是尿嘧啶缺陷型。GSH高产菌的这些生理数据为下一步研究高密度发酵生产GSH提供生理生化基础指导。
     2.基于在线活细胞生物量的GSH高密度发酵比生长速率控制策略研究
     将活细胞生物量传感器(型号Biomass monitor 220)成功地应用在复合培养基高密度补料发酵生产GSH过程中,建立了在线测量的电容值与细胞干重、OD600、活细胞计数和菌体离心体积计数法(Packed mycelia volume)这四种离线生物量检测方法的线性关系,确定了它们之间的线性方程和相关系数,其中电容值与活细胞数的相关系数达到0.995。相比较这四种离线方法,利用电容法来检测证明是一种在发酵过程中更方便准确的检测生物量的方法。因此,在复合培养基高密度补料分批发酵生产GSH过程中,Biomass monitor 220是一个非常有用的在线检测活细胞生物量的工具。GSH发酵过程比生长速率(μ)可通过电容值进行在线直接估算。对电容、OUR和CER这三种比生长速率估算方法进行比较,发现利用电容值来估算比通过OUR或CER这两种在线间接估算方法更为可靠实用。进一步将控制比生长速率反馈补料策略应用到GSH生产中,建立了GSH发酵过程在线控制比生长速率的有效优化方法。将比生长速率控制在0.2 h-’时,细胞密度和GSH发酵水平分别达到120 g/l和1.8 g/l,分别比控制比生长速率在0.15 h-1时提高了86.7%和200%。
     3.利用呼吸商(RQ)反馈控制技术建立了高密度补料发酵生产GSH过程中同时提高GSH产量和胞内GSH含量的发酵策略。
     采用RQ反馈控制葡萄糖补料速率,PID控制器将RQ控制在设定值。当RQ控制在0.65时使补料阶段的GSH和生物量生产效率最高,分别达到46.9 mg/l/h和3.5g/1/h,同时提高了GSH产量和胞内GSH含量。RQ控制使GSH最终产量达到2.1g/1、生物量126 g/l、胞内GSH含量1.67%和GSH生产率55.3 mg/l/h,分别比传统的乙醇反馈控制提高了75%、11.5%、57.5%和82.5%。并且RQ控制使副产物乙醇含量低于0.3 g/l。与传统的乙醇反馈控制相比,RQ控制能够降低副产物的形成,缩短发酵时间,并且有更高的GSH产量和胞内GSH含量等优势。通过代谢流分析表明,GSH合成途径通量显著增加是RQ控制高产的直接原因。此外还对补料成分进行优化,将补料培养基从只添加葡萄糖改为同时添加葡萄糖和酵母粉,使发酵水平得到进一步提高,GSH发酵产量达到2.4 g/l。因此,RQ反馈控制这种简单有效的控制方法有可能替代GSH生产中的传统反馈控制方法。
     4.GSH高产菌高产机理初步探索—γ-谷氨酰半胱氨酸合成酶(GSH1)酶活和基因(gshl)序列比较分析
     对GSH高产菌株和野生菌株γ-谷氨酰半胱氨酸合成酶(GSH1)酶活和基因(gshl)序列比较分析,初步探索GSH高产菌高产的可能机理。结果表明:(1)高产菌GSH1酶活是野生菌的4倍,这表明有可能是高产菌的GSH1发生突变引起酶活变化。(2)对高产菌株中的gshl基因进行克隆测序,发现DNA序列上有13碱基发生突变,并引起相应的氨基酸序列的三处点突变,并都发生在此酶的保守结构域上和活性催化区域。(3)对GSH1的三维空间结构同源建模分析表明,这三处突变引起三维空间结构的改变,预测的结构势能也更低,这些结构上变化可能造成突变后的GSH1的空间结构更稳定,从而使酶活显著提高,最终细胞内的GSH含量明显提高。
     5..建立了在不破碎酵母细胞条件下乙醇原位高效提取GSH方法。
     对影响在不破碎酵母细胞条件下乙醇原位提取GSH的三个因素乙醇浓度、提取温度和提取时间进行考察,发现只有乙醇浓度是影响GSH提取效率的显著因素。接着采用单因素实验对乙醇浓度这个条件进行进一步优化,确定25%乙醇浓度提取效率最高,达到0.31%。把这个方法与目前GSH工业上常用的提取方法进行了比较,发现两者提取效率相当,但用乙醇提取的杂蛋白浓度更少。总体而言,这个方法环境友好和条件温和,有可能成为目前GSH工业上常用提取方法的一种替代方法。
Reduced glutathione (y-glutamyl-L-cysteinylglycine, GSH), the most abundant non-protein thiol compound, is distributed widely in living cells. Although GSH is involved in many physiological processes and plays important roles, it serves three key functions: an antioxidant which plays key roles in maintaining the redox homeostasis of the cell, an enhancer of immunity, and a detoxifier in higher eukaryotic organisms. These characteristics make GSH important in the treatment of many diseases, such as liver cirrhosis, pulmonary diseases, gastrointestinal and pancreatic inflammations, diabetes, neurodegenerative diseases, and aging. Thus, GSH is considered to be one of the most important self-generated defense molecules. GSH is now widely used as a medicine. It also has great potential as food additives and in the cosmetic industries, only if the production cost can be further decreased. The commercial demand for GSH is expanding. However, there is no fermentative production of GSH on an industrial scale in China. Based on multi-scale analysis, cell physiology, and process optimization of a GSH high-yield strain were investigated in this work.
