用户名: 密码: 验证码:
新型高性能钒酸盐电极材料的制备及锂离子脱嵌机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒氧化合物和钒酸盐嵌锂材料由于成本相对低廉,合成方法简单,比容量高等特点成为了近年来研究的热点。我国钒资源丰富,但是综合利用程度不高,因此开发具有高容量的钒系化合物作为新型锂离子电池嵌锂材料,对优化我国钒资源利用和促进经济发展都具有重要意义。目前,钒系嵌锂材料存在的主要问题是循环性能差,倍率性能不高,限制了其商业化应用。本论文立足于结构相对稳定的三钒酸盐材料,通过新型制备方法的设计与优化,分别获得了高性能的钒酸锂和钒酸钠材料,在此基础上,提出用铵根离子取代层状钒酸锂中的Li+,设计合成了一种具有高比容量和长循环寿命的新型钒酸铵嵌锂材料,重点研究了相关材料的锂离子脱嵌机制。本论文的主要研究工作和结果如下:
     针对LiV308倍率性能差,容量衰减快的问题,设计了新型的水热—固相烧结两步法,首先通过简单的水热工艺可控合成分散均匀,厚度超薄的(NH4)0.5V205纳米片,然后与LiOH均匀混合低温烧结得到LiV308纳米薄片。纳米片分散均匀,厚度约20-50nm。该材料的倍率性能是目前相关文献结果中最好的。在5C和10C下,放电容量仍保持在148.7和105.8mAhg-1.在300和1000mA g-1前100次循环的容量保持率分别为84.1%和85.3%。材料优异的倍率性能可能归因于其独特的纳米薄片特征。
     研究了层状钒酸钠的循环稳定性能。采用简易的水热反应一步合成了钒酸钠纳米线,重点考察了结晶水的含量(通过热处理控制)对材料结构、形貌和电化学性能的影响。制备的纳米线尺寸60-100nm,部分长度达5μm。首次放电容量约272mAh g-1。热处理环节虽然会降低材料的容量,但是显著改善了循环性能。300℃热处理的材料在300mA g-1的首次放电容量为189.0mAhg-1。前80次保持率为94.4%。400℃后的材料100次循环没有出现容量衰减。研究表明层间的结晶水会增大层间距离,有利于容量的提高,但是会牺牲材料的循环性能。热处理后的钒酸钠可以作为一种新型具有高循环稳定性能的水溶液锂离子电池阳极材料.
     采用水热—固相法合成了高倍率的Na1.08V308纳米薄片。纳米片单层厚度小于10nm。中间产物的纳米薄片结构包含了纳米棒向纳米片融合转变的过程,在此基础上,提出了钒酸钠纳米薄片的形成机理。目标材料具有超高的倍率性能和优异的循环稳定性能。30mAg-1下材料的放电容量约220mAhg-1,在600和1000mAg-1下分别为164.1和154.6mAhg1,200次循环后保持在170.5和162.5mAhg-1。在30和50C倍率下容量仍能保持在95和75mAhg-1。该材料的倍率性能要高于迄今所有报道的钒酸盐材料,甚至要比很多经过碳改性处理后的钒酸盐更好,可能归因于其特殊的纳米薄片特征及本身的结构特点。
     在前面工作的基础上,提出NH4V308作为新型的锂离子电池正极材料,重点考察了合成因素如水热反应时间、溶液pH等对最终产物结构、形貌和电化学性能的影响,研究了NH4+在充放电过程中的行为及锂离子的脱嵌机理。结果表明NH4V308具有较好的锂离子可逆脱嵌能力,NH4+在充电过程中不会脱出。在pH值为4,水热反应24h的条件下制备的片状NH4V308电化学性能最好。该材料在30mA g-1放电容量最高达353.2mAhg-1,对应4个锂离子的插入。在300mAg-’下,100次循环容量保持稳定,600mA g-1下200次循环没有出现容量衰减,体现了优异的循环性能。研究表明材料在大电流下优异的循环稳定性能主要归因于晶体中分子内氢键的形成和分散均匀的片状形貌。不过该材料的倍率性能还有待提高,在300mAg-1下容量已经下降至202.5mAh g-1。
     针对倍率性能较差的问题,通过一步水热合成法得到NH4V308纳米片/碳纳米管(CNTs)的复合材料,考察了不同CNTs负载量的影响。研究发现,CNTs能在片状NH4V308上形成三维导电网络。CNTs的引入会导致(NH4)0.5V205相的产生。0.5wt%CNTs负载的复合材料体现了最好的电化学性能,在150mA g-1其放电容量为226.2mAh g-1,100次循环容量保持率约97%。而未负载的NH4V308放电容量只有181.5mAhg-1,容量保持率为95.2%。通过水热模板法制备了倍率性大幅提升的NH4V308纳米棒。纳米棒尺寸约30nm,长度小于1μm,其中大部分100nm左右。材料的BET比表面积为15.1m2g-1,是没有模板剂制备的纳米片的3倍多。相比于纳米片材料,制备的纳米棒具有明显改善的锂离子脱嵌平台和电化学性能。
     先后合成了(NH4)0.5V205纳米带和纳米薄片。纳米带宽50-200nm,长度约几个微米。该材料显示了良好的锂离子脱嵌能力。在15mA g-1下首次放电比容量为225.2mAh g-1。前11次循环,保持在197.5mAh g-1。在150mA g-1下,前100次循环的容量保持率为81.9%,相关电化学性能远超过了文献中报道的结果。通过FT-IR和XRD等手段证实,在首次的充电过程,有部分的NH4+会脱出。在锂离子的脱嵌过程中,材料物相会发生明显改变,但是过程是可逆的。制备的纳米薄片仅仅约单层晶胞厚度(1-1.5nm)。研究发现草酸的加入量对目标材料的电化学性能有较大影响。优化后的材料在0.5C下前200次循环并无容量衰减,体现了非常优异的循环稳定性能。本实验有效解决了文献中该材料循环性能差的问题。具体原因可能归因于其独特的超薄片状形貌和材料内部存在的分子氢键。
There has been great interest in synthesizing vanadium oxides and their derivatives as electrode materials for Li-ion batteries because of their low cost, easy synthesis and high capacity. Vanadium-related resources in China are rich, however, the comprehensive utilization is still too low. Therefore, it is meaningful to develop the high capacity vanadium-related compounds as novel electrode materials for Li-ion batteries. It's well known that poor cycling stability and rate capability are the main two problems for vanadium-related compounds, which limit their further application. This thesis focuses on the trivanadium compounds with relatively high structure stability. At first, lithium trivanadate and sodium trivanadate with high electrochemical performance were obtained by optimizing the preparation strategies. As follows, NH4+group was used to replace Li+in V3O8-layered structure to form NH4V3O8, a new cathode material candidate for LiV3O8. The as-prepared NH4V3O8exhibited a high discharge capacity and excellent long-term cycling life. The lithium ion insertion/extraction mechanisms of all three kinds of materials were emphasized. The main research work and results are shown as follows:
     A novel two-step method combining the hydrothermal process and the following solid state reaction was designed to obtain LiV3O8nanosheets in this thesis. Firstly, well-dispersed (NH4)0.5V20s nanosheets were prepared by a simple hydrothermal approach. After the calcination of the mixture of the intermediate and LiOH, the LiV3O8nanosheets were yielded. The morphology of the as-prepared product was investigated by FE-SEM, TEM, AFM, etc. The nanosheets with the thickness of20-50nm showed the best rate capability for LiV3O8that have even been reported to date. The discharge capacities of148.7and105.8mAh g-1were retained at5C and10C, respectively. Meantime, LiV3O8nanosheets exhibited the excellent cycling stability with the capacity retention of84.1%and85.3%at300and1000mA g-1, respectively. The excellent rate performance should be due to the unique nanosheet morphology. A possible mechanism model was proposed to explain the reason why the electrode showed the better cycling stability at high rates in comparison with that at low current density.
