用户名: 密码: 验证码:
渗流式纳米电极电化学反应器处理染料废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学方法处理有机物由于其没有二次污染和易于控制等优点受到广泛关注,但是由于传质、副反应以及电极消耗等问题,使其运行费用较高。其中传质问题在很多情况下是电化学反应的主要限制因素。目前,对传质的改进办法大都是通过机械搅拌和电极转动等。这些方法虽然对改进溶液间的物质传递有较大的改进,但是对电极表面的传质速率的改进却十分有限。
     本课题设计了渗流式纳米电极电化学反应器,通过污染物通过电极时与电极之间的相互作用减小电极表面的传质阻力,从而提高传质效率。本论文以两种模拟染料废水为处理对象对渗流式反应器进行了考察,结果证明通过渗流式的方法确实能较大地提高电化学反应的速率和效率,降低能耗,对电化学方法的广泛应用有很好的借鉴作用。本论文的主要
     主要研究工作可以归纳如下:
     1.制备了渗流式纳米电极电化学反应器,使反应溶液从电极间穿过,利用穿过时与电极的相互作用减小电极表面的传质阻力。同时,以碳纳米管结合活性炭维作为电极,利用其巨大的比表面积和高的催化活性。
     2.使用渗流式电化学反应器处理活性艳红X-3B模拟染料废水。当电压为10V,初始pH为中性时,加入3g/L的Na2SO4时,在100 min内X-3B的脱色率达到90%以上,COD去除率达到57.5%。同时,该方法在较大浓度范围(0-200 mg/L)内对X-3B均能达到较好的去除。紫外扫描测定发现X-3B得到了较彻底的降解。在最优实验条件下计算得传质系数在60 min时达到最大值,为1.87×10-3 cm/s。与传统电化学方法进行了对比,传质系数有很大的提高。同时,45 min后反应达到稳定的电流效率,为33.06%,单位能耗为101.34 kWh/kg COD。
     3.渗流式电化学反应器处理活性艳蓝X-BR模拟染料废水。当电压为8V,初始pH为2,加入1 g/L的Na2SO4时装置对活性艳蓝的处理效果最佳,脱色率可以达到90%以上,90 min后COD去除率达到51%。在0-500 mg/L浓度范围内的活性艳蓝均能达到很好的去除效率。紫外扫描测试证明,染料分子得到较彻底的破坏。同时,计算得传质系数在15 min时达到最大值1.70×10-3 cm/s,电流效率由15 min时的46.3%降至90 min后的29.3%,同时单位能耗也由57.9 kWh/kg COD提高到91.3 kWh/kg COD。
     4.以处理活性艳红为例,对渗流式电化学反应器的电化学过程进行了反应动力学研究,结果显示该反应过程较好的遵循一级反应动力学。
The application of electrochemical techniques in organic wastewater treatment has drawn considerable attention in the last few years, since the electrolytic process is easy to control by potential and current, and such process can operate at low temperature and pressure without adding other reagents. Though electrochemical technique has many advantages, it isn’t widely applied in the wastewater treatment because of its limitations, essentially the high cost and low current efficiency caused mainly by low contaminants mass transfer from water to the electrode surface, secondary reaction and electrode consumption et al. Previous research shows that although the destruction of organic compounds by electrochemical treatment is achieved by oxidation, which can occur directly at the anode and/or indirectly by species (e.g. O?, OH? and O3) generated by the anode, the reaction rates are actually limited by the contaminants diffusion in the external liquid film on electrode surface and in the internal pores. Therefore, contaminants oxidation is controlled by the rate at which organic molecules are carried from the bulk solution to the electrode surface, rather than by the rate at which electrons are delivered to the anode. Reviewing literature, it is fair to say that so far most of the studies carried out on the electrochemical treatment pertain to the experimental conditions, with primary objective of these studies being the development of appropriate parameters for pollutants removal. Although mass transfer has been noticed phenomenally by limited researchers, the work is mainly focused on increasing the contaminants movement in bulk solution or reducing the external liquid film thickness by mechanical stirring. There is a deficiency in the fundamental problem of electrochemical efficiency related to pollutants diffusion in the liquid film.