     1. Identification and stress resistance of GSH high-yield strain
     The 26S rDNA fragment of GSH high-yield strain was amplified by PCR with the template of its genomic DNA and fungal 26S rDNA universal primers. After blast the sequence of this 26S rDNA fragment in GSH high-yield strain using GenBank database of NCBI, it was identified as Saccharomyces cerevisiae. Moreover, stress resistance of GSH high-yield strain and Saccharomyces cerevisiae W303A to ethanol, glucose, nutrient starvation, temperature, osmotic pressure, oxidative pressure, and G418 and Zecin toxicity were studied by cell growth assay. The results showed that GSH high-yield strain is more resistant to the tested stress conditions than Saccharomyces cerevisiae W303A. Furthermore, GSH high-yield strain can grow on yeast SD-URA medium, suggesting that it is not a uracil autotrophic mutant. These results serve as useful reference data for further studies of GSH high-cell-density cultivation.
     2. Specific growth rates control strategy based on on-line viable-cell mass monitoring for GSH high-cell-density cultivation
     An on-line monitoring of viable-cell mass in high-cell-density fed-batch cultivations of GSH high-yield strain grown on an industrial complex medium was performed with an in situ capacitance probe fitted to a 50-1 fermentor. Conventional off-line biomass determinations of several parameters, including dry cell weight (DCW), optical density at 600 nm wavelength (OD600 nm), packed mycelial volume (PMV) and number of colony forming units (CFU), were performed throughout the bioprocess and then compared with on-line viable-cell concentrations measured using a capacitance probe. Capacitance versus viable biomass and all off-line biomass assay values were compared during GSH fermentation in industrial complex culture media. As a result, the relationship between the number of colony forming units and capacitance with a correlation coefficient (R) of 0.995 was achieved. Simultaneously, compared with those determined by at-line indirect estimation methods including oxygen uptake rate (OUR) and carbon dioxide evolution rate (CER), the specific growth rates (μ) estimated by on-line capacitance measurement could be more reliable during GSH fermentation. An on-lineμfeedback control strategy based on capacitance measurement was developed for GSH high-cell-density fermentation.μcontrolled at 0.2 h"1 achieved yeast dry weight (120 g/1) and GSH yield (1.8 g/1), which improved by 86.7% and 200%, respectively, compared withμcontrolled at 0.15 h-1. Therefore, it is concluded that a capacitance probe is a practical tool for real-time viable biomass monitoring in GSH high-cell-density fed-batch cultivation in a complex medium.
     3. RQ feedback control for simultaneous improvement of GSH yield and GSH content
     GSH production by high-cell-density fed-batch cultivation of GSH high-yield strain, a respiratory quotient (RQ) feedback control strategy was applied to determine glucose feeding rate(F) based on on-line off-gas monitoring. Glucose feed was manipulated by a classical proportional-integral-derivative (PID) controller to control RQ at its set-point. RQ controlled at 0.65 resulted in the highest GSH productivity (46.9 mg/1/h) and cell productivity (3.5 g/1/h) as well as improved GSH yield and intracellular GSH content. RQ feedback control achieved yeast dry weight (126 g/1), GSH yield (2.1 g/1), GSH content (1.67%) and GSH productivity (55.3 mg/1/h), which improved by 11.5%,75%,57.5% and 82.5%, respectively, compared with conventional ethanol feedback control in the GSH industry. Moreover, RQ feedback control reduced ethanol (byproduct) level to below 0.3 g/1. Advantages of RQ feedback control over the conventional ethanol feedback control in the GSH industry include lower byproduct concentration, shorter cultivation period, higher GSH content, and higher GSH yield. Based on metabolic flux analysis (MFA), it indicated that the reason of GSH over-production by RQ control was due to increase of metabolic flux of GSH biosynthesis pathway. Furthermore, GSH yield achieved 2.4 g/1 when feeding medium was changed from glucose (600 g/1) to glucose (600 g/1) and yeast extract (15 g/1). Hence, feedback control based on RQ is a promising method that poses as a simple and efficient alternative to conventional feed control techniques presently practiced in the GSH industry.
     4. A possible molecular mechanism for GSH high-yield synthesis
     y-glutamylcysteine synthetase (GSH1) catalytic activity of GSH high-yield strain achieved 4.1 mmol Pi/mg protein/min, which was-4-fold compared to that of wild-type strain (control). It may indicate that GSH1 mutation of GSH high-yield strain resulted in a significantly increased activity. DNA sequencing of GSH1 in GSH high-yield strain revealed that three amino acids were changed among GSH1 conserved domain and its catalytic subunit. The 3D structure of GSH1 in GSH high-yield strain was generated by homology modeling using Swiss-Model based on the crystal structure of GSH1 of S. cerevisiae (PDB code:3ig5A). The result showed that the structure of GSH1 was changed compared with control. Moreover, the Potential energy of GSH1 was lower than that of control, indicating that GSH1 is more stable than control, and may increase reaction rate with substrate. Examination of this model suggested that the structure change may affect substrate binding with GSH1, and regulate the enzymatic activity.