     In order to address the poor cycling stability for vanadates, NaV3Og was investigated when Na+was used to substitute the Li+in LiV3O8. A simple hydrothermal method using V2O5and NaOH as raw materials was employed to obtain NaV3O8·xH2O nanowires. The effect of thermal treatment on the structure, morphology and electrochemical performance of as-prepared products was investigated. The nanowires showed a diameter of60-100nm and a length of up to5micrometers. Appropriate thermal treatment could effectively improve the cycling performance, although the discharge capacity was sacrificed to some extent. Na2V6O16·0.86H2O after heat treatment under300℃delivered an initial specific discharge capacity of235.2mAh g-1at30mA g-1, with a capacity retention of91.1%after30cycles. Long cycling test was demonstrated by the retention of90.4%and94.4%at150and300mA g"1after80cycles, respectively. Good rate capability was also achieved for this material. It is proposed that the improved cycling stability of the electrode after thermal treatment is mainly attributed to the removal of a part of crystal water, accompanied with certain structural arrangement.
     To further improve the rate performance, Na1.08V3O8nanosheets were prepared by the hydrothermal process combining the following solid state reaction. Ultra-thin and well-dispersed features with the mono-layer thickness of less than10nm were demonstrated for nanosheets. The BET specific surface area was9.5m2g-1. The formation mechanism of nanosheets involved the fusion and conversion of nanorods. When used as cathode material for Li-ion battery, the nanosheets showed superior rate capability, with the discharge capacities of ca.200.0,131.3,109.9,93.8and72.5mAh g"1at0.4,10,20,30and50C, respectively, which was the best value for all carbon-free coated vanadates and much better than those of most reported carbon-coated vanadates. Excellent cycling stability without considerable capacity loss over200cycles was observed at600and1000mA g-1. Cyclic voltammetry (CV) results revealed that the Li-ion diffusion coefficient in Na1.08V3O8nanosheets was-10-9cm2s-1. It is believed that the unique nanosheet morphology as well as its intrinsic structure feature greatly facilitates the kinetics of Li-ion diffusion and excellent structure stability, thus resulting in superior electrochemical performance.
     On the basis of the above-mentioned work, NH4V3O8was proposed as a novel cathode material for Li-ion batteries for the first time. Much work has been carried out. The effect of experimental conditions, including reaction time and pH value on the structure, morphology and electrochemical performance was optimized. And the behavior of NH4+and Li ion insertion/extraction mechanism were also studied. It was found that the NH4V3O8possessed good lithium ion insertion/extraction ability and NH4+could not be extracted in the charge process. NH4V3O8nanosheets prepared by the hydrothermal reaction with the pH of4and reaction time of24h showed the best electrochemical performance. The nanosheets showed the high reversible discharge capacity and superior cycling stability, probably owning to their unique nanosheet morphology and formed molecular H-bond in crystal. A maximum discharge capacity of353.2mAh g-1was exhibited at30mA g"1and202.1mAh g-1discharge capacity was maintained well over100cycles at300mA g-1. Even at600mA g-1, no capacity fading was observed over200cycles. A slight structure arrangement should occur during the prolonged cycling since the lithium ion intercalation/deintercalation plateaus were meliorated, which was further confirmed by FT-IR and CV results. Note that the capacity decreased to202.5mAh g-1at300mA g-1, indicating the inferior rate performance.
     NH4O3carbon nanotubes (CNTs) composites were synthesized by one-step hydrothermal method and the influence of the coated amount of CNTs was studied. The CNTs were clearly observed on the surface of modified NH4V3O8. It was found that incorporation of CNTs could result in the impurity of (NH4)0.5V205.0.5wt%CNTs coated composite showed the best electrochemical performance. It delivered a discharge capacity of226.2mAh g-1with excellent capacity retention of97%after100cycles at150mA g-1,45mAh g-1larger than that of the pristine one. The greatly improved electrochemical performance of NH4V3O8should be attributed to incorporation of CNTs, which facilitated the interface charge transfer and Li+diffusion. NH4V3O8nanorods with further improved rate capability were hydrothermally prepared in the presence of sodium dodecyl benzene sulfonate (SDBS). The diameter of nanorods is about30nm and the length is less than1μm. The BET surface area is15.1m2g-1. In comparison with the flakes prepared without surfactant, the nanorods are better suited as lithium inserting electrode material, with superior lithium ion insertion/deinsertion plateaus, higher discharge capacity and better cycling stability.
     (NH4)o.5V205nanobelts and nanosheets were synthesized, respectively. The diameter of the nanobelts was50-200nm and length was about several micrometers. The reversible lithium intercalation behavior was evaluated. It delivered an initial specific discharge capacity of225.2mAh g-1at15mA g-1and still maintained a high discharge capacity of197.5mAh g-1after11cycles. Cycling stability with the capacity retention of81.9%after100cycles at150mA g-1was much better than that in literature. Interestingly, the excess120mAh g-1capacity in the first charge process was observed, most of which could be attributed to the extraction of NH4+group, verified by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) results. Meanwhile, XRD results showed that the structure of lithium inserted electrode changed during lithium ion insertion and extraction, but the structure change was reversible. It is interesting to note that the thickness of the as-prepared nanosheets was less than1.5nm, which was equivalent to the c axis value of single unit-cell. It was found that the amount of the added oxalic acid influenced the electrochemical performance of the as-prepared materials. The optimized electrode exhibited the superior cycling stability, without capacity fading after200cycles at0.5C, which was probably due to the unique nanosheet morphology and molecular H bond in the crystal.
引文
[1]World energy outlook. Paris:International energy Agence,1994.
    [2]Lave L B, Henrichkson C T, Mcmichael F C. Enivironmential implications of electric cars. Science,1995,268:993-995.
    [3]郭炳琨,李新海,杨松青.化学电源-电池原理及制造技术.长沙:中南工业大学出版社,2000,31.
    [4]吴宇平,万春荣,姜长印.锂离子二次电池.北京:化学工业出版社,2002.