     An original reactor with seepage electrode made of CNTs has been developed and successfully applied to degrade organics with much higher Current Efficient (CE) and lower Energy Consumption (EC), which let the contaminants go through the electrodes. The reason to employ CNTs is that they are very interesting nano-materials known to exhibit superior and unique electron transfer (ET). The possibility of CNTs utilization for organic oxidation has already been demonstrated, because CNTs electrodes have an extended surface area that promises to provide an additional advantage for chemicals to react. The main contents of this research work can be summarized as follows:
     1. Seepage Carbon Nano-tube Electrode (SCNE) Reactor was designed in order to facilitate contaminants mass transfer from the bulk solution to the electrode surface. The innovative concepts behind the reactor design is that the overall mass transfer would be significantly improved while the pollutants seeping through the porous Carbon Nano-tubes (CNTs) electrode. Two kind of SCNE with different electrode combination have been studied.
     2. SCNE Reactor treated reactive brilliant red X-3B simulated dye wastewater. The reactor devices used carbon nanotubes-activated carbon fiber electrode as its cathode and anode. The experiment results shows that the optimized conditions for X-3B degradation was potential 10V, initial pH of 7, 3 g/L of Na2SO4. Under this condition, the color removal ratio of X-3B could reach more than 90% within 100 min, which COD removal was more than 57.5%. The results also found that the structure of X-3B had been well degraded. The calculated mass transfer coefficient was improved by 116.01-160.74% compared with conventional electrochemical reactors under same conditions. Further research shows that the Current Efficiency (CE) of the SCNE Reactor is 340.21-519.10% higher than that of the conventional reactors and the Energy Consumption (EC) to mineralize same amount of organics is only 16.51-22.31% of the compared ones.
     3. SCNE Reactor treated reactive brilliant blue X-BR simulated dye wastewater. In this study, the reactor using carbon nanotubes electrode as the anode, copper electrode as the cathode. It was found that the condition with potential of 8V, the initial pH of 2, 1 g/L of Na2SO4 was the best condition for degradation of X-BR. And the color removal ratio and COD removal could reach 90% and 51% respectively within 100 min. The reactor can achieve good removal efficiency (70% within 100 min) even when the concentration of X-BR reached 500 mg/L. UV scanning and gas chromatography mass spectrometry test proved that the X-BR molecules have been damaged completely. At the same time, based on the degradation of COD, the mass transfer coefficient 15min when the maximum 1.70×10-3cm/s, current efficiency declined of from 46.3% (15min) to 29.3% (90min), the energy consumption increased from 57.9 kWh / kg COD to 91.3 kWh / kg COD.
     4. The results of reaction kinetics showed that the electrochemical process followed the first order reaction kinetics, which was based on the experimental of degradation of X-3B.
引文
[1] Walsh F.C. Electrochemical technology for environmental treatment and clean energy conversion. Pure Appl. Chem. 2001, 73:1819-1837.
    [2] Deligiorgis, A., Xekoukoulotakis, N.P., Diamadopoulos, E.,et al. Electrochemical oxidation of table olive processing wastewater over boron-doped diamond electrodes: Treatment optimization by factorial design. Water Research. 2008, 42:1229-1237.
    [3] Zhu, X.P., Shi, S.Y., Wei, J.J.,et al. Electrochemical oxidation characteristics of p-substituted phenols using a boron-doped diamond electrode. Environmental Science & Technology. 2007, 41:6541-6546.
    [4] Kishimoto, N., Nakagawa, T., Asano, M.,et al. Ozonation combined with electrolysis of 1,4-dioxane using a two-compartment electrolytic flow cell with solid electrolyte. Water Research. 2008, 42:379-385.