     5. Efficient extraction of GSH by ethanol
     GSH from fermentation broth of GSH high-yield strain was extracted with ethanol without disruption of the cells. The effects of ethanol concentration, extraction temperature and extraction time were assessed by using 23 full factorial designs (FFD). Preliminary studies showed that ethanol concentration had the most influence on GSH yield by ethanol extraction, based on the first order regression coefficients derived using MINITAB software, and an optimal ethanol concentration (25%, v/v) was obtained. However, compared to the conventional extraction technique (hot water extraction), there was no significant advantage in yield of GSH from yeast cells using ethanol extraction under these optimized conditions. But ethanol extraction has several advantages, such as lower energy consumption and lower protein concentration of extraction broth, which may reduce the complexity and cost of the purification process. Hence, ethanol extraction which does not disrupt yeast cells could be an inexpensive, simple and efficient alternative to conventional extraction techniques in the GSH industry.
引文
[1]Inoue Y, Iba Y, Yano H, Murata K, Kimura A. Functional analysis of the y-glutamylcysteine synthetase of Escherichia coli B:effect of substitution of His-150 to Ala. Appl Microbiol Biotechnol.1993,38 (4):473-477.
    [2]Binsan W, Benjakul S, Visessanguan W, Roytrakul S, Tanaka M, Kishimura H. Antioxidative activity of Mungoong, an extract paste, from the cephalothorax of white shrimp(Litopenaeus vannamei). Food Chem.2008,106 (1):185-193.
    [3]Li Y, Wei G, Chen J. Glutathione:a review on biotechnological production. Appl Microbiol Biotechnol.2004,66 (3):233-242.
    [4]Wang Z, Tan T, Song J. Effect of amino acids addition and feedback control strategies on the high-cell-density cultivation of Saccharomyces cerevisiae for glutathione production. Process Biochem.2007,42 (1):108-111.
    [5]Monje-Casas F, Michan C, Pueyo C. Absolute transcript levels of thioredoxin-and glutathione-dependent redox systems in Saccharomyces cerevisiae:response to-stress and modulation with growth. Biochem J.2004,383:139-147.
    [6]Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione:implication in redox and detoxification. Clin Chim Acta.2003,333 (1):19-39.
    [7]Akkose A, Omer B, Yigitbasi A. DNA damage and glutathione content in radiology technicians. Clin Chim Acta.2003,336 (1-2):13-18.
    [8]Cha J Y, Park J C, Jeon B S, Lee Y C, Cho Y S. Optimal fermentation conditions for enhanced glutathione production by Saccharomyces cerevisiae FF-8. J Microbiol.2004, 42(1):51-55.
    [9]Maris A F, Kern A L, Picada J N, Boccardi F, Brendel M, Henriques J A. Glutathione, but not transcription factor Yapl, is required for carbon source-dependent resistance to oxidative stress in Saccharomyces cerevisiae. Curr Genet.2000,37 (3):175-182.
    [10]Wu G, Fang Y Z, Yang S, Lupton J R, Turner N D. Glutathione metabolism and its implications for health. J Nutr.2004,134 (3):489-492.
    [11]Navarro J, Obrador E, Carretero J, Petschen I, Avino J, Perez P, Estrela J M. Changes in glutathione status and the antioxidant system in blood and in cancer cells associate with tumour growth in vivo. Free Radic Biol Med.1999,26:410-418.
    [12]Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med.1999,27: 916-921.
    [13]李华钟,林金萍,李寅,陈坚,伦世仪.谷胱甘肽的生物合成.中国医药工业杂志.2000,31(5):236-239.
    [14]刘娟,刘春秀,王雅琴,张博润.发酵法生产谷胱甘肽的研究进展.微生物学通报.2002,29(6):72-75.
    [15]Penninckx M. A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microb Technol.2000,26: 737-742.
    [16]Tamas E, Istvan P, Attila S..Glutathione metabolism and protection against oxidative stress caused by peroxides in Penicillium Chrysogenum. Free Radic Biol Med.1997,23 (5):809-814.
    [17]Penninckx M J, Elskens M T. Metabolism and functions of glutathione in microorganisms. Adv Microb Physiol.1993,34:239-301.
    [18]Bray T M, Taylor C G. Enhancement of tissue glutathione for antioxidant and immune functions in malnutrition. Biochem Pharma.1994,47 (12):2113-2123.
    [19]Schoenberg M H, Brik D, Beger H G. Oxidative stress in acute and chronic pancreatitis. Am J Clin Nutr.1995,62:1306-1314.
    [20]Lang C A, Naryshkin S, Schneider D L. Low blood glutathione in healthy aging adults. J Lab Clin Med.1992,120:720-725.
    [21]Wisnewski A V, Liu Q, Liu J, Redlich C A. Glutathione protects human airway proteins and epithelial cells from isocyanates. Clin Exp Allergy.2005,35 (3):352-357.
    [22]Liao X, Deng T, Zhu Y, Du G, Chen J. Enhancement of glutathione production by altering adenosine metabolism of Escherichia coli in a coupled ATP regeneration system with Saccharomyces cerevisiae. J Appl Microbiol.2008,104 (2):345-352.
    [23]Hara K Y, Shimodate N, Hirokawa Y, Ito M, Baba T, Mori H, Mori H. Glutathione production by efficient ATP-regenerating Escherichia coli mutants. FEMS Microbiol Lett. 2009,297:217-224.
    [24]Ikner A, Shiozaki K. Yeast signaling pathways in the oxidative stress response. Mutat Res. 2005,569:13-27.
    [25]汤亚杰,徐小玲,李冬生.发酵法生产谷胱甘肽的研究进展.食品与发酵工业.2007,33(1):75-79.