    [5]Yoshio N. Lithium ion secondary batteries:past 10 years and the future. J. Power Sources,2001,100(1-2):101-106.
    [6]吴宇平,戴晓兵,马军旗等.锂离子电池-原理与实践[M].北京:化学工业出版社,2004:8-9.
    [7]Armand M B. In Mater for Advanced Batt.,145-161 (Plenum, New York,1980)
    [8]Goodenough J B. Electrochemical cell with new fast ion conductors. USA Patent, No.4302518.1980.
    [9]Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2 (0    [10]Yoshino A, Jitsuchika K, Nakashima T. Li-ion battery based on carbonaus material. Japan Patent, No.1989293.1985.
    [11]Yoshio M, Brodd R J, Kozawa A. Lithium-Ion Batteries Science and Technologies [M]. New York:Springer Science and Business Media,2009.
    [12]Whittingham M S. Lithium Batteries and Cathode Materials. Chem. Rev.2004, 104:4271-4301.
    [13]陈立泉.锂离子正极材料的研究发展.电池,2002,32(6):6-8.
    [14]Tarascon J M. Key challenges in future Li-battery research. Phil. Trans. R. Soc. A 2010,368:3227-3241.
    [15]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001,414:359-367.
    [16]Zhang W M, Wu X L, Hu J S, et al. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium ion batteries. Adv. Funct. Mater.,2008,18: 3941-3946.
    [17]Li H, Huang X, Chen L. Anodes based on oxide materials for lithium rechargeable batteries. Solid State Ionics,1999,123:189-197.
    [18]Kubiak P, Geserick J, Huing N, et al. Electrochemical performance of mesoporous TiO2 anatase. J. Power Sources,2008,175:510-516.
    [19]Key B, Bhattacharyya R, Morcrette M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium ion batteries. J. Am. Chem. Soc,2009,131(26):9239-9249.
    [20]Kim J H, Sohn H J, Kim H, et al. Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries, J. Power Sources,2007,170:456-459.
    [21]Shi Z, Liu M L, Naik D, et al. Electrochemical properties of Li-Mg alloy electrodes for lithium batteries. J. Power Sources,2001,92:70-80.
    [22]Mosby J M, Prieto A L. Direct electrodeposition of Cu2Sb for lithium-ion battery anodes. J. Am. Chem. Soc.,2008,130(32):10656-10661.
    [23]黄承焕.锂离子电芯性能衰减和电极界面的研究[博士学位论文].长沙:中南大学,2011.
    [24]Chen H, Grey C P. Molten salt synthesis and high rate performance of the desert-rose form of LiCOO2. Adv. Mater.,2008,20(11):2206-2210.
    [25]Hu C C, Chang K H, Lin M C, et al. Nano Lett.,2006,6:2690-2695.
    [26]肖劲,曾雷英,陈召勇等.无机化学学报,2006,22(4):685-690.
    [27]Markovsky B, Kovacheva D, Talyosef Y, et al. Studies of nanosized LiNio.5Mn0.5O2-layered compounds produced by self-combustion reaction as cathodes for lithium-ion batteries. Electrochem. Solid-State Lett.,2006,9(10): A449-A453.
    [28]Ohzuku T,Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3 Mn1/3O2 for lithium-ion batteries. Chem. Lett.,2001,30:642-643.
    [29]Cho Y, Lee Y S, Park S A, et al. LiNi0.8Coo.15Al0.05O2 cathode materials prepared by TiO2 nanoparticle coating on Nio.8Co0.15Alo.o5(OH)2 precursors. Electrochim. Acta,2010,56(1):333-339.
    [30]Huang K, Peng B, Chen Z. Preparation, structure and electrochemical properties of spinel Li1-xMn2-yO4 cathode material for lithium ion batteries. Solar Energy Materials and Solar Cells,2000,62:177-185.
    [31]Wang Y, Wang J, Yang J, et al. High-rate LiFePO4 electrode material synthesized by a novel route from FePO4-4H2O. Advanced Functional Materials, 2006,16(16):2135-2140.
    [32]Liu J, Conry T E, Song X Y, et al. Nanoporous spherical LiFePO4 for high performance cathodes. Energy Environ. Sci.,2011,4:885-888.
    [33]Delmas C, Maccario M, Croguennec L, et al. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nature materials,2008,7:665-671.
    [34]Fisher C A J, Prieto V M H, Islam M S. Lithium battery materials LiMPO4 (M-Mn, Fe, Co and Ni):Insights into defect association, transport mechanisms and doping behavior. Chem. Mater.,2008,20(18):5907-5915.
    [35]Yang G, Liu H, Ji H, Chen Z. Temperature-controlled microwave solid-state synthesis of Li3V2 (PO4)3 as cathode materials for lithium batteries, J. Power Sources,2010,195:5374-5378.
    [36]唐爱东,王海燕,黄可龙等.锂离子电池正极材料层状Li-Ni-Co-Mn-O的研究.化学进展,2007,19:1313-1321.
    [37]Li H, Wang Z X, Chen L Q, et al. Research on Advanced Materials for Li-ion Batteries. Advanced Materials,2009,21:4593-4607.
    [38]黄可龙.无机化学,北京:科学出版社,2007.
    [39]Wadsley A D. Crystal chemistry of non-stoichiometric pentavalent vanadium oxides:crystal structure of Li1+xV3O8. Acta Cryst,1957,10:261-267.
    [40]Besenhard J O, Schollhom R. The discharge reaction mechanism of the MO3 electrode in organic electrolytes. J. Power Sources,1976-1977,1(3):267-276.
    [41]Ma H, Yuan Z Q, Cheng F Y. Synthesis and electrochemical properties of porous LiV3O8 as cathode materials for lithium-ion batteries. J. Alloys and Compounds, 2011,509:6030-6035.
    [42]Yang H, Li J, Zhang X G, et al. Synthesis of LiV3O8 nanocrystallites as cathode materials for lithium ion batteries. J. Materials Processing Technology,2008, 207:265-270.
    [43]Liu H M, Wang Y G, Wang K X, et al. Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. J. Power Sources,2009,192:668-673
    [44]Pan A Q, Zhang J G, Cao G Z, et al. Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries. J. Mater. Chem. 2011,21:10077-10084.
    [45]Picciotto L A, Adendorff K T, Liles D C, et al. Structural characterization of Li1+zV3O8 insertion electrodes by single-crystal X-ray diffraction. Solid State Ionics,1993,62:297-307.
    [46]Kovalehuk E P, Reshetnyak O V, Kovalyshynya S, et al. Structure and properties of lithium trivanadate-a potential electroactive material for a positive electrode of secondary storage. J. Power Sources,2002,107:61-66.
    [47]Pistoia G, Panero S, Tocci M, et al. Solid solutions Li1+xV3O8 as cathodes for high rate secondary Li batteries. Solid State Ionics,1984,13:311-318.