    [5] Casado, J., Fornaguera, J., Galan, M.I. Mineralization of aromatics in water by sunlight-assisted electro-Fenton technology in a pilot reactor. Environmental Science & Technology. 2005, 39:1843-1847.
    [6] Dabo, P., Cyr, A., Laplante, F.,et al. Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or cyclohexanol. Environmental Science & Technology. 2000, 34:1265-1268.
    [7]周剑章.最新电化学技术应用文献摘引.电化学. 2002, 8(1):115-123.
    [8]陶映初,陶举洲.环境电化学.北京:化学工业出版社. 2003:182-183.
    [9] Gutiérrez, M.C., Crespi, M. A review of electrochemical treatments for colour elimination. Journal of the Society of Dyers and Colourists. 1999, 115:342 -345.
    [10] Sakakibara Y, Kuroda M. Electric Prompting and Control of Denitrification. Biotechnol. Bioeng. 1993, 42:535-537.
    [11]贾金平,杨骥,廖军等.活性碳维电极法处理染料废水机理初探.环境科学. 1997, 18(6):31-34.
    [12] James D. Rodgers, Wojciech Jedral, Nigel J. Bunce. Electrichemical Oxidation of Chlorinated Phenols. Environ. Sci. Technol. 1999, 33:1453-1457.
    [13]张成光,缪娟,符德学等.电化学技术降解有机废水研究进展.应用化工. 2006, 35(10): 798-808.
    [14]涵.电化学技术在环保领域的应用.化工环保. 2005, 25(5):361-363.
    [15] Rajeshwar K. et al. Electrochemistry and the environment. Journal of Applied Electrochemistry. 1994, 24:1077-1091.
    [16]宋卫锋. DSA类电极点降解苯胺、苯酚和硝基苯过程的研究[博士学位论文].上海:同济大学. 2000.
    [17] Craig D.R., et al. Effective electrochemical destruction of organic wastes. AEA Technology. 1991, 24:75-78.
    [18] Craig D.R., et al. Efficient electrochemical destruction of organic wastes. AEA Technology. 1991, 24:75-78.
    [19]冯玉杰,李晓岩,尤宏等.电化学技术在环境工程中的应用.北京:化学工业出版社. 2002:7.
    [20] Simonsson D. A flow-by Packed-bed electrode for removal of metal ions from wastewater.Appl. Electrochem. 1984, 14:595-604.
    [21]马世华,张清福.电化学处理工业废水的应用.环境工程. 1984, 1:16-21.
    [22] Mayne P.J., Shackleton R. Adsorption on Packed bed electrodes. J.Appl. Electrochem.. 1985, 15:745-754.
    [23]高颖,邬冰.电化学基础.化学工业出版社. 2004.
    [24] Eisinger R.S., Alkire R.C.. Separation by electrosorption of organic compounds in a flow-through porous electrode. II. Experimental validation of mdoel. J.Electrochem. Soc.. 1983, 130(1):93-101.
    [25] XuY, Zondlo J W, Finklea H O et al. Electrosorption of uranium of carbon fibers of environmental remediation. Fuel Processing Technology. 2000, 68(3):189-208.
    [26]范丽,周艳伟,杨卫身.炭材料用作电吸附剂的研究与进展.新型炭材料.2004, 19(2):145-150.
    [27]陈榕,胡熙恩.电吸附技术的应用与研究.化学进展. 2006, 18(1):80-86.
    [28] Abbas A., Brian E.C. Investigation of Removal of Cr, Mo, W, V oxy-ions from Industrial Waste Waters by Adsorption and Electrosorption at High area Carbon Cloth. Colloid and Interface Science. 2002, 251:248-255.
    [29] Niu J.J., Brian E. C. Adsorptive and Electrosorption Removal of Aniline and Bipyridyls from Waste waters. Electroanalytical Chemistry. 2002, 536:83-92.
    [30] Abbas Afkhami. Adsorption and Electrosorption of Nitrate and Nitrite on High-area Carbon Cloth: an Approach to Purification Water and Wastewater Samples. Carbon. 2003, 41: 1320-1322.