    [26]Fyfe P K, Alphey M S, Hunter W N. Structure of Trypanosoma brucei glutathione synthetase:domain and loop alterations in the catalytic cycle of a highly conserved enzyme. Mol Biochem Parasitol.2010,170 (2-3):93-99.
    [27]沈立新,魏东芝,赵哲峰,张嗣良,王二力.谷胱甘肽合成酶系的克隆,测序及表达.生物工程学报.2001,17(1):98-100.
    [28]Murata K. Glutathione and its derivatives:produced by recombinant Escherichia coli and Saccharomyces cerevisiae. Bioprocess Technol.1994,19:159-183.
    [29]Murata K, Tani K, Kato J, Chibata I. Glutathione production coupled with an ATP regeneration system. Appl Microbiol Biotechnol.1980,10 (1):11-21.
    [30]Murata K, Tani K, Kato J, Chibata I. Glutathione production by immobilized Saccharomyces cerevisiae cells containing an ATP regeneration system. Appl Microbiol Biotechnol.1981,11 (2):72-77.
    [31]李寅,李华钟,林金萍,陈坚.生物合成谷胱甘肽种间耦合ATP再生系统的构建.微生物学报.2001,41(2):191-197.
    [32]Liu H, Lin J P, Cen P L, Pan Y J. Co-production of S-adenosyl--methionine and glutathione from spent brewer's yeast cells. Process Biochem.2004,39 (12):1993-1997.
    [33]Lin H P, Tian J, You J F, Jin Z H, Xu Z N, Cen P L. An effective strategy for the co-production of S-adenosyl-L-methionine and glutathione by fed-batch fermentation. Biocheml Eng J.2004,21 (1):19-25.
    [34]Watanabe K, Yamano Y, Murata K, Kimura A. Glutathione production by Escherichia coli cells with hybrid plasmid containing tandemly polymerized genes for glutathione synthetase. Appl Microbiol Biotechnol.1986,24 (5):375-378.
    [35]Murata K, Tani K, Kato J, Chibata I. Continuous production of glutathione by immobilized Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol.1978,6 (1): 23-27.
    [36]Lin J, Liao X, Zhang J, Du G, Chen J. Enhancement of glutathione production with a tripeptidase-deficient recombinant Escherichia coli. J Ind Microbiol Biotechnol.2009,36 (12):1447-1452.
    [37]Johnson T, Newton G L, Fahey R C, Rawat M. Unusual production of glutathione in Actinobacteria. Arch Microbiol.2009,191 (1):89-93.
    [38]Wei G, Li Y, Du G, Chen J. Application of a two-stage temperature control strategy for enhanced glutathione production in the batch fermentation by Candida utilis. Biotechnol Lett.2003,25:887-890.
    [39]Wei G, Li Y, Du G, Chen J. Effect of surfactants on extracellular accumulation of glutathione by Saccharomyces cerevisiae. Process Biochem.2003,38 (8):1133-1138.
    [40]何俊勇,裘娟萍,黄敏,赵丽华.高产谷胱甘肽新菌种的选育及其发酵条件的研究.工业微生物.2005,35(3):31-35.
    [41]胡林华,谭天伟.高产谷胱甘肽酵母菌株的选育和培养条件的初探.高校化学工程学报.2005,19(2):273-276.
    [42]刘娟,何秀萍,王雅琴,张博润.高产谷胱甘肽的酵母融合菌株的选育及其培养条件的研究.微生物学报.2003,(1):99-103.
    [43]Ohtake Y, Watanabe K, Tezuka H, Ogata T, Yabuuchi S, Murata K, Kimura A. The expression of the y-glutamylcysteine synthetase gene of Escherichia coli B in Saccharomyces cerevisiae. Agric Biol Chem.1988,55 (11):2753-2762.
    [44]Fan X, He X, Guo X, Qu N, Wang C, Zhang B. Increasing glutathione formation by functional expression of the gamma-glutamylcysteine synthetase gene in Saccharomyces cerevisiae. Biotechnol Lett.2004,26 (5):415-417.
    [45]饶志明,艾丽静,沈微,方慧英,诸葛健.gshl基因的克隆及其在巴斯德毕赤氏酵母中的表达.应用与环境生物学报.2007,13(2):257-260.
    [46]Fei L, Wang Y, Chen S. Improved glutathione production by gene expression in Pichia pastoris. Bioprocess Biosyst Eng.2009,32 (6):729-735.
    [47]Liao X Y, Shen W, Chen J, Li Y, Du G C. Improved glutathione production by gene expression in Escherichia coli. Lett Appl Microbiol.2006,43 (2):211-214.
    [48]陈坚,卫功元,李寅,堵国成.微生物发酵法生产谷胱甘肽.无锡轻工大学学报:食品与生物技术.2004,23(5):104-110.
    [49]李华钟,李寅,林金萍,陈坚.具有高谷胱甘肽合成活性重组大肠杆菌的构建及合成反应过程.微生物学报.2001,41(1):16-24.
    [50]沈立新,魏东芝,赵哲峰,张嗣良,王二力.谷胱甘肽合成酶在大肠杆菌中的高效表达及性质.华东理工大学学报:自然科学版.2000,26(4):342-345.
    [51]Li Y, Hugenholtz J, Sybesma W, Abee T, Molenaar D. Using Lactococcus lactis for glutathione overproduction. Appl Microbiol Biotechnol.2005,67:83-90.