    [48]Pistoia G, Pasquali M, Tocci M, et al. Li/Lii+xV3O8 Secondary Batteries. J. Electrochem. Soc.1985,132:281-284.
    [49]Kawakita J, Katayama Y, Miura T, et al. Structural properties of Li1+xV3O8 upon lithium insertion at ambient and high temperature. Solid State Ionics,1998, 107:145-152.
    [50]Tossici R, Marassi R, Berrettoni M, et al. Study of amorphous and crystalline Li1+xV3O8 by FTIR, XAS and electrochemical techniques. Solid State Ionics, 1992,57:227-234.
    [51]Wang G, Roos J, Brinkmann D, et al. Comparison of Li+ transport in Na1+xV3O8 and Li1+xV3O8 by Li NMR investigations. J. Phys. Chem. Solids,1993,54: 851-855.
    [52]Bonino F, Panero S, Pasquali M, et al. Rechargeable lithium batteries based on Li1+xV3O8 thin films. J. Power Sources,1995,56:193-196.
    [53]Raistrick I D. Thermodynamic and structural considerations of insertion reactions in lithium vanadium bronze structures. Rev. Chim. Miner.1984,21: 456-461.
    [54]Kawakita J, Miura T, Kishi T. Lithium insertion into Li4V3O8. Solid State Ionics, 1999,120:109-116.
    [55]Kawakita J, Majima M, Miura T, et al. Preparation and lithium insertion behaviour of oxygen-deficient Li1+xV3O8-δ. J. Power Sources,1997,66: 135-139.
    [56]Kawakita J, Miura T, Kishi T. Charging characteristics of Li1+xV3O8. Solid State Ionics 1999,118:141-147.
    [57]Kawakita J, Kato T, Katayama Y. Lithium insertion behaviour of LiV3O8 with different degrees of crystallinity. J. Power Sources,1999,81-82:448-453.
    [58]Kawakita J, Katayama Y S, Miura T, et al. Lithium insertion behaviour of Li1+xV3O8 prepared by precipitation technique in CH3OH. Solid State Ionics, 1998,110:199-207.
    [59]刘进,张泽志,兰尧中.固相配位法制备低结晶度钒酸锂电极材料.电源技术,2006,130:552-554.
    [60]Liu Y M, Zhou X C, Guo Y L. Structure and electrochemical performance of LiV3O8 synthesized by solid-state routine with quenching in freezing atmosphere. Materials Chemistry and Physics,2009,114:915-919.
    [61]Yu A S, Kumagai N K, Liu Z L, et al. A new method for preparing lithiated vanadium oxides and their electrochemical performance in secondary lithium batteries. J. Power Sources,1998,74:117-121.
    [62]Liu L, Jiao L F, Zhang Y H, et al. Synthesis of LiV3O8 by an improved citric acid assisted sol-gel method at low temperature. Materials Chemistry and Physics, 2008,111:565-569.
    [63]Zhou Y, Yue H F, Zhang X Y, et al. Preparation and characterization of LiV3O8 cathode material for lithium secondary batteries through an EDTA-sol-gel method. Solid State Ionics,2008,179:1763-1767.
    [64]李志友,黄伯云,汤春峰等.LiV308的溶胶—凝胶法合成及500℃阴极放电性能.功能材料,2001,32:181-183.
    [65]Feng Y, Hou F, Li Y L. A new low-temperature synthesis and electrochemical properties of LiV3O8 hydrate as cathode material for lithium-ion batteries. J. Power Sources,2009,192:708-713.
    [66]Xu H Y, Wang H, Song Z Q, et al. Novel chemical method for synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries. Electrochim. Acta,2004,49:349-353.
    [67]杨辉,李娟.锂电池纳米结构正极材料LiV308的制备及性能.应用化学,2009,26(8):989-992.
    [68]Liu H, Yang H, Huang T. Synthesis, structure and electrochemical properties of one-dimensional nanometer materials LiV3O8. Materials Science and Engineering B,2007,143:60-63.
    [69]Yang G, Wang G, Hou W H. Microwave Solid-State Synthesis of LiV3O8 as Cathode Material for Lithium Batteries. J. Phys. Chem. B,2005,109:11186-11196.
    [70]Murugan A V, Muraliganth T, Manthiram T. Comparison of Microwave Assisted Solvothermal and Hydrothermal Syntheses of LiFePO4/C Nanocomposite Cathodes for Lithium Ion Batteries. J. Phys. Chem. C,2008,112 (37):14665-14671.
    [71]Ju S H, Kang Y C. Morphological and electrochemical properties of Li cathode powders prepared by spray pyrolysis. Electrochimica Acta,2010,55: 6088-6092.
    [72]West K, Skaarup S, Saidi Y, et al. Comparison of LiV3O8 cathode materials prepared by different methods. J. Electrochem. Soc.,143(3):820-825.
    [73]Si Y C, Jiao L F, Yuan T H, et al. Structural and electrochemical properties of LiV3O8 prepared by combustion synthesis. J. Alloys and Compounds,2009, 486:486400-405.
    [74]Li H H, Yadegari H, Jabbari A. Low-temperature synthesis of LiV3O8 nanosheets as an anode material with high power density for aqueous lithium-ion batteries. Materials Chemistry and Physics 2011,126:476-479.
    [75]Liu Q Y, Liu H W, Zhou X W, et al. A soft chemistry synthesis and electrochemical properties of LiV3O8 as cathode material for lithium secondary batteries. Solid State Ionics,2005,176:1549-1554.
    [76]Sun J L, Peng W X, Song D W, et al. Electrochemical properties of facile emulsified LiV3O8 materials. Materials Chemistry and Physics,2010,124: 248-251.
    [77]Pasquali M, Pistoia G, Manev V, et al. Li/Li1+xV3O8 Batteries. J. Electrochem. Soc.,1986,133:2454-2458.
    [78]Liu L, Jiao L F, Sun J L, et al. Electrochemical properties of submicron-sized LiV3O8 synthesized by a low-temperature reaction route.2009,471(1-2): 352-356.
    [79]Xu J Q, Zhang H L, Zhang T, et al. Influence of heat-treatment temperature on crystal structure, morphology and electrochemical properties of LiV3O8 prepared by hydrothermal reaction. J. Alloys and Compounds,2009,467:327-331.
    [80]Liu Q Y, Liu H W, Zhou X W, et al. A soft chemistry synthesis and electrochemical properties of LiV3O8 as cathode material for lithium secondary batteries. Solid State Ionics,2005,176:1549-1554.
    [81]GillB C, Shaekle D R, Andersen T N. A Vanadium-Based Cathode for Lithium-Ion Batteries. J. Electrochem. Soc.,2000,147(10):3575-3578.
    [82]Liu Y M, Zhou X C, Guo Y L. Effects of reactant dispersion on the structure and electrochemical performance of Li1.2V3O8. J. Power Sources,2008,184: 303-307.
    [83]马胜林,赵新兵,谢健等.超声处理对水热合成LiV308电化学性能的影响.电源技术,2007,131:598-600.