    [31]程凯英,林美强,林建民等.微电解法处理染整废水的工程应用.工业水处理. 2001, 21(12):36-37.
    [32]陈万春.电渗析法处理造纸黑液回收碱的实验研究.环境污染与防治. 1997, 19(2):7-10.
    [33]孙德智,于秀娟,冯玉杰.环境工程中的高级氧化技术.北京:化学工业出版社. 2002.
    [34] Kesselmna J.M. Photoelectrochemical degradation of 4-chlorocatechol at TiO2 electrodes: Comparison between sorption and Photoreactivity. Environ. Sci. Technol., 1997, 31(8):2298-2305.
    [35] Vinodgopal K. Electrochemically assisted Photocatalysis TiO2 Particulate film electrodes for Photocatalytic degradation of 4-chlorphenol. Phys. Chem US, 1993, 97(35): 9040-9044.
    [36]邹忠,李吉力,丁凤其等.稀土Eu掺杂对金属氧化物涂层阳极电催化性能的影响.中国有色金属学报. 2001, 11(l):91-94.
    [37]安太成等.三维电极电助光催化降解直接湖蓝水溶液的研究.催化学报. 2001, 22(2):192-198.
    [38]周仲柏,陈永言.电极过程动力学基础教程.武汉人学出版社. 1989.
    [39]郭鹤桐,覃齐贤.电化学教程.天津大学出版社. 2000.
    [40] Panizza, M.; Cerisola, G. Removal of colour and COD from wastewater containing acid blue 22 by electrochemical oxidation. Journal of Hazardous Materials. 2008, 153:83-88.
    [41] Canizares, P., Garcia-Gomez, J., Saez, C., et al. Electrochemical oxidation of several chlorophenols on diamond electrodes. Part II. Influence of waste characteristics and operating conditions. J. Appl. Electrochem. 2004, 34:87-94.
    [42] Panizza, M., Cerisola, G. Influence of anode material on the electrochemical oxidation of 2-naphthol. Part 2. Bulk electrolysis experiments. Electrochim. Acta. 2004, 49:3221-3226.
    [43] Kotz R. Electrochemical wastewater treatment using high over voltage anodes. Part I: Physical and electrochemical properties of SnO2 anodes. Applied Electrochemistry. 1991, 21(l):14-20.
    [44] Vlyssides A.G., Karlis P.K., Rori N., et al. Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes. Journal of Hazardous Materials. 2002, 95(1-2):215-226.
    [45] Inazaki T.H., Piao A.C.S, Bidoia E D. Treatment of simulated wastewater containing n-phenyl-n-isopropyl-phenylenediamine using electrolysis system with Ti/TiRuO2 electrodes. Brazilian Archives of Biology and Technology. 2004, 47(6):983-994.
    [46]赵国华,李明利,李琳, et al.纳米铂微粒电极催化氧化有机污染物的研究.环境科学. 2003, 24(6):90-95.
    [47] Habazaki H., Hayashi Y., Konno H. Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment. Electrochimica Acta. 2002, 47(26):4181-4188.
    [48] Quiroz M.A., Reyna S., Martinez-Huitle C.A., et al. Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes. Applied Catalysis B–Environmental. 2005, 59(3-4):259-266.
    [49] Kim S., Kim T.H., Park C., et al. Electrochemical oxidation of polyvinyl alcohol using a RuO2/Ti anode. Desalination. 2003, 155(1):49-57.
    [50] Duverneuil P., Maury F., Pebere N., et al. Chemical vapor deposition of SnO2 coatings on Ti plates for the preparation of electrocatalytic anodes. Surface & Coatings Technology. 2002, 151:9-13.
    [51] He D.L., Mho S.I. Electrocatalytic reactions of phenolic compounds at ferric ion co-doped SnO2: Sb5+ electrodes. Journal of Electroanalytical Chemistry. 2004, 568(1-2):19-27.