    [52]Xiong Z Q, Tu X R, Tu G Q. Optimization of medium composition for actinomycin X2 production by Streptomyces spp JAU4234 using response surface methodology. J Ind Microbiol Biotechnol.2008,35:729-734
    [53]Liu C-H, Hwang C-F, Liao C-C. Medium optimization for glutathione production by Saccharomyces cerevisiae. Process Biochem.1999,34 (1):17-23.
    [54]Rollini M, Manzoni M. Influence of different fermentation parameters on glutathione volumetric productivity by Saccharomyces cerevisiae. Process Biochem.- 2006,41 (7): 1501-1505.
    [55]Santos L O, Gonzales T A, Ubeda B T, Monte Alegre R. Influence of culture conditions on glutathione production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2007,77 (4):763-769.
    [56]Zhang T, Wen S, Tan T. Optimization of the medium for glutathione production in Saccharomyces cerevisiae. Process Biochem.2007,42 (3):454-458.
    [57]李寅,陈坚,毛英鹰,伦世仪.重组大肠杆菌生产谷胱甘肽发酵条件的研究.微生物学报.1999,39(4):355-361.
    [58]李寅,陈坚,周楠迪,傅为民,阮文权,伦世仪.环境条件及摇瓶补糖策略对谷胱甘肽发酵的影响.生物工程学报.1998,14(2):147-152.
    [59]Liang G, Du G, Chen J. Enhanced glutathione production by using low-pH stress coupled with cysteine addition in the treatment of high cell density culture of Candida utilis. Lett Appl Microbiol.2008,46:507-512.
    [60]卫功元,李寅,堵国成,陈坚.溶氧及pH对产朊假丝酵母分批发酵生产谷胱甘肽的影 响.生物工程学报.2003,19(6):734-739.
    [61]卫功元,李寅,堵国成,陈坚Candida utilis生物合成谷胱甘肽的营养及环境条件.应用与环境生物学报.2003,9(6):642-646.
    [62]卫功元,李寅,堵国成,陈坚.温度对谷胱甘肽分批发酵的影响及动力学模型.生物工程学报.2003,19(3):358-363.
    [63]Nie W, Wei G, Du G, Li Y, Chen J. Enhanced intracellular glutathione synthesis and excretion capability of Candida utilis by using a low pH-stress strategy. Lett Appl Microbiol.2005,40 (5):378-384.
    [64]聂薇,卫功元,李寅,堵国成,陈坚.利用低pH胁迫作用促进产朊假丝酵母生产谷胱甘肽.化工学报.2005,56(9):1750-1756.
    [65]Dong Y, Yang Q, Jia S, Qiao C. Effect of high pressure on the accumulation of trehalose and glutathione in the Saccharomyces cerevisiae cells. Biochem Eng J.2007,37:226-230.
    [66]Liang G, Liao X, Du G, Chen J. A new strategy to enhance glutathione production by multiple H2O2 induced oxidative stresses in Candida utilis. Bioresour Technol.2009,100 (1):350-355.
    [67]Alfafara C G, Miura K, Shimizu H, Shioya S, Suga K-i, Suzuki K. Fuzzy control of ethanol concentration its application to maximum glutathione production in yeast fed-batch culture. Biotechnol Bioeng.1993,41 (4):493-501.
    [68]Sakato K, Tanaka H. Advanced control of glutathione fermentation process. Biotechnol Bioeng.1992,40 (8):904-912.
    [69]卫功元,李寅,堵国成,陈坚.产朊假丝酵母流加发酵法生产谷胱甘肽.过程工程学报.2005,5(3):327-331.
    [70]张文燕,堵国成,陈坚.流加发酵及添加1-半胱氨酸对产朊假丝酵母高密度培养合成谷胱甘肽的影响.应用与环境生物学报.2007,13(2):261-264.
    [71]Li Y, Chen J, Mao Y Y, Lun S Y, Koo Y M. Effect of additives and fed-batch culture strategies on the production of glutathione by recombinant Escherichia coli. Process Biochem.1998,33 (7):709-714.
    [72]Xiong Z Q, Guo M J, Guo Y X, Chu J, Zhuang Y P, Wang N S, Zhang S L. RQ feedback control for simultaneous improvement of GSH yield and GSH content in Saccharomyces cerevisiae T65. Enzyme Microb Technol.2010,46:598-602.
    [73]Shimizu H, Araki K, Shioya S, Suga K-i. Optimal production of glutathione by controlling the specific growth rate of yeast in fed-batch culture. Biotechnol Bioeng. 1991,38(2):196-205.
    [74]尹良鸿,吴晓玉,廖鲜艳,堵国成,陈坚.产朊假丝酵母发酵生产谷胱甘肽的氨基酸添加策略.过程工程学报.2008,8(2):333-338.
    [75]李寅,陈坚,周楠迪,伦世仪.氨基酸和酵母膏对谷胱甘肽发酵的影响.中国医药工业杂志.1998,29(12):537-542.
    [76]Alfafara C G, Kanda A, Shioi T, Shimizu H, Shioya S, Suga K-i. Effect of amino acids on glutathione production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol.1992, 36 (4):538-540.
    [77]Alfafara C, Miura K, Shimizu H, Shioya S, Suga K-i. Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae. Appl Microbiol Biotechnol.1992,37 (2):141-146.