    [84]Kumagai N, Yu A S. Ultrasonically treated LiV3O8 as a cathode material for secondary lithium batteries. J. Electrochem. Soc,1997,144(3):830-835.
    [85]Liu W, Xiao J, Li G S, et al. Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries. J. Mater. Chem.,2011,21: 10077-10084.
    [86]Manev V, Momchilov A, Nassalevska A. A new approach to the improvement of Li1+xV3O8 performance in rechargeable lithium batteries. J. Power Sources,1995, 54:501-507.
    [87]Jouanneau S, Le Gal La Salle A, Verbaere A, et al. The Origin of Capacity Fading upon Lithium Cycling in Li1.1V3O8. J. Electrochem. Soc.,2005,152 (8): A1660-A1667.
    [88]王海波.水溶液锂离子电池电化学性能和中温燃料电池质子电解质的研究[博士学位论文].长沙:中南大学,2008.
    [89]Kohler J, Makihara H, Uegaito H, et al. LiV3O8:characterization as anode material for an aqueous rechargeable Li-ion battery system. Electrochimica Acta, 2000,46:59-65.
    [90]Wang G J, Fu L J, Zhao N H, et al. An Aqueous Rechargeable Lithium Battery with Good Cycling Performance. Angew. Chem. Int. Ed.,2007,46:295-297.
    [91]Wang G J, Qu Q T, Wang B, et al. Electrochemical intercalation of lithium ions into LiV3O8 in an aqueous electrolyte. J. Power Sources,2008,189:503-506.
    [92]Wang G J, Zhao N H, Yang L C, et al. Characteristics of an aqueous rechargeable lithium battery (ARLB). Electrochimica Acta,2007, 52:4911-4915.
    [93]Feng Y, Li Y L, Hou F. Boron doped lithium trivanadate as a cathode material for an enhanced rechargeable lithium ion batteries. J. Power Sources,2009, 187:224-228.
    [94]Kannan A M, Manthiram A. Low temperature synthesis and electrochemical behavior of LiV3O8 cathode. J. Power Sources,2006,159:1405-1408.
    [95]Kumagai N, Yu A, West K. Li1-xNaxO8 as positive materials for secondary lithium batteries. J. Applied Electrochemistry,1997,27:953-958.
    [96]Pistoia G, Wang G, Zane D. Mixed Na/K vanadates for rechargeable Li batteries. Solid State Ionics,1995,76:285-290.
    [97]Sun J L, Jiao L F, Yuan H T, et al. Preparation and electrochemical performance of AgxLi1-xV3O8.J. Alloys and Compounds,2009,472:363-366.
    [98]司玉昌,焦丽芳,李海霞等.铜掺杂对LiV308性能的影响研究.南开大学学报(自然科学版).2008,41:70-73.
    [99]Jiao L F, Li H X, Yuan H T, et al. Preparation of copper-doped LiV3O8 composite by a simple addition of the doping metal as cathode materials for lithium-ion batteries. Mater Lett.,2008,62:3937-3939.
    [100]Liu L, Jiao L F, Sun J L, Zhao M, et al. Electrochemical performance of LiV3-2xNixMnxO8 cathode materials synthesized by the sol-gel method. Solid State Ionics,2008,178:1756-1761.
    [101]Zhao M, Jiao L F, Yuan H T,et al. Study on the silicon doped lithium trivanadate as cathode material for rechargeable lithium batteries. Solid State Ionics,2007,178:387-391.
    [102]Liu L, Jiao L F, Sun J L,et al. Electrochemical performance of LiV3-xNix08 cathode materials synthesized by a novel low-temperature solid-state method. Electrochimica Acta,2008,53:7321-7325.
    [103]吴俊莉,童庆松,刘永梅等.氟和钴共同掺杂对LiV308电化学性能的影响.云南大学学报(自然科学版),2006,28(6):530-532.
    [104]Feng C Q, Huang L F, Guo Z P. Synthesis and electrochemical properties of LiY0.1V308. J. Power Sources,2007,174:548-551.
    [105]Wang H B, Huang K L, Zeng Y Q, et al. Stabilizing Cyclability of an Aqueous Lithium-Ion Battery LiNi1/3Mn1/3Co1/3O2/LixV2O5 by Polyaniline Coating on the Anode. Electrochemical and Solid-State Lett.,2007,10 (9):A199-A203.
    [106]Feng C Q, Chew S Y, Guo Z P, et al. An investigation of polypyrrole-LiV3O8 composite cathode materials for lithium-ion batteries. J. Power Sources,2007, 174:1095-1099.
    [107]Jiao L F, Liu L,Sun J L, et al. Effect of A1PO4 Nanowire Coating on the Electrochemical Properties of LiV3O8 Cathode Material. J. Phys. Chem. C,2008, 112:18249-18254.
    [108]Idris N H, Rahman M M, Wang J Z, et al. Synthesis and electrochemical performance of LiV3O8/carbon nanosheet composite as cathode material for lithium-ion batteries. Compos Sci Technol.,2011,71:343-349.
    [109]Chirayil T, Zavalij P Y, Whittingham M S. Hydrothermal synthesis of vanadium oxides. Chem. Mater.,1998,10(10):2629-2640.
    [110]Chernova N A,Roppolo M, Dillon A C, et al. Layered vanadium and molybdenum oxides:batteries and electrochromics. J. Mater. Chem.,2009,19: 2526-2552.
    [111]Petkov V, Zavalij P Y, Lutta S, et al. Structure beyond Bragg: Study of V2O5 nanotubes. Phys. Rev. B,2004,69:085410
    [112]Zavalij P Y, Whittingham M S. Structural chemistry of vanadium oxides with open frameworks. Acta Crystallogr. Sect. B,1999,55:627-663.
    [113]Shi Z, Zhang L, Zhu G, et al. Inorganic/Organic Hybrid Materials:Layered VanadiumOxides with Interlayer Metal Coordination Complexes. Chem.Mater., 1999,11(12):3565-3570.
    [114]Malta M, Louarn G, Errien N, et al. Nanofibers composite vanadium oxide/ polyaniline:synthesis and characterization of an electroactive anisotropic structure, Electrochem. Commun.,2003,5:1011-1015.
    [115]Maingot S, Baddour R, Pereira-Ramos J P, et al. A New Iron V2O5 Bronze as Electrode Material for Rechargeable Lithium Batteries. J. Electrochem. Soc, 1993,140:L158-L160.
    [116]Liu H M, Yang W S. Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy Environ. Sci.,2011,4:4000-4008.
    [117]Chandrappa G T, Steunou N, Livage J. Materials chemistry:Macroporous crystalline vanadium oxide foam. Nature,2002,416:702-705.
    [118]Wee G, Soh H Z, Cheah Y L, et al. Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. J. Mater. Chem.,2010, 20:6720-6725.
    [119]Lee J K, Kim G P, Song I K, et al. Electrodeposition of mesoporous V2O5 with enhanced lithium-ion intercalation property. Electrochemistry Communications, 2009,11:1571-1574.