    [52] Kim J., Korshin G.V., Velichenko A.B. Comparative study of electrochemical degradation and ozonation of nonylphenol. Water Research. 2005, 39(12):2527-2534.
    [53]崔玉虹,冯玉杰,刘峻峰. Sb掺杂钛基SnO2电极的制备、表征及其电催化性能研究.功能材料. 2005, 36(2):234- 237.
    [54] Lissens G., Pieters J., Verhaege M., et al. Electrochemical degradation of surfactants by intermediates of water discharge at carbon-based electrodes. Electrochimica Acta. 2003, 48(12):1655-1663.
    [55] Canizares P., Lobato J., Paz R., et al. Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Research. 2005, 39(12):2687-2703.
    [56] Mitadera M., Spataru N., Fujishima A. Electrochemical oxidation of aniline at boron-doped diamond electrodes. Journal of Applied Electrochemistry. 2004, 34(3):249-254.
    [57] Gallone P. Achievements and tasks of electrochemical engineering. Electrochem. Acta. 1977, (22):913-920.
    [58]何占航,张哲.复极性粒子群电极在化工废水处理中的应用进展.河南化工. 2002, 6:3-5.
    [59] D. J.S., et al. Insist oxidation degradation of from aldehyde with electrogenerated hydrogen peroxide [J]. Journal of Electrochemical society. 1993, 140(6):1632-1637.
    [60] Buso A., Giomo M., Boaretto L.,et al. New Electrochemical Reactor for wastewater Treatment: Electrochemical Characterisation. Chemical Engineering and Processing. 1997, 36(4):255-260.
    [61] Buso A., Giomo M., Boaretto L., et al. New Electrochemical Reactor for WastewaterTreatment: Mathematical Model. Chemical Engineering and Processing. 1997, 36(5):411-418.
    [62] Fockedey E., Van Lierde A. Coupling of Anodic and Cathodic Reactions for phenol Electro-oxidation Using Three-Dimensional Electrodes. Wat.Res. 2002, 36:4169-4175.
    [63] Bahadlr K., Korbahti, Abdurrahman T. Continuous electrochemical treatment of Phenolic wastewater in a tubular reactor. Wat. Res. 2003, 37:1505-1514.
    [64] Alberto A.G., Derek P. The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell. Part 2: The removal of phenols and related compounds from aqueous effluents. Electrochem. Acta. 1999, 44:2483-2492.
    [65] Ya X., P. J. Strunk et al. Treatment of dye wastewater containing acid orange II using a cell with three-phase three-dimensional electrode. Wat. Res. 2001, 35(17):4226-4230.
    [66] Ya X., H. T.K. An experimental investigation of chemical oxygen demand removal from the wastewater containing oxalic acid using three-phase three-dimensional electrode reactor. Advances in Environmental Research. 2002, 7:139-145.
    [67] Ya X. et al. Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing Phenol [J]. Chemosphere. 2003, 50:131-136.
    [68]何春,安太成,熊亚等人.三维电极电化反应器对有机废水研究. 2002, 8(3):99-109.
    [69] Paidar M., Bouzek K., Bergmannb H. Influence of cell construction on the electrochemical reduction of nitrate [J]. Chemical Engineering Journal. 2002, 85:99-109.
    [70] Iijima S. Helical microtubules of graphitic carbon. Nature. 1991, 354:56-58.
    [71] Iijima S., Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993, 363: 603-605.
    [72] Walt A. de Heer, Chatelain A., and Ugarte D. A Carbon Nanotube Field-Emission Electron Source. Science. 1995, 270:1179-1180.
    [73] Walt A. de Heer, Bonard J. M., Fauth K., et al. Electron field emitters based on carbon nanotube films. Adv. Mater. 1997, 9:87-89.
    [74] Zhou C., Kong J., Yenilmez E., Dai H. Modulated Chemical Doping of Individual Carbon Nanotubes. Science. 2000, 290:1552-1555.