    [78]Liang G, Liao X, Du G, Chen J. Elevated glutathione production by adding precursor amino acids coupled with ATP in high cell density cultivation of Candida utilis. J Appl Microbiol.2008:1432-1440.
    [79]Liang G, Du G, Chen J. A novel strategy of enhanced glutathione production in high cell density cultivation of Candida utilis-Cysteine addition combined with dissolved oxyen controlling. Enzyme Microb Technol.2008,42:284-289.
    [80]Wen S, Zhang T, Tan T. Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae. Enzyme Microb Technol.2004,35:501-507.
    [81]Wen S H, Zhang T, Tan T W. Optimization of the amino acid composition in glutathione fermentation. Process Biochem.2005,40 (11):3474-3479.
    [82]Wen S, Zhang T, Tan T. Maximizing production of glutathione by amino acid modulation and high-cell-density fed-batch culture of Saccharomyces cerevisiae. Process Biochem. 2006,41 (12):2424-2428.
    [83]梅乐和,林东强,朱自强.双水相分配结合温度诱导相分离从酵母中提取谷胱甘肽.化 工学报.1998,49(4):470-475.
    [84]苑小林,乐科易,王旭,高馨。鲜酵母中谷胱甘肽(GSH)分离纯化的初步研究.药物生物技术.1998,5(2):89-91.
    [85]王辉,冯万祥.含汞树脂分离提纯谷胱甘肽.华东理工大学学报:自然科学版.1996,22(6):717-721.
    [86]Wang Y, Chu J, Zhuang Y, Wang Y, Xia J, Zhang S. Industrial bioprocess control and optimization in the context of systems biotechnology. Biotechnol Adv.2009,27 (6):989-995.
    [87]Park J H, Lee K H, Kim T Y, Lee S Y. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A.2007,104 (19):7797-7802.
    [88]Alper H, Stephanopoulos G. Global transcription machinery engineering:a new approach for improving cellular phenotype. Metab Eng.2007,9 (3):258-267.
    [89]Alper H, Moxley J, Nevoigt E, Fink G R, Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science.2006, 314 (5805):1565-1568.
    [90]张嗣良.工业生物过程优化与放大研究中的科学问题—生物过程环境组学与多尺度方法原理研究.中国基础科学.2009,5:27-31.
    [91]Zhang S, Ye B C, Chu J, Zhuang Y, Guo M. From multi-scale methodology to systems biology:to integrate strain improvement and fermentation optimization. J Chem Technol Biotechnol.2006,81:734-745.
    [92]Zhang S L, Chu J, Zhuang Y P. A Multi-Scale Study of Industrial Fermentation Processes and Their Optimization. Adv Biochem Eng Biotechnol.2004,87:97-150.
    [93]储炬,杭海峰,庄英萍.工业微生物发酵过程放大策略.生物产业技术.2009,4:68-72.
    [94]Xia J Y, Wang S J, Zhang S L, Zhong J J. Computational investigation of fluid dynamics in a recently developed centrifugal impeller bioreactor. Biochem Eng J.2008,38:406-413.
    [95]Xia J Y, Wang Y H, Zhang S L, Chen N, Yin P, Zhuang Y P, Chu J. Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment. Biochem Eng J.2009,43:252-260.
    [96]Ding J, Huang X, Zhang L, Zhao N, Yang D, Zhang K. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol.2009,85 (2): 253-263.
    [97]Attfield P V. Stress tolerance:The key to effective strains of industrial baker's yeast. Nat Biotech.1997,15 (13):1351-1357.
    [98]刘向勇,张小华,鲍晓明.酿酒酵母工业菌株胁迫条件耐受性分析.中国酿造.2006,1:8-11.
    [99]王滨,张国政,路福平,杜连祥.酵母酒精耐性机制的研究进展.天津轻工业学院学报.2001,36(1):18-23.
    [100]薛军侠,徐艳文,杨莹,刘延琳.野生酿酒酵母耐受性分析.酿酒科技.2007,6:45-47.
    [101]郭亭,梁达奉.工业用糖蜜酿酒酵母菌株耐受性分析研究.微生物学通报.2008,35(2):188-192.
    [102]Zuzuarregui A, del Olmo M. Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection. Antonie Van Leeuwenhoek.2004, 85 (4):271-280.
    [103]薛波,韩娜,侯敏,何苗,刘延琳.7株葡萄野生酵母菌的特性研究.中国酿造.2009,10:19-21.
    [104]Haack M B, Eliasson A, Olsson L. On-line cell mass monitoring of Saccharomyces cerevisiae cultivations by multi-wavelength fluorescence. J Biotechnol.2004,199-208 (114).
    [105]Bittner C, Wehnert G, Scheper T. In situ microscopy for on-line determination of biomass. Biotechnol Bioeng.1998,60 (1):24-35.
    [106]Arnold S A, Gaensakoo R, Harvey L M, McNeil B. Use of at-line and in-situ near-infrared spectroscopy to monitor biomass in an industrial fed-batch Escherichia coli process. Biotechnol Bioeng.2002,80 (4):405-413.
    [107]kennedy M J, Thakur M S, Wang D I C, Stephanopoulos G N. Estimating cell concentration in the presence of suspended solids:a light scattering technique. Biotechnol Bioeng.1992,40 (8):875-888.
    [108]Hisiger S, Jolicoeur M. A multiwavelength fluorescence probe:is one probe capable for on-line monitoring of recombinant protein production and biomass activity. J Biotechnol.2005,117 (4):325-336.