    [120]Rui X H, Zhu J X, Sim D H, et al. Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries. Nanoscale,2011, DOI:10.1039/c1nr10879d.
    [121]Zhu D, Liu H, Lv L, et al. Hollow microspheres of V2O5 and Cu-doped V2O5 as cathode materials for lithium-ion batteries. Scripta Materialia,2008,59: 642-645.
    [122]Wang S Q, Lu Z D, Wang D, et al. Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J. Mater. Chem.,2011,21:6365-6369.
    [123]Wang S Q, Li S R, Sun Y, et al. Three-dimensional porous V2O5 cathode with ultra high rate capability. Energy Environ. Sci.,2011,4:2854-2857.
    [124]Dellnas C, Cognac-Allradou H, Cocciantelli J M, et al. The LixV2O5 system:an overview of the structure modifications induced by the lithium intercalation. Solid State ionics,1994,69:257-264.
    [125]Dai J, Li S F Y, Gao Z, et al. Novel Method for synthesis of y-Lithium Vanadium Oxide as Cathode Materials in Lithium Ion Batteries. Chem. Mater., 1999,11:3086-3090.
    [126]Liaw B Y, Raistrick I D, Hugguns R A. The thermodynamics and kinetics of the gamma-lithium vanadium bronze structure. Solid state Ionics,1986,18-19: 828-832.
    [127]Murphy D W, Christian P A, Disalvo F J, et al. Lithium Incorporation by Vanadium Pentoxide. Inorg Chem.,1979,18:2800-2803.
    [128]Wang Y W, Xu H Y, Wang H, et al. Solvothermal synthesis and characterizations of y-LiV2O5 nanorods. Solid State Ionics,2004,167:419-424.
    [129]Barker J, Saidi M Y, Swoyer J L. Performance Evaluation of the Electroactive Material, γ-LiV2O5, Made by a Carbothermal Reduction Method. J. Electrochem. Soc.,2003,150 (9):A1267-A1272.
    [130]Pasquali M, Pistoia G. Lithium intercalation in Na1+xV3O8 synthesized by a solution technique. Electrochim. Acta,1991,36:1549-1553.
    [131]Kawakita J, Miura T, Kishi T. Comparison of Na1+xV3O8 with Li1+xV3O8 as lithium insertion host. Solid State Ionics,1999,124:21-28.
    [132]Spahr M E, Novak P, Scheifele W, et al. Electrochemistry of chemically lithiated NaV3O8:a positive electrode material for use in rechargeable lithium-ion batteries. J. Electrochem. Soc.,1998,145:421-427.
    [133]Nova'k P, Scheifele W, Haas O. Magnesium insertion batteries-an alternative to lithium? J. Power Sources,1995,54:479-482
    [134]Yuan C, Li C, Ma B Q, et al. A Facile Method for Low-Temperature Synthesis of NaV3O8 as Cathode Materials for Lithium Secondary Batteries. Mater Sci., 2011,17:65-68.
    [135]Kawakita J, Miura T, Kishi T. Effect of crystallinity on lithium insertion behaviour of NaV3O8. Solid State Ionics,1999,124:29-35.
    [136]Skibsted J, Nielsen N C, Bildsere H, et al. Magnitudes and Relative Orientation of 51V Quadrupole Coupling and Anisotropic Shielding Tensors in Metavanadates and KV3O8 from 51V MAS NMR Spectra. J. Am. Chem. Soc. 1993,115:7351-7362.
    [137]West K, Zachau-christiansen B, Jacobsen T, et al. Layered potassium vanadium oxides as host materials for lithium and sodium insertion. Solid State Ionics, 1990,40-41:585-588.
    [138]Manev V, Momchilov A, Nassalevska A, et al. Potassium vanadates-promising materials for secondary lithium batteries. J. Power Sources,1993,43-44: 561-568.
    [139]Chirayil T, Zavalij P Y, Whittingham M S. Hydrothermal Synthesis of Vanadium Oxides. Chem. Mater.,1998,10:2629-2640.
    [140]Oka Y, Yao T, Yamamoto N. Structure determination of H2V3O8 by powder X-ray diffraction. J. Solid State Chem.,1990,89:372-377.
    [141]Chang K H, Hu C C. H2V3O8 single-crystal nanobelts:Hydrothermal preparation and formation mechanism. Acta Materialia,2007,55:6192-6197.
    [142]Mho S, Reddyy C V S, Kim Y, et al. Hydrothermal Synthesis of H2V3O8 Nanobelts from V2O5 Xerogels for Lithium Battery Applications, J. Korean Physical Society,2009,54(6):2420-2424.
    [143]Boylan E A, Chirayil T, Hinz J, et al. The hydrothermal synthesis of new oxide materials. Solid State Ionics,1995,75:257-268.
    [144]Theobald F, Cabala R, Bernard J. Essaisurla structure of VO2(B), J. Solid State Chem.,1976,17:431-438.
    [145]Oka Y, Sato S, Yao T, et al. Crystal Structures and Transition Mechanism of V02(A). J. Solid State Chem.,1998,141:594-598.
    [146]Corr S A, Grossman M, Shi Y F, et al. VO2(B) nanorods:solvothermal preparation, electrical properties, and conversion to rutile VO2 and V2O3 J. Mater. Chem.,2009,19:4362-4367.
    [147]Lia X L, Chena X J, Chena X J, et al. Hydrothermal synthesis and characterization of VO2 (B) nanorods array. Journal of Crystal Growth,2007, 309:43-47.
    [148]Zhang S D, Li Y M, Wu C Z, et al. Novel Flowerlike Metastable Vanadium Dioxide (B) Micronanostructures:Facile Synthesis and Application in Aqueous Lithium Ion Batteries. J. Phys. Chem. C,2009,113:15058-15067.
    [149]Li R, Liu C Y. VO2(B) nanospheres:Hydrothermal synthesis and electrochemical properties. Materials Research Bulletin,2010,45:688-692.
    [150]Armstrong G, Canales J, Armstrong A R, et al. The synthesis and lithium intercalation electrochemistry of VO2(B) ultra-thin nanowires. J. Power Sources, 2008,178:723-728.
    [151]Sediri F, Touati F, Gharbi N. From V2O5 foam to VO2 (B) nanoneedles. Materials Science and Engineering B,2006,129:251-255.
    [152]Liu H M, Wang Y G, Wang K X, et al. Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. J. Mater. Chem.,2009,19:2835-2840.
    [153]Murphy W, Christian P A, DiSalvo F J, et al. Lithium incorporation by vanadium pentoxide. Inorg. Chem.,1979,18 (10):2800-2803.
    [154]Murphy W, Christian P A, DiSalvo F J, et al.Lithium Incorporation by V6O13 and Related Vanadium (+4,+5) Oxide Cathode Materials. J. Electrochem. Soc.,1981,128:2053-2060.