    [75] Yosida Y. Superconducting single crystals of TaC encapsulated in carbon nanotubes. Appl. Phys. Lett. 1994, 64:3084-3050.
    [76] Jia Z., Wang Z., Xu C., Liang J., Wei B., Wu D., Zhu S. Study on poly(methyl methacrylate)/carbon nanotube compos. Materials Science and Engineering. 1999, 271: 395-400.
    [77] Tibbetts G. G., Meisner G. P., Olk C. H. Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon. 2001, 39:2291-2301.
    [78] Zandonella C. Is it all just a pipe dream? Nature. 2001, 410:734-735.
    [79] Britto P. J., Santhanam K. S. V., Ajayan P. M. Carbon nanotube electrode for dopamine oxidation. Bioelectrochem. Bioenerg. 1996, 41:121-125.
    [80] Davis J. J., Coles R. J., Hill H. A. O. Protein electrochemistry at carbon nanotube electrodes, J. Electroanal. Chem. 1997, 440:279-282.
    [81] Campbell J. K., Sun L., Crooks R. M. Electrochemistry Using Single Carbon Nanotubes. J. Am. Chem. Soc. 1999, 121:3779-3780.
    [82] Luo H. X., Shi Z. J., Li N. Q., et al. Investigation of the Electrochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode. Anal. Chem. 2001, 73:915-920.
    [83] Wang Z. H., Liang Q. L., Wang Y. M., et al. Carbon nanotube-intercalated graphite electrodesfor simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. J. Electroanal. Chem. 2003, 540:129-134.
    [84]方建毁,温轶,施利毅,等.碳纳米管电极电催化氧化降解染料溶液的研究.无机材料学报. 2006, 21(6):1351-1356.
    [85]温轶,施利毅,方建毁,等.压缩集结碳纳米管电极对活性艳红染料的电催化降解研究.化学学报. 2006, 64(5):439-443.
    [86]温轶,方建毁,曹为民,等.碳纳米管电极电催化氧化降解活性艳红X-3B研究.电化学. 2005, 11(3):329-332.
    [87] Walsh F.C. Electrochemical technology for environmental treatment and clean energy conversion. Pure Appl. Chem. 2001, 73:1819-1837.
    [88] Deligiorgis, A., Xekoukoulotakis, N.P., Diamadopoulos, E., et al. Electrochemical oxidation of table olive processing wastewater over boron-doped diamond electrodes: Treatment optimization by factorial design. Water Research. 2008, 42:1229-1237.
    [89] Zhu, X.P., Shi, S.Y., Wei, J.J., et al. Electrochemical oxidation characteristics of p-substituted phenols using a boron-doped diamond electrode. Environmental Science & Technology. 2007, 41:6541-6546.
    [90] Mavros, M., Xekoukoulotakis, N.P., Mantzavinos, D., et al. Complete treatment of olive pomace leachate by coagulation, activated-carbon adsorption and electrochemical oxidation. Water Research. 2008 42:2883-2888.
    [91] Canizares, P., Garcia-Gomez, J., Saez, C., et al. Electrochemical oxidation of several chlorophenols on diamond electrodes. Part II. Influence of waste characteristics and operating conditions. J. Appl. Electrochem. 2004, 34:87-94.
    [92] Panizza, M., Cerisola, G. Influence of anode material on the electrochemical oxidation of 2-naphthol. Part 2. Bulk electrolysis experiments. Electrochim. Acta. 2004, 49:3221-3226.
    [93] Rajesh, B., Ravindranathan Thampi, K., Bonard, J.-M., et al. Carbon Nanotubes Generated from Template Carbonization of Polyphenyl Acetylene as the Support for Electrooxidation of Methanol. J. Phys. Chem. B. 2003, 107:2701-2708.
    [94]史献平.国内外染料工业发展趋势及中国染料工业对策(一).中国纺织经济信息网http://www.ctei.gov.cn.
    [95] Neelavannan, M.G., Revathi, M., AhmedBasha, C. Photocatalytic and electrochemical combined treatment of textile wash water. J. Hazard. Mater. 2007, 149:371-378.