    [109]Cannizzaro C, Gugerli R, Marison I, von Stockar U. On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy. Biotechnol Bioeng.2003, 84 (5):597-610.
    [110]Matanguihan R M, Konstantinov K B, Yoshida T. Dielectric measurement to monitor the growth and the physiological states of biological cells. Bioprocess Eng.1994,11:213-222.
    [111]Cannizzaro C, Gugerli R, Marison I, von Stockar U. On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy. Biotechnol Bioeng.2003, 84 (5):597-610.
    [112]Xiong Z Q, Guo M J, Guo Y X, Chu J, Zhuang Y P, Zhang S L. Real-time viable-cell mass monitoring in high-cell-density fed-batch glutathione fermentation by Saccharomyces cerevisiae T65 in industrial complex medium. J Biosci Bioeng.2008, 105 (4):409-413.
    [113]Wen S H, Zhang T, Tan T W. Optimization of the amino acid composition in glutathione fermentation. Process Biochem.2005,40 (11):3474-3479.
    [114]王贻俊,樊育,Olsson L, Nielsen J生物量浓度实时在线检测方法的研究.生物化学与生物物理进展.2000,27(4):387-390.
    [115]Ducommun P, Kadouri A, Stockar U V, Marison I W. On-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy. Biotechnol Bioeng.2002,77 (3):316-323.
    [116]Wei G, Li Y, Du G, Chen J. Effect of surfactants on extracellular accumulation of glutathione by Saccharomyces cerevisiae. Process Biochem.2003,38 (8):1133-1138.
    [117]Sarrafzadeh M H, Belloy L, Esteban G, Navarro J M, Ghommidh C. Dielectric monitoring of growth and sporulation of Bacillus thuringiensis. Biotechnol Lett.2005, 27 (7):511-517.
    [118]Wen S, Zhang T, Tan T. Maximizing production of glutathione by amino acid modulation and high-cell-density fed-batch culture of Saccharomyces cerevisiae. Process Biochem.2006,41 (12):2424-2428.
    [119]Carvell J P, Dowd J E. On-line measurements and control of viable cell density in cell culture manufacturing processes using radio-frequency impedance. Cytotechnology. 2006,50:35-48.
    [120]Zeiser A, Bedard C, voyer R, Jardin B, Tom R, Karmen A A, Karmen T. On-line monitoring of the progress of infection in Sf-9 insect cell cultures using relative permittivity measurements. Biotechnol Bioeng.1999,63:122-126.
    [121]Neves A A, Pereira D A, Vieira L M, Menezes J C. Real time monitoring biomass concentration in Streptomyces clavuligerus cultivations with industrial media using a capacitance probe. J Biotechnol.2000,84 (1):45-52.
    [122]Arnoux A S, Preziosi-Belloy L, Esteban G, Teissier P, Ghommidh C. Lactic acid bacteria biomass monitoring in highly conductive media by permittivity measurements. Biotechnol Lett.2005,27 (20):1551-1557.
    [123]Ferreira A P, Vieira L M, Cardoso J P, Menezes J C. Evaluation of a new annular capacitance probe for biomass monitoring in industrial pilot-scale fermentations. J Biotechnol.2005,116 (4):403-409.
    [124]Levisauskas D, Simutis R, Borvitz D, Lubbert A. Automatic control of the specific growth rate in fed-batch cultivation processes based on an exhaust gas analysis. Bioprocess Biosyst Eng.1996,15 (3):145-150.
    [125]Davey H M, Davey C L, Woodward A M, Edmonds A N, Lee A W, Kell D B. Oscillatory, stochastic and chaotic growth rate fluctuations in permittistatically controlled yeast cultures. Biosystems.1996,39 (1):43-61.
    [126]Shimizu H, Araki K, Shioya S, Suga K I. Optimal production of glutathione by controlling the specific growth rate of yeast in fed-batch culture. Biotechnol Bioeng. 1991,38(2):196-205.
    [127]Li Y, Wei G, Chen J. Glutathione:a review on biotechnological production. Appl Microbiol Biotechnol.2004,66 (3):233-242.
    [128]Crognale S, Petruccioli M, Fenice M, Federici F. Fed-batch gluconic acid production from Penicillium variabile P16 under different feeding strategies. Enzyme Microb Technol.2008,42:445-449.
    [129]Shang F, Wang Z, Tan T. High-cell-density cultivation for co-production of ergosterol and reduced glutathione by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2008,77 (6):1233-1240.
    [130]Zou X, Hang H F, Chu J, Zhuang Y P, Zhang S L. Oxygen uptake rate optimization with nitrogen regulation for erythromycin production and scale-up from 50 L to 372 m3 scale. Bioresour Technol.2009,100 (3):1406-1412.
    [131]Xiao J, Shi Z, Gao P, Feng.H, Duan Z, Mao Z. On-line optimization of glutamate production based on balanced metabolic control by RQ. Bioprocess Biosyst Eng.2006, 29(2):109-117.
    [132]Forster J, Famili I, Fu P, Palsson B O, Nielsen J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res.2003,13 (2):244-253.
    [133]卫功元,李寅,堵国成,陈坚.产阮假丝酵母分批发酵生产谷胱甘肽的代谢通量分析.化工学报.2006,57(6):1410-1417.
    [134]俞志敏,徐凯,徐鹏,汤佳鑫,赵长新.高产谷胱甘肽酵母菌株的选育及其代谢通量分析.中国生物工程杂志.2008,28(7):110-115.