    [155]Ma H, Zhang S Y, Ji W Q. α-CUV2O6 nanowires:Hydrothermal synthesis and primary lithium battery application, J. Am. Chem. Soc.,2008,130 (15): 5361-5367.
    [156]Oka Y, Yao T, Yamamoto N. Hydrothermal Synthesis, Crystal Structure, and Magnetic Properties of FeVO4-Ⅱ. J. Solid State Chemistry,1996,123:54-59.
    [157]Liu Y, Zhang Y G, Hu Y H. Hydrothermal Synthesis of Single-crystal (3-AgVO3 Nanowires and Ribbon-like Nanowires. Chemistry Lett.,2005, 34:146-147.
    [158]Galy J. Vanadium pentoxide and vanadium oxide bronzes-Structural chemistry of single (S) and double (D) layer MxV2O5 phases. J. Solid State Chem.,1992, 100:229-245.
    [159]Oka Y, Yao T, Yamamoto N. Crystal Structures of Hydrated Vanadium Oxides with δ-Type V2O5 Layers:δ-M0.25V2O·H2O, M=Ca, Ni, J. Solid State Chem., 1997,132:323-329.
    [160]Livage J. Hydrothermal Synthesis of Nanostructured Vanadium Oxides. Materials,2010,3(8):4175-4195.
    [161]Azambre B, Hudson M J, Heintz O. Topotactic redox reactions of copper(Ⅱ) and iron(Ⅲ) salts within VOX nanotubes. J. Mater Chem.,2003,13:385-389.
    [162]Dobley A, Ngala K, Yang S F, et al. Manganese Vanadium Oxide Nanotubes: Synthesis, Characterization and Electrochemistry. Chem Mater.,2001,13:4382-4386.
    [163]Liqiang Mai, Xu Xu, Chunhua Han, et al. Rational Synthesis of Silver Vanadium Oxides/Polyaniline Triaxial Nanowires with Enhanced Electrochemical Property. Nano Lett.2011,11,4992-4996.
    [164]毛立娟.钒氧化合物纳米材料的可控合成及性能研究.中国科学院理化技术研究所,2008.
    [165]Mai L Q, Lao C S, Hu B, et al. Synthesis and Electrical Transport of Single Crystal NH4V3O8 Nanobelts, J. Phys Chem B.,2006,110:18138-18141.
    [166]Li B J, Cao H Q, Shao J, et al. Enhanced anode performance of the Fe3O4-Carbon-rGO three dimensional composite in lithium ion batteries, Inorg. Chem.,2011,50:1628-1632.
    [167]Zhao M, Jiao L F, Yuan H T, et al. Study on the silicon doped lithium trivanadate as cathode material for rechargeable lithium batteries, J. Solid State Ionics.,2007,178,387-391.
    [168]Song J M, Lin Y Z, Yao H B, et al. Superlong beta-AgVO3 nanoribbons: high-yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties, ACS Nano.,2009,3(3):653-660.
    [169]Yang L, Takahashi Michio, Wang B F, et al. A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling, Electrochimica Acta,2006,51(6):3228-3234.
    [170]Wang H Y, Wang W J, Ren Y, et al. A new cathode material Na2V6O16·xH2O nanowire for Lithium ion battery, J. Power Sources.,2012,199:263-269.
    [171]Wang H Y, Huang K L, Huang C H, et al. Electrochemical property of NH4V3O8·0.2H2O flakes prepared by surfactant assisted hydrothermal method. J. Power Sources.,2011,196:788-792.
    [172]Wang H Y, Ren Y, Wang W J, et al. NH4V3O8 nanorods as a high performance cathode material for rechargeable Li-ion batteries, J. Power Sources.,2012, 199:315-321.
    [173]Sakunthala A, Reddy M V, Selvasekarapandian S, et al. Synthesis and electrochemical studies on LiV3O8, J. Solid State Electrochemistry.,2010,14 (10):1847-1854.
    [174]Liu H M, Wang Y G, Li L, et al. Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. J. Mater Chem.,2009,19:7885-7891.
    [175]Zhou G T, Wang X C, Yu J C. Selected-control synthesis of NaV6O15 and Na2V6O16·3H2O single-crystalline nanowires. Crystal Growth & Design.,2005, 5:969-974.
    [176]Yu J G, Yu J C, Ho W K, et al. A Simple and General Method for the Synthesis of Multicomponent Na2V6O16·3H2O Single-Crystal Nanobelts. J. Am Chem Soc., 2004,126:3422-3423.
    [177]Jr W A, Ribeiro C, Leite E R, et al. An efficient synthesis route of Na2V6O16·nH2O nanowires in hydrothermal conditions. Materials Chemistry and Physics.,2011,127:56-61.
    [178]Bouhedja L, Castro-Garcia S, Livage J, et al. Lithium Intercalation in a'-NayV2O5 Synthesized via Hydrothermal Route. Ionics.,1998,4:227-233.
    [179]Hu W, Zhang X B, Cheng Y L, et al. Low-cost and facile one-pot synthesis of pure single-crystallines-Cu0.95V2O5 nanoribbons:high capacity cathode material for rechargeable Li-ion batteries. Chem Commun.,2011,47:5250-5252.
    [180]Wang H Y, Tang A D, Huang K L, et al. Uniform AIF3 thin layer to improve rate capability of LiNi1/3Co1/3Mn1/3O2 material for Li-ion batteries Trans. Nonferrous Met Soc China.,2010,20:803-808.
    [181]Kang Y J, Kim J H, Lee S W, et al. The effect of Al(OH)3 coating on the Li[Li0.2Ni0.2Mn0.6]O2 cathode material for lithium secondary battery. Electrochim. Acta.,2005,50:4784-4791.
    [182]马华.高容量锂电池纳米电极材料合成表征与电化学性能研究[博士学位论文].天津:南开大学,2010.
    [183]王海燕,唐爱东,黄可龙等.LiN1/i3Co1/3Mn1/3O2正极材料的制备与倍率性能研究.无机化学学报,2008,24:593-597.
    [184]Hsu K F, Tsay S Y, Hwang B J. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route. J. Mater Chem.,2004,14:2690-2695.
    [185]徐海燕.钒酸盐纳米功能材料的软化学制备及性能研究[博士学位论文].北京:北京工业大学,2006.
    [186]Sawatzky G A, Post D, X-ray photoelectron and Auger spectroscopy study of some vanadium oxides. Phys Rev B.,1979,20:1546-1555.
    [187]Wagner C D, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Minnesota p 23,1979.
    [188]Xiong C R, Aliev A E, Gnade B, et al. Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics. ACS Nano.,2008,2(2):293-301.
    [189]Wu C Z, Zhu H, Dai J, et al. Room-temperature ferromagnetic silver vanadium oxide (Agi.2V3O8):a magnetic semiconductor nanoring structure. Adv Funct Mater.,2010,20:3666-3672.