    [96] Garcia, J.C., Oliveira, J. L., Silva, A.E.C., et al. Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems. J. Hazard. Mater. 2007, 147:105-110.
    [97] Costa, C.R., Botta, C.M.R., Espindola, E.L.G., et al. Electrochemical treatment of tannery wastewater using DSA electrodes. Journal of Hazardous Materials. 2008, 153:616-627.
    [98] Rajeshwar, K., Ibanez J.G. Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement. San Diego: Academic Press. 1997.
    [99] Emmanuel, E., Keck, G., Blanchard, J.-M., et al. Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environ. Int. 2004, 30:891-900.
    [100] Rajkumar, D., Kim, J.G., Palanivelu, K. Indirect electrochemical oxidation of phenol in the presence of chloride for wastewater treatment. Chem. Eng. Technol. 2005, 28:98-105.
    [101] Zhou, M., He, J. Degradation of cationic red X-GRL by electrochemical oxidation on modified PbO2 electrode. Journal of Hazardous Materials. 2008, 153:357-363.
    [102] Bhaskar Raju, B.; Thalamadai Karuppiah, M.; Latha, S.S.; et al. Treatment of wastewater from synthetic textile industry by electrocoagulation– electrooxidation. Chem. Eng. J. 2008, 144:51-58.
    [103]陈国华,王光信.电化学方法应用.化学工业出版社化学与应用化学出版中心. 2003.
    [104] Zheng C.Y., Yi F.Y., Chen S. Study on Treatment of the Wastewater Containing Phenol with ACF Electrode Method. J. Funct. Mater. 2007, 38(3):451-454.
    [105] Yi, F., Chen, S., Yuan, C. Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater. J. Hazard. Mater. 2008, 157:79-87.
    [106] Vlyssides A.G., Loizidou M., Karlis P.K., et al. Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode. Journal of Hazardous Materials. 1999, B70:41-52.
    [107] Tak-Hyun Kim, Chulhwan Park, Jinwon Lee, et al. Pilot scale treatment of textile wastewater by combined process. Water Research. 2002, 36: 3979-3988.
    [108] Li Fan, Fenglin Yang, Weishen Yang. Performance of the decolorization of an azo dye with bipolar packed bed cell [J]. Separation and Purification Technology. 2004, 34:89-96.
    [109]徐敏,葛建团.偶氮染料电化学氧化脱色动力学及其影响因素.兰州铁道学院学报(自然科学版). 2002, 21(4):85-88.
    [110]葛建团,曲久辉,徐敏.电化学方法用于酸性红B模拟废水脱色试验研究.环境污染治理技术与设备. 2002, 3(5):12-14.
    [111] Wu, F., Deng, N.S., Hua, H.L. Degradation mechanism of azo dye C.I. reactive red 2 by iron powder reduction and photo oxidation in aqueous solutions. Chemosphere. 2000, 41:1233-1238.
    [112] Xiong, Y., Strunk, P.J., Xia, H.Y., et al. Treatment of dye wastewater containing acid orange II using a cell with three-phase three-dimensional electrode. Water Research. 2001, 35:4226-4230.
    [113] Stylidi, M., Kondarides, D.I., Verykios, X.E. Pathways of solar light induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl Catal B Environ. 2003, 40: 271-286.
    [114] Hayduk, W., Laudie, H. Prediction of Diffusion Coefficients for Noneletrolyte in Dilute Aqueous Solutions. AIChE Journal. 1974, 20:611-615.
    [115] Crittenden, J.C., Hand, D.W., Arora, H.; et al. Design Considerations for GAC Treatment of Organic Chemicals. J. Am. Water Works Assoc. 1987, 91:74-82.
    [116] Scialdone, O., Galia, A., Filardo, G. Electrochemical incineration of 1,2-dichloroethane: Effect of the electrode material. Electrochimica Acta. 2008, 53:7220-7225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700