    [135]Vemuri G N, Eiteman M A, McEwen J E, Olsson L, Nielsen J. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A.2007,104 (7):2402-2407.
    [136]Wang Z J, Wang H Y, Li Y L, Chu J, Huang M Z, Zhuang Y P, Zhang S L. Improved vitamin B(12) production by step-wise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process. Bioresour Technol.2010,101 (8): 2845-2852.
    [137]Li K T, Liu D H, Li Y L, Chu J, Wang Y H, Zhuang Y P, Zhang S L. Improved large-scale production of vitamin B(12) by Pseudomonas denitrificans with betaine feeding. Bioresour Technol.2008,99 (17):8516-8520.
    [138]刘长建,权春善,范圣第16S rRNA和recA-gene对乳酸菌Ⅱ32的鉴定.大连民族学院学报.2007,36(1):50-52.
    [139]letunic L, Doerks T, Bork P. SMART 6:recent updates and new developments. Nucleic Acids Res.2009,37:229-232.
    [140]Schultz J, Milpetz F, Bork P, Ponting C P. SMART, a simple modular architecture research tool:Identification of signaling domains. Proc Natl Acad Sci U S A.1998,95: 5857-5864.
    [141]Zdobnov E M, Apweiler R. InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics.2001,17:847-848.
    [142]Jones D. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol.1999,292:195-202.
    [143]Ward J J, Sodhi J S, McGuffin L J, Buxton B F, Jones D T. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol.2004, 337:635-645.
    [144]Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace:A web-based environment for protein structure homology modelling. Bioinformatics.2006,22: 195-201.
    [145]Benkert P, Tosatto S C E, Schomburg D. A comprehensive scoring function for model quality assessment. Proteins:Struct, Funct, Bioinf.2008,71 (1):261-277.
    [146]Vadali R V, Bennett G N, San K Y. Cofactor engineering of intracellular CoA/acetyl-CoA and its effect on metabolic flux redistribution in Escherichia coli. Metab Eng. 2004,6(2):133-139.
    [147]Chen W C, Huang F K, Cheng S C, Tsai F Y, Lin C L. Co-production of gamma-glutamylcysteine and glutathione by mutant strain Saccharomyces cerevisiae FC-3 and its kinetic analysis. J Basic Microbiol.2009,49 (6):513-520.
    [148]Biterova E I, Barycki J J. Mechanistic details of glutathione biosynthesis revealed by crystal structures of Saccharomyces cerevisiae glutamate cysteine ligase. J Biol Chem. 2009,284 (47):32700-32708.
    [149]Inoue Y, Nomura W, Takeuchi Y, Ohdate T, Tamasu S, Kitaoka A, Kiyokawa Y, Masutani H, Murata K, Wakai Y, Izawa S, Yodoi J. Efficient extraction of thioreodoxin from Saccharomyces cerevisiae by ethanol. Appl Environ Microbiol.2007,73 (5): 1672-1675.
    [150]Xiong Z Q, Guo M J, Guo Y X, Chu J, Zhuang Y P, Zhang S L. Efficient extraction of intracellular reduced glutathione from fermentation broth of Saccharomyces cerevisiae by ethanol. Bioresour Technol.2009,100 (2):1011-1014.
    [151]Wang J, Sun B, Cao Y, Tian Y, Li X. Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem.2008,106 (2):804-810.
    [152]Chen H C, Liu L Y. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol.2007,98 (3):666-676.
    [153]Quitain A T, Oro K, Katoh S, Moriyoshi T. Recovery of oil components of okara by ethanol-modified supercritical carbon dioxide extraction. Bioresour Technol.2006,97 (13):1509-1514.
    [154]Grigonis D, Venskutonis P R, Sivik B, Sandahl M, Eskilsson C S. Comparison of different extraction techniques for isolation of antioxidants from sweet grass (Hierochloe odorata). J Supercrit Fluid.2005,33 (3):223-233.
    [155]Pan Y, Wang K, Huang S, Wang H, Mu X, He C, Ji X, Zhang J, Huang F. Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel. Food Chem.2008,106 (3):1264-1270.
    [156]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.1976, 72:248-254.
    [157]Zhang Z-S, Li D, Wang L-J, Ozkan N, Chen X D, Mao Z-H, Yang H-Z. Optimization of ethanol-water extraction of lignans from flaxseed. Sep Purif Technol.2007,57 (1):17-24.
    [158]Zhang Y X, Perry K, Vinci V A, Powell K, Stemmer W. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature.2002,415:644-646.
    [159]Gong J, Zheng H, Wu Z, Chen T, Zhao X. Genome shuffling:Progress and applications for phenotype improvement. Biotechnol Adv.2009,27 (6):996-1005.
    [160]梁伟东,金建中,马怡静,乐科易,常城.酿酒酵母菌关键酶基因剔除对谷胱甘肽合成的影响.安徽农业科学.2008,36(17):7162-7165.
    [161]Biterova E I, Barycki J J. Structural basis for feedback and pharmacological inhibition of Saccharomyces cerevisiae glutamate cysteine ligase. J Biol Chem.2010,285 (19): 14459-14466.
    [162]Dong L, Huang S, Luo Q, Zhou X, Zheng S. Glutathione extraction and mass transfer in di-(2-ethylhexyl) ammonium phosphate/pctanol reverse micelles. Biochem Eng J.2009, 46:210-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700