    [190]Hu Y S, Liu X, Muller J O, et al. Synthesis and electrode performance of nanostructured V2O5 by using a carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network. Angew. Chem., Int. Ed.,2008,48:210-214.
    [191]Zhou X F, Wang F, Zhu Y M, et al. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem.,2011, 21:3353-3358.
    [192]Sun C W, Rajasekhara S, Goodenough J B, et al. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc.,2011, 133:2132-2135.
    [193]Cheng F Y, Wang H B, Zhu Z Q, et al. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ. Sci.,2011, 4:3668-3675.
    [194]Bard A J, Faulkner L R. Electrochemical Methods, Fundamental and Application,2nd ed, Wiley: New York, p 226,2001.
    [195]Huang S D, Shan Y K. NH4V3O8 a novel sinusoidal layered compound formed by the cation templating effect. Chem. Commun.,1998,1069-1070.
    [196]Mai L Q, Lao C S, Hu B, et al. Synthesis and electrical transport of single crystal NH4V3O8 nanobelts. J. Phys. Chem. B 2006,110:18138-18141.
    [197]Torardi C C, Miao C R. New Battery Cathode Materials:D Synthesis, Characterization, and Electrochemical Performance of M1-xV3O8-yFz·nH2O (M= NH4, K). Chem. Mater.2002,14:4430-4433.
    [198]Liu G Q, Zeng C L, Yang K. Study on the synthesis and properties of LiV3O8 rechargeable lithium batteries cathode. Electrochim. Acta 2002,47: 3239-3243.
    [199]Ouyang C Y, Wang D Y, Shi S Q, et al. First principles study on NaxLi(1-x)FePO4 as cathode material for rechargeable lithium batteries. Chin. Phys. Lett.2006,23: 61-64.
    [200]Yin X G, Huang K L, Liu S Q, et al. Preparation and characterization of Na-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. J. Power Sources 2010,195:4308-4312.
    [201]Pistoia G, Pasquali M, Wang G, et al. Li/Li1+xV3O8 Secondary Batteries. J. Electrochem. Soc.1990,137:2365-2370.
    [202]Hengerer R, Kavan L, Krtil P, et al. Orientation Dependence of Charge-Transfer Processes on TiO2 (Anatase) Single Crystals. J. Electrochem. Soc.,2000,147: 1467-1472.
    [203]Sun C H, Yang X H, Chen J S, et al. Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chem. Commun.,2010,46,6129-6131.
    [204]Mukherjee A, Kang J H, Kuznetsov O, et al. Water-Soluble Graphite Nanoplatelets Formed by Oleum Exfoliation of Graphite. Chem. Mater.,2011, 23:9-13.
    [205]Si Y. C, Samulski E T. Synthesis of Water Soluble Graphene, Nano Lett.,2008, 8(6):1679-1682.
    [206]闵乃本.晶体生长的物理基础.上海:上海科学技术出版社.1982.
    [207]Zhang K F, Zhang G Q, Liu X, et al. Large scale hydrothermal synthesis and electrochemistry of ammonium vanadium bronze nanobelts. J. Power Sources 2006,157:528-532.
    [208]Sheem K Y, Sung M, Lee Y H. Electrostatic heterocoagulation of carbon nanotubes and LiCoO2 particles for a high-performance Li-ion cell. Electrochimica Acta,2010,55(20):5808-5812.
    [209]Huang X B, Li X, Wang H Y, et al. Synthesis and electrochemical performance of Li2FeSiO4/carbon/carbon nano-tubes for lithium ion battery. Electrochim. Acta,2010,55:7362-7366.
    [210]Li X L, Kang F Y, Bai X D, et al. A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochemistry Communications,2007,9(4):663-666.
    [211]Abha M, Tyagi P K, Rai P. FTIR Spectroscopy of Multiwalled Carbon Nanotubes:A Simple Approachto Study the Nitrogen Doping, Journal of Nanoscience and Nanotechnology,2007,7 (6):1820-1823
    [212]Y.J. Kang, J.H. Kim, S.W. Lee, et al. Synthesis of LiV3O8 as cathode material for rechargeable lithium batteries. Electrochim. Acta 2005,50:4784-4791.
    [213]F. Nobili, F. Croce, B. Scrosati, R. Marassi. Electronic and Electrochemical Properties of LixNi1-yCoyO2 Cathodes Studied by Impedance Spectroscopy. Chem. Mater.2001,13:1642-1646.
    [214]王海燕,黄可龙,刘素琴等.溶胶凝胶-软模板法制备LiNi1/3Co1/3Mn1/3O2正极材料及其电化学性能研究,无机化学学报,2009,25(12),2090-2096.
    [215]Bard A J, Faulkner L R, Electrochemical Methods, Seconded, Wiley,2001, p. 231.
    [216]肖进新,赵振国.表面活性剂应用原理.北京:化学工业出版社,2003.
    [217]Cheng F Y, Tao Z L, Liang J, et al. Template-Directed Materials for Rechargeable Lithium-Ion Batteries. Chem. Mater.2008,20 (3):667-681.
    [218]Hintennach A, Novak P. Influence of surfactants and viscosity in the preparation process of battery electrodes containing nanoparticles. Phys. Chem. Chem. Phys. 2009,11:9484-9488.
    [219]Murphy D W, Christian P A, DiSalvo F J, et al. Lithium Incorporation by V6O13 and Related Vanadium (+4,+5) Oxide Cathode Materials. J. Electrochem. Soc.1981,128:2053-2060.
    [220]Teng F, Santhanagopalan S, Asthana A, et al. J. Crystal Growth.2010, doi:10.1016/j.jcrysgro.2010.09.005.
    [221]Popa A I, Vavilova E, Taschner C, et al. Electrochemical Behavior and Magnetic Properties of Vanadium Oxide Nanotubes. J. Phys. Chem. C 2011,115: 5265-5270.
    [222]Bonino F, Panero S, Pasquali M, et al. Rechargeable lithium batteries based on Li1+xV3O8 thin films. J. Power Sources 1995,56:193-196.
    [223]Trikalitis P N, Petkov V, Kanatzidis M G. Structure of Redox Intercalated (NH4)o.5V205-mH20 Xerogel Using the Pair Distribution Function Technique. Chem. Mater.2003,15:3337-3342.
    [224]Wu X C, Tao Y R, Dong L, et al. Synthesis and characterization of self-assembling (NH4)0.5V2O5 nanowires. J. Mater. Chem.14 (2004) 901-904.
    [225]Whittingham M S. Lithium Batteries and Cathode Materials. Chem. Rev.2004, 104:4271-4301.
    [226]Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem. Int. Ed.2008,47:2930-2946.
    [227]Hosono E, Kudo T, Honma I, et al. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 2009,9(3):1045-1051.
    [228]Cao Q, Zhang H P, Wang G J, et al. A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochem. Commun.2007,9:1228-1232.
    [229]Huang H W, Yu Q, Peng X S, et al. Single-unit-cell thick Mn3O4 nanosheets. Chem. Comm.2011,47:12831-12833.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700