用户名: 密码: 验证码:
基于纹理特征的颅脑CT图像病变自动化检出算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着医学影像技术的飞速发展,包括多排螺旋CT在内的先进检查设备产生的影像数据清晰度越来越高,容量也越来越大。海量的容积数据在为影像诊断医师提供更加详细、更加准确的诊断信息的同时,也显着增加了读片医师的工作负担和视觉疲劳。传统的人工读片方式与越来越先进的检查设备之间的矛盾随着这些设备的不断普及应用而变得日益突出。为了适应医学影像检查技术的飞速发展,开展以计算机辅助诊断或计算机智能化诊断为目标的医学图像处理和分析研究已经成为目前这个领域的一个研究热点和将来发展的主要趋势。
     开展计算机辅助诊断和智能化诊断研究首先必须解决的问题是如何实现医学图像上病变的计算机自动化检出。病变的自动化检出又必须涉及到图像配准,图像分割,数字化图谱创建等多项基本的图像处理和分析技术。本文瞄准计算机智能化诊断这个方向,以多排螺旋CT扫描的颅脑CT图像为研究对象,以颅脑CT图像的纹理信息为研究切入点,以颅脑病变的自动化检出为研究目标,通过密切结合医学专业知识,对病变检出及其相关技术进行了深入的研究,取得了多项具有创新意义的研究成果。具体成果和创新点介绍如下:
     1.提出了以颅脑CT图像的纹理特征作为病变自动化检出的依据,研究并构造了一种基于树结构小波变换的纹理层析向量,用于描述颅脑CT图像特征解剖部位的纹理特征。本文在研究各种病变的计算机自动化检出算法的基础上,发现目前的病变检出算法很少重视图像的纹理信息。纹理描述了图像象素间的相互依赖关系;小波变换作为多尺度、多通道的分析工具,为纹理信息在不同尺度上的分析和表征提供了精确、统一的框架,应用小波变换算法构造的纹理层析向量可以有效的描述图像的纹理信息。据此本文研究并构造了一种基于树结构小波变换的纹理层析向量。实验结果表明,这种纹理层析向量鲁棒性强,且具有唯一性、平移不变性,并在一定范围内满足旋转不变性,可以有效的描述图像的纹理信息,为本论文后面的研究工作奠定了基础。
     2.针对基于特征的非刚性配准算法,提出了一种基于纹理层析向量的对应标志点的自动搜索算法。非刚性配准技术是实现病变检出的核心,本文在深入研究各类非刚性配准技术的基础上,针对基于特征的非刚性配准算法需要手工介入,无法实现完全自动化的缺点,提出了一种基于纹理层析向量的对应标志点搜索算法。本文通过在待配准的颅脑CT图像内自动搜索与目标图像具有相似纹理区域的标志点,实现了对应标志点的全自动搜索。实验结果证明,这种对应标志点的自动搜索算法标记正确率较高,可以解决基于特征的非刚性配准算法需要手工介入的问题。
     3.提出了一种新型的数字化统计图谱——纹理层析向量图谱,并实现了颅脑CT图像纹理层析向量图谱的计算机自动化创建。正常图像主要是通过数字化统计图谱进行计算机描述,本文在研究了现有类型的数字化统计图谱后,为弥补现有类型图谱在描述正常人图像纹理特征方面的不足,利用前面有关纹理层析向量的研究结果,提出了基于纹理层析向量的颅脑CT图像的数字化统计图谱的构造算法。本文成功的实现了二维颅脑CT图像的纹理层析向量图谱的计算机自动化创建。纹理层析向量图谱描述了颅脑CT图像的纹理特征。
     4.应用颅脑CT图像的纹理层析向量图谱,实现了对钙化、脑出血等病变的计算机自动化检出。由于大多数病变的影像学表现为图像的纹理变化,因此本文从分析图像的纹理信息入手,利用前面创建的颅脑CT图像的纹理层析向量图谱,通过比较待诊断图像各个区域的纹理层析向量与图谱间的差异,实现了对钙化、脑出血等病变的计算机自动化检出。
With the rapid development of science and technology, new and modern equipments such as Multi-slice Spiral Computed Tomography have become the leading instruments for medical imaging. These equipments produce volume data of high quality and large quantity. While volume data provides more and more detailed and accurate diagnostic information for the radiologist, it also increases significantly the workload of radiologists. Overload would exacerbate the radiologist's fatigue and increase the possibility of overlooking and mistaking in the course of film reading. Instead of making diagnosis easier,new equipment puts radiologists into a dilemma and its advantages have not been exploited. As these increasingly advanced equipments are rapidly and widely put into use, the incompatibility between modern equipments and traditional human film reading would become even more evident and more acute. To keep pace with the development of modern medical imaging technology, research directing to realize Computer Aided Diagnosis or Computer Intelligent Diagnosis has become the major challenge and general trend in the field of medical imaging processing and analysis.
     The first and biggest obstacle to clear on the way to computer intelligent diagnosis is how to detect the lesion on the medical image. In order to successfully detect pathology on medical image, many of the image processing techniques, such as registration, segmentation and construction of digital probabilistic atlas have to be studied. With the direction of future research on Computer Intelligent Diagnosis, with the goal of pathology automatic detection based on the texture information on the cerebral Computed Tomography, we heve made a in-depth study on the method of pathology automatic detection and its related technique by combining domain knowledge of medical image, and we have put forward a few of innovative algorithm. The major contributions of the dissertation are as follows:
    
     1. A method which carries out computer-automatic diagnosis according as the texture feature of the cerebral CT image was put forward, and a kind of Texture Layers-Analysis Vector based on tree-structured wavelet transform which characterizes the texture feature of the cerebral CT image was studied and constructed in this paper. After researching the computer-automatic diagnosis algorithms, the texture information of image was attached importance to, which was ignored in the other algorithms. Because the texture information characterizes the relationship between the pixels in the image, and the wavelet transform offers the analysis and the expressing of the texture feature a kind of exact and uniform explanation, the Texture Layers-Analysis Vector is able to characterize the texture information of the cerebral CT image exactly. Experiment results showed that the texture layers-analysis vector is robust, unique in the image, and it is invariable after shifting and rotating in a range. The research of the Texture Layers-Analysis Vector facilitates the work in this paper later.
     2. An algorithm of automatic detection to corresponding points based on the texture layers-analysis vector was proposed in cerebral CT images. NRR is the key step to pathology detection, therefore a variety of algorithms of NRR was first reviewed and introduced in this paper. A algorithm of automatic detection to corresponding points based on the texture layers-analysis vector was put forward later because the existing NRR algorithm is not automatic completely. In this algorithm the point which has similar texture information is pick out as the corresponding point. Experiment results showed that the correct rate of this algorithm is satisfying.
     3. The digital probabilistic atlas based on texture layers-analysis texture in 2D cerebral CT image was constructed automatically. The digital probabilistic atlases were reviewed in this paper. We proposed the digital probabilistic atlas algorithm based on the texture layers-analysis vector according to the results before because the other atlases have a shortage of characterizing the normal feature of cerebral CT image. In this paper, the digital probabilistic atlas based on the texture layers-analysis vector was constructed automatically.
     4. Using the digital probabilistic atlas based on the texture layers-analysis vector, we detected calcify, cerebral hemorrhage, etc automatically with computer. Because most representation of the pathology is the texture changes, according to comparing the difference between the texture layers-analysis vectors which characterizes the texture information of the cerebral CT image, a variety of pathological changes such as calcify, cerebral hemorrhage was detected automatically.
引文
[1] 于甬华,王仁本等.计算机辅助诊断在医学影像学领域的研究进展.生物医学工程研究,24(2):133-136,2005
    [2] Chen C-T. Radiologic Image Registration: Old Skills and New Tools. Academic Radiology 10(3) : 239-241, 2003.
    [3] Thompson PM, Toga AW. Elastic lmage Registration and Pathology Detection. In: Bankman I, ed. Handbook of Medical Image Processing, vol Academic Press, 2000.
    [4] Erickson BJ, Bartholmai B. Computer-Aided Detection and Diagnosis at the Start of the Third Millennium. Journal of Digital Imaging 15(2) : 59-68, 2002.
    [5] 田捷,包尚联,周明全.医学影像处理与分析.北京,电子工业出版社,2003.
    [6] 杨春友.计算机在临床应用的概况.金陵医院学报.8(1):65-67,1995
    [7] 程勇,牛艳坤等.CAD技术在医疗诊断中的应用研究进展.中国医师杂志,8(9):1295-1296.2006
    [8] 桂川茂彦,土井邦雄.CAD评价
    [9] El-Bazl A, Farag AA, Falk R, La Rocca R. Automatic identification of lung abnormalities in chest spiral CT scans. In Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP'03). 2003 IEEE International Conference, vol 2. Ⅱ-261-4; 2003.
    [10] El-Bazl A, Farag AA, Falk R, La Rocca R. Automatic identification of lung abnormalities in chest spiral CT scans. In Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP'03). 2003 IEEE International Conference, vol 2. Ⅱ-261-4; 2003.
    [11] Loncaric S, Cosic D, Dhawan AP. Hierarchical segmentation of CT head images. In Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, vol 2. 736-737; 1996.
    [12] Cosic D, Loucaric S. Computer system for quantitative: analysis of ICH from CT head images. In Engineering in Medicine and Biology society, 1997. Proceedings of the 19th Annual International Conference of the IEEE, vol 2. 553-556; 1997.
    [13] Loncaric S, Kovacevic D, Cosic D. Fuzzy expert system for edema segmentation. In Electrotechnical Conference, 1998. MELECON 98. , 9th Mediterranean, vol 2. 1476-1479; 1998.
    [14] Cheng D-C, Cheng K-S. A PC-based medical image analysis system for brain CT hemorrhage area extraction. In Computer-Based Medical Systems, 1998. Proceedings. 11th IEEE Symposium, vol 240-245; 1998.
    [15] Maksimovic R, Stankovic S, Milovanovic D. Computed tomography image analyzer: 3D reconstruction and segmentation applying active contour models-'snakes'. International Journal of Medical Informatics 58-59: 29-37, 2000.
    [16] Matesin M, Loncaric S, Petravic D. A rule-based approach to stroke lesion analysis from CT brain images. In Image and Signal Processing and Analysis, 2001. ISPA 2001. Proceedings of the 2nd International Symposium,vol 219-223; 2001.
    [17] Busch C. Wavelet based texture segmentation of multi-modal tomographic images. Computers & Graphics 21(3): 347-358, 1997.
    [18] Zavaljevski A, Dhawan AP, Gaskil M, Ball W, Johnson JD. Multi-level adaptive segmentation of multi-parameter MR brain images. Computerized Medical Imaging and Graphics 24(2): 87-98, 2000.
    [19] Moon N, Bullitt E, van Leemput K, Gerig G. Model-based brain and tumor segmentation. In Pattern Recognition, 2002. Proceedings. 16th International Conference,vol 1. 528-531; 2002.
    [20] Chen M, Kanade T, Rowley HA, Pomerleau D. Anomaly detection through registration. In Computer Vision and Pattern Recognition, 1998. Proceedings. 1998 IEEE Computer Society Conference,vol 304-310; 1998.
    [21] Narr KL, Sharma T, Moussai J, Zoumalan CI, Cannestra AF, Thompson PM, Toga AW. 3D Maps of Cortical Surface Variability and Sulcal Asymmetries in Schizophrenic and Normal Populations. In 5th International Conference on Functional Mapping of the Human Brain,vol Dusseldorf, Germany, 1999.
    [22] Park H-J, Westin C-F, Kubicki M, Maier SE, Niznikiewicz M. White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study. NeuroImage 23(1): 213-223, 2004
    [23] Thirion J-P, Prima S, Subsol G, Roberts N. Statistical analysis of normal and abnormal dissymmetry in volumetric medical images. Medical Image Analysis 4(2): 111-121, 2000.
    [24] Thompson PM, Moussai J, Zohoori S, Goldkorn A, Khan AA, Mega MS, Small GW, Cummings JL, Toga AW. Cortical Variability and Asymmetry in Normal Aging and Alzheimer's Disease. Cerebral Cortex 8: 492-509, 1998.
    [25] Yoon O-K, Kwak D-M, Kim D-W, Park K-H. MR brain image segmentation using fuzzy clustering. In Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE '99. 1999 IEEE International,vol 2. 853-857; 1999.
    [26] Joshi S, Lorenzen P, Gerig G, Bullitt E. Structural and radiometric asymmetry in brain images. Medical Image Analysis 7(2): 155-170, 2003.
    [27] Lorenzen P, Joshi S, Gerig G, Bullitt E. Tumor-induced structural and radiometric asymmetry in brain images. In Mathematical Methods in Biomedical Image Analysis, 2001. MMB IA 2001. IEEE Workshop,vol 163-170; 2001.
    [28] Crum WR, Griffin LD, Hill DLG, Hawkes DJ. Zen and the art of medical image registration: correspondence, homology, and quality. NeuroImage 20(3): 1425-1437, 2003.
    [29] Calmon G, Roberts N. Automatic measurement of changes in brain volume on consecutive 3D MR images by segmentation propagation. Magnetic Resonance Imaging 18(4): 439-453, 2000.
    [30] Fox NC, Freeborough PA, Rossor MN. Visualisation and quantification of rates of atrophy in Alzheimer's disease. The Lancet 348(9020): 94-97, 1996.
    [31] Freeborough PA, Fox NC. The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI. Medical Imaging, IEEE Transactions 16(5): 623-629, 1997.
    [32] Rutherford MA, Pennock JM, Hajnal JV, Saeed N, Soar EJ, Oatridge A. The use of a sub-voxel registration technique for monitoring growth and development of the infant brain on serial magnetic resonance imaging. Early Human Development, 43(1): 100, 1995.
    [33] Davatzikos C, Genc A, Xu D, Resnick SM. Voxel-Based Morphometry Using the RAVENS Maps: Methods and Validation Using Simulated Longitudinal Atrophy. Neurolmage 14(6): 1361-1369, 2001.
    [34] Wollny G, Tittgemeyer M, Kruggel F. Segmentation of vector fields by critical point analysis: application to brain deformation. In Pattern Recognition, 2002. Proceedings. 16th International Conference,vol 1. 524-527; 2002.
    [35] Shen D, Davatzikos C. Very High-Resolution Morphometry Using Mass-Preserving Deformations and HAMMER Elastic Registration. NeuroImage 18(1): 28-41, 2003.
    [36] Meier DS, Guttmann CRG. Time-series analysis of MRI intensity patterns in multiple sclerosis. NeuroImage 20(2): 1193-1209, 2003.
    [37] Oatridge A, Hajnal JV, Saeed N, Newlands ES, Curati WL, White S J, Purl BK. Subvoxel Image Registration of Multislice (2D) Magnetic Resonance images in Patients with High-grade Gliomas of the Brain. Clinical Radiology 57(12): 1098-1108, 2002.
    [38] Schormann T, Kraemer M. Voxel-guided morphometry ("VGM") and application to stroke. Medical Imaging, IEEE Transactions 22(1): 62-74, 2003.
    [39] Lemieux L, Wieshmann UC, Moran NF, Fish DR, Shorvon SD. The detection and significance of subtle changes in mixed-signal brain lesions by serial MRI scan matching and spatial normalization. Medical Image Analysis 2(3): 227-242, 1998.
    [40] Crum WR, Scahill RI, Fox NC. Automated Hippocampal Segmentation by Regional Fluid Registration of Serial MRI: Validation and Application in Alzheimer's Disease. Neurolmage 13(5): 847-855, 2001.
    [41] Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A. Accurate, Robust, and Automated Longitudinal and Cross-Sectional Brain Change Analysis. Neurolmage 17(1): 479-489, 2002.
    [42] Wang D, Doddrell DM. MR image-based measurement of rates of change in volumes of brain structures. Part Ⅰ: method and validation. Magnetic Resonance Imaging 20(1): 27-40, 2002.
    [43] Purl BK, Hutton SB, Saeed N, Oatridge A, Hajnal JV, Duncan L-J. A serial longitudinal quantitative MRI study of cerebral changes in first-episode schizophrenia using image segmentation and subvoxel registration. Psychiatry Research: Neuroimaging 106(2): 141-150, 2001.
    [44] Rey D, Subsol G, Delingette H, Ayache N. Automatic detection and segmentation of evolving processes in 3D medical images: Application to multiple sclerosis. Medical Image Analysis 6(2): 163-179, 2002.
    [45] Holden M, Schnabel JA, Hill DLG. Quantification of small cerebral ventricular volume changes in treated growth hormone patients using nonrigid registration. Medical Imaging, IEEE Transactions 21(10): 1292-1301, 2002.
    [46] Brock KK, Dawson LA, Sharpe MB, Jaffray DA. Application of a novel deformable image registration technique to facilitate classification, tracking and targeting of tumor and normal tissue. International Journal of Radiation Oncology*Biology*Physics 60(1): S227, 2004.
    [47] James NT. Morphometry and stereology in biology and medicine using confocal microscopy. In New Microscopies in Medicine and Biology, IEE Colloquium,vol 1-4; 1994.
    [48] Soltanian-Zadeh H, Windham JP, Peck DJ. Semi-automatic brain morphometry in CT. In Nuclear Science Symposium and Medical Imaging Conference, 1994., 1994 IEEE Conference Record,vol 4. 1812-1816; 1994.
    [49] Ahmed MN, Farag AA. Two-stage neural network for volume segmentation of medical images. Pattern Recognition Letters 18(11-13):1143-1151, 1997.
    [50] Banerjee S, Mukherjee DP, Majumdar DD. Fuzzy c-means approach to tissue classification in multimodal medical imaging. Information Sciences 115(1-4): 261-279, 1999.
    [51] Baillard C, Hellier P, Barillot C. Cooperation between level set techniques and dense 3D registration for the segmentation of brain structures. In Pattern Recognition, 2000. Proceedings. 15th International Conference,vol 1. 991-994; 2000.
    [52] Cuadra MB, Cuisenaire O, Meuli R, Thiran J-P. Automatic segmentation of internal structures of the brain in MR images using a tandem of affine and non-rigid registration of an anatomical brain atlas. In Image Processing, 2001. Proceedings. 2001 International Conference,vol 3. 1083-1086; 2001.
    [53] Dawant BM, Hartmann SL, Thirion J-P, Maes F, Vandermeulen D, Demaerel P. Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations. I. Methodology and validation on normal subjects. Medical Imaging, IEEE Transactions 18(10): 909-916, 1999.
    [54] Klein A, Hirsch J. Mindboggle: a scatterbrained approach to automate brain labeling. Neuroimage 24(2): 261-280, 2005.
    [55] Marroquin JL, Vemuri BC, Botello S, Calderon E, Fernandez-Bouzas A. An accurate and efficient Bayesian method for automatic segmentation of brain MRI. Medical Imaging, IEEE Transactions 21(8): 934-945, 2002.
    [56] Musse O, Heitz F, Armspach J-P. Fast deformable matching of 3D images over multiscale nested subspaces. Application to atlas-based MRI segmentation. Pattern Recognition 36(8): 1881-1899, 2003.
    [57] Rohlfing T, Russakoff DB, Maurer CR. Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation. Medical Imaging, IEEE Transactions 23(8): 983-994, 2004.
    [58] DeQuardo JR, Bookstein FL, Green WDK, Brunberg JA, Tandon R. Spatial relationships of neuroanatomic landmarks in schizophrenia. Psychiatry Research: Neuroimaging 67(1): 81-95, 1996.
    [59] Chung MK, Worsley KJ, Paus T, Cherif C, Collins DL, Giedd JN, Rapoport JL. A Unified Statistical Approach to Deformation-Based Morphometry. Neurolmage 14(3): 595-606, 2001.
    [60] Gaser C, Volz H-P, Kiebel S, Riehemann S, Sauer H. Detecting Structural Changes in Whole Brain Based on Nonlinear Deformations-Application to Schizophrenia Research. Neurolmage 10(2): 107-113, 1999.
    [61] Thompson PM, Toga AW. Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations. Medical Image Analysis 1(4): 271-294, 1997.
    [62] van Laere K, Versijpt J, Dierckx R. Brain perfusion SPECT correlated to voxel-based morphometry in healthy adults: influence of age and gender. Neurolmage 13(6): S1014, 2001.
    [63] Zilles K, Kawashima R, Dabringhaus A, Fukuda H, Schormann T. Hemispheric Shape of European and Japanese Brains: 3-D MRI Analysis of Intersubject Variability, Ethnical, and Gender Differences. NeuroImage 13(2): 262-271,2001.
    [64] Good CD, Johnsrude I, Ashburner J, Henson RNA, Friston KJ. Cerebral Asymmetry and the Effects of Sex and Handedness on Brain Structure: A Voxel-Based Morphometric Analysis of 465 Normal Adult Human Brains. Neurolmage 14(3): 685-700, 2001.
    [65] Haier RJ, Jung RE, Yeo RA, Head K, Alkire MT. Structural brain variation and general intelligence. Neurolmage 23(1): 425-433, 2004.
    [66] Kaasinen V, Maguire RP, Kurki T, BrAAck A, Rinne JO. Mapping brain structure and personality in late adulthood. Neuroimage 24(2): 315-322, 2005.
    [67] Lyoo IK, Kim MJ, Stoll AL, Demopulos CM, Parow AM. Frontal lobe gray matter density decreases in bipolar I disorder. Biological Psychiatry 55(6): 648-651, 2004.
    [68] Waiter GD, Williams JHG, Murray AD, Gilchrist A, Perrett DI. Structural white matter deficits in high-functioning individuals with autistic spectrum disorder: a voxel-based investigation. Neuroimage 24(2): 455-461, 2005.
    [69] Karas GB, Burton EJ, Rombouts SARB, van Schijndel RA, O'Brien JT, Scheltens Ph, al. e. A comprehensive study of gray matter loss in patients with Alzheimer (?) s disease using optimized voxel-based morphometry. Neurolmage 18(4): 895-907, 2003.
    [70] Studholme C, Cardenas V, Blumenfeld R, Schuff N, Rosen H J, Miller B, Weiner M. Deformation tensor morphometry of semantic dementia with quantitative validation. Neurolmage 21 (4): 1387-1398, 2004.
    [71] Woermann FG, Free SL, Koepp MJ, Ashburner J, Duncan JS. Voxel-by-voxel comparison of automatically segmented cerebral grey matter-a rater-independent comparison of structural MRI in patients with epilepsy. Neuroimage 10(4): 373-384, 1999.
    [72] Mehta SG, Thomas J.; Trivedi, Yogi; Damasio, Hanna. Evaluation of voxel-based morphometry for focal lesion detection in individuals. NeuroImage 20(3): 1438-1454, 2003.
    [73] Thurfjell L, Andersson J, Pagani M, Jonsson C, Hult R, Lundqvist R, Wagner A, Jacobsson H, Larsson S. Automatic detection of hypoperfused areas in SPECT brain scans. Nuclear Science, IEEE Transactions 45(4): 2149-2154, 1998.
    [74] Slomka PJ, Radau P, Hurwitz GA, Dey D. Automated three-dimensional quantification of myocardial perfusion and brain SPECT. Computerized Medical Imaging and Graphics 25(2): 153-164, 2001.
    [75] Guan S-Y, McCormick BH. Design for a 3-D deformable brain atlas. In Computer-Based Medical Systems, 1991. Proceedings of the Fourth Annual IEEE Symposium,vol 113-120; 1991.
    [76] Toga AW, Thompson PM. The role of image registration in brain mapping. Image and Vision Computing 19(1-2): 3-24, 2001.
    [77] Jongen C, Pluim JPW, Nederkoorn PJ, Viergever MA, Niessen WJ. Construction and evaluation of an average CT brain image for inter-subject registration. Computers in Biology and Medicine 34(8): 647-662, 2004.
    [78] Momenan R, Rawlings R, Fong G, Knutson B, Hommer D. Voxel-based homogeneity probability maps of gray matter in groups: assessing the reliability of functional effects. NeuroImage 21 (3): 965-972, 2004.
    [79] Rueckert D, Frangi AF, Schnabel JA. Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. Medical Imaging, IEEE Transactions 22(8): 1014-1025, 2003.
    [80] Warfield SK, Kaus M, Jolesz FA, Kikinis R. Adaptive, template moderated, spatially varying statistical classification. Medical linage Analysis 4(1): 43-55, 2000.
    [81] Duchesne S, Pruessner JC, Collins DL. Appearance-Based Segmentation of Medial Temporal Lobe Structures. NeuroImage 17(2): 515-531, 2002.
    [82] Bondiau P-Y, Malandain G, Chanalet S, Marcy P-Y. Atlas-based automatic segmentation of MR images: Validation study on the brainstem in radiotherapy context International. Journal of Radiation Ontology*Biology*Physics 61(1): 289-298, 2005.
    [83] Cuadra MB, Polio CB, A., Cuisenaire O, Villemure J-G, Thiran J-P. Atlas-based segmentation of pathological MR brain images using a model of lesion growth. Medical Imaging, IEEE Transactions 23(10): 1301-1314, 2004.
    [84] Pitiot A, Delingette H, Thompson PM, Ayache N. Expert knowledge-guided segmentation system for brain MRI. NeuroImage 23(1): S85-S96, 2004.
    [85] Vemuri BC, Ye JC, Y., Leonard CM. Image registration via level-set motion: Applications to atlas-based segmentation. Medical Image Analysis 7(1): 1-20, 2003.
    [86] Grau V, Mewes AUJ, Alcaniz M, Kikinis R, Warfield SK. Improved watershed transform for medical image segmentation using prior information. Medical Imaging, IEEE Transactions 23(4): 447-458, 2004.
    [87] Arata LK, Dhawan AP, Broderick JP, Gaskil-Shipley MF, Levy AV, Volkow ND. Three-dimensional anatomical model-based segmentation of MR brain images through principal axes registration. Biomedical Engineering, IEEE Transactions 42(11) : 1069-1078, 1995.
    [88] 彭玲,赵忠明,马江林.基于树状分解隐马尔可夫树的纹理分类模型研究.武汉科技大学学报(自然科学版),vol.27,No.4,399-402.
    [89] M. S. Crouse, R. D. Nowak, G. Baraniuk. Wavelet-based Statistical Signal Processing Using Hidden Markov Models[J]. IEEE Trans Signal Processing, 1998, 46: 886-902.
    [90] 王震,王执铨.图像纹理分析与纹理测度.南京理工大学学报.Vol.26,supp,pp:36-42.
    [91] Scott T. A. , Dipti P. M. Oriented texture completion by AM-FM reaction-diffusion. IEEE Trans Image Processing, 2001, 10 (6) : 885-896.
    [92] Zhong Y, Jain K. Object localization using colour, texture and shape. Pattern Recognition, 2000, 33 (4) : 671-684.
    [93] Jacek I, Henry L. Self-similar texture modeling using FARIMA processes with application to satellite images. IEEE Trans Image processing, 2001, 10 (5) : 792-797.
    [94] Trygve R, John H. H. Filtering for texture classification: a comparative study. IEEE Trans of Pattern Anal and Machine Intell, 1999, 21 (4) : 291-309.
    [95] Aleksandra M. Retrieval of color patterns based on percecptual dimensions of texture and human similarity tules. SPIE Human Vision and Electronic Imaging, 1999, 3644: 441-452.
    [96] R. W. Conners, C. A. Harlow, A theoretical comparison of texture algorithm. IEEE Trans. Pattern Analysis and Machine Intelligence. 1980, vol. 2 pp. 204-222.
    [97] R. M. Haralick. Statistical and Structural approaches to texture. Proc. IEEE, 1979, vol. 67, pp. 786-804.
    [98] A. Rosenfeld and L. S. Davis. Image segmentation and image models. Proc. IEEE, 1979, vol. 67, pp. 764-773.
    [99] R. M. Haralick, K. Shanmugan, I. Dinstein. Texture features for image classification. IEEE Trans. SMC, 1973, vol. 8, pp. 610-621.
    [100] P. C. Chen, T. Pavlidis. Segmentation by texture using correlation. IEEE Trans. Pattern Analysis and Machine Intelligence. 1983, vol. 5, pp. 64-69.
    [101] O. D. Faugeras, W. K. Pratt. Decorrelation methods of texture feature extraction. IEEE Trans. Pattern Analysis and Machine Intelligence. 1984, vol. 2, pp. 323-332.
    [102] F. S. Cohen, D. B. Cooper. Simple parallel hierarchical and relaxation algorithms for segmenting noncausal Markovian random fields. IEEE Trans. Pattern Analysis and Machine Intelligence, 1987, vol. 9, pp. 195-219.
    [103] H. Derin, H. Elliott, R. Cristi, D. Geman. Bayes smoothing algorithms for segmentation of binary images modeled by Markov random fields. IEEE Trans. Pattern Analysis and Machine Intelligence, 1984, vol. 6 pp. 707-720.
    [104] S. Lakshmanan, H. Derin. Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing. IEEE Trans. Pattern Analysis and Machine Intelligence. 1989, vol. 11, pp. 799-813.
    [105] S. Geman, D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Analysis and Machine Intelligence, 1984, vol. 6, pp. 721-741.
    [106] K. I. Laws. Texture image segmentation. Ph. D. dissertation, Image Processing Institute, University of Southern California, 1980.
    [107] P. Cohen, C. T. Ledinh, V. Lacasse. Classification of natural textures by means of twodimensional orthogonal masks. IEEE Trans. Acoust, Speech and Signal Processing, 1989, vol. 37, pp. 125-128.
    [108] J. Y. Hsiao, A. A. Sawchuk. Spervised textures image segmentation using feature smoothing and probabilistic relaxtion techniques. IEEE Trans. Pattern Analysis and Machine Intelligence, 1989, vol. 11, pp. 1279-1292.
    [109] M. Unser. Local linear transfroms for texture measurements. Signal Processing. 1986, vol. 11, pp. 61-79.
    [110] C. Bouman, B. Liu. Multiple resolution segmentation of textured images. IEEE Trans. Pattern Analysis and Machine Intelligence, 1991, vol. 13, pp. 99-113.
    [111] S. Arivazhagna, L. Ganesan. Texture Classification using Wavelet Transform. Pattern Recognition Letters. 24, 1513-1521, 2003.
    [112] Chi-Man Pun, Moon-Chuen Lee. Log-Polar wavelet Energy signatures for rotation and scale invariant texture classification. IEEE Trans. Pattern Analysis and Machine Intelligence, 2003, vol. 25, No. 5, 590-603.
    [113] T. R. Reed, H. Wechsler. Segmentation of textured images and Gestalt organization using spatial/spatial-frequency representations. IEEE Trans. Pattern Analysis and Machine Intelligence, 1990, vol. 12, pp. 1-12.
    [114] S. G. Mallat, S. Zhong. Characterization of signal from mutiscale edges[J]. IEEE Trans. Pattern Analysis and Machine Intelligence. 1992, 14 (7) : 710-732.
    [115] 梅龙宝,冯慧君.基于小波特征提取的视频文字检测系统设计和实现.视频技术应用与工程,2004,vol.3,pp.88-90
    [116] 李晓华,沈兰荪.基于小波压缩域的统计纹理特征提取方法.电子学报,2003,vol.31,No.12A,pp.2123-2126.
    [117] B. S. Manjunath, W. Y. Ma. Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1996, vol. 18, No. 8, pp. 837-842.
    [118] A. Ahmadian, A. Mostafa. An efficient texture classification algorithm using Gabor wavelet. Processings of the 25th Annual International Conference of the IEEE EMBS, 2003, pp. 930-933.
    [119] K. Sam-Deuk, S. Udpa. Texture classification using rotated wavelet filters. Systems, Man and Cybernetics, PartA, IEEE Transactions. 2000, vol. 30, pp. 847-852.
    [120] C-M. P. Moon, Chuen Lee. Texture classification using dominant wavelet packet Energy features. Image Analysis and Interpretation, Proceedings, 4th IEEE Southwest Symposium. 2000, pp. 301-304.
    [121] 夏顺仁,莫伟荣,王小英等.基于特征融合和相关反馈的医学图像检索技术.航天医学与医学工程.2004,vol.17,No.6,pp.429-433.
    [122] Smeruders M, Worring M, Santini S, et al. Content-based image retrieval at the end of the early years[J]. IEEE Transaction on Pattern Analysis and machine intelligence. 2000, 22(12) : 1349-1380.
    [123] Filickner M, Sawhney H, Niblack W, et al. Query by image and video content: The QBIC system[J]. IEEE, Computer, 1995, 28 (9) : 23-32.
    [124] Pentland A, Picard R, Sclaroff S. Photobook: tools for content-based manipulation of image databases[J]. International Journal of Computer, 1996, 18(3) : 233-254.
    [125] Muller H, Michoux N, Bandon D, et al. A review of content-based image retrieval systems in medical applications—clinical benefits and future directions[J]. International Journal of Medical Informatiocits, 2004, 73 (1) : 1-23.
    [126] LI Shunshan, ZHuang Tiange. Content-based medical image retrieval[J]. Chinese Journal of Medical Instrumentation. 2001, 25(2) : 95-98.
    [127] Shyn C, Brodley C, Kak C, et al. ASSERT: a physician-in-the-loop content-based retrieval system for HRCT image databases[J]. Computer Vision and Image Understanding(special issue on content-based access for image and video libraries), 1999, 75(1) : 111-132.
    [128] Tomas M, Lehmann A, Berthold Wein B, et al. Content-based image retrieval in medical application: a novel multistep approach[C]. SPIE, 2000, pp. 312-320.
    [129] 万华林,Morshed U,Chowdhury,胡宏.图像纹理特征及其在CBIR中的应用.计算机辅助设计与图形学学报.2003,vol.15,No.2 pp.195-199.
    [130] 田玉敏,乃学尚,高有行等.基于整数小波系数的纹理图像检索方法研究.西安电子科技大学学报(自然科学版).2003,vol.30,No.1,pp.90-94.
    [131] Adams M. D. Reversible integer to integer wavelet transforms for image compression: Performance evaluation and analysis[J]. IEEE Transaction on Image Processing, 2000, 9(6) : 1010-1024.
    [132] Calderbank A. R. , Daubechies I. , Swekdens W. Wavelet transforms that map integers to integers[J]. Applied and Computational Harmonic Analysis(ACHA). 1998, 5(3) : 332-369.
    [133] Roni Mittelman, Moshe Porat. A new approach to feature exatraction for wavelet-based texture classification. IEEE, 2005.
    [134] 朱丹琦,夏顺仁,楼晓敏等.结肠镜图像自动分割技术研究.浙江大学学报(工学版).2004,Vuj.38,No.7,pp.821-825.
    [135] Panjwanid K. , Healey G. Markov random field models for unsupervised segmentation of texture colour images[J]. IEEE Transaction Pattern Analysis and Machine Intelligence. 1995, 17(10) : 939-954.
    [136] Laszlo G. Nyul, Jayaram K. Udupa, Xuan Zhang, New variants of a method of MRI scale standardization. IEEE Transactions on medical imaging. 2000, Vol. 19, No. 2, pp. 143-150.
    [137] 于红玉,沈晋慧,陈世华等.基于小波变换的多分辨率医学图像融合.北京生物医学工程.2003,Vol.22,No.1,pp.21-23.
    [138] 张洁,蒋宁,浦立新.基于小波变换的医学图像融合技术.电子科技大学学报,2005,Vol.34,No.6,pp.839-842.
    [139] Matsopoulos G. K, Atlins S. Multiresolution morphological fusion of MR and CT images of the human brain[J]. IEEE Proc-Vis Image Signal Process, 1994, 141(3) : 220-232.
    [140] Yao Wei, Qian Jun, Zhao Baozhen. Comparative study between neighborhood pixels calculator two and one in the ultrasonic texture analysis between parenchyma of normal liver and fatty liver, and between parenchyma of nomal thyroid and nodular goiter[J]. Chinese Journal Ultrasonic Medical. 2002, 18(3) : 172-174.
    [141] Chung Ming, Yung Chang Chen, et al. Texture features for classification of ultrasonic liver images[J]. IEEE transacti on on Medical Imaging. 1992, 11 (2) : 141-152.
    [142] 汪小毅,林江莉,李德玉等.基于纹理分析的脂肪肝B超图像识别.航天医学与医学工程.2004,Vol.17,No.2,pp.144-149.
    [143] Samsher sidhu, Kaamran Raahemifar, Texture classification using wavelet transform and support vector machines. IEEE CCECE/CCGEI, Saskatoon, May 2005, pp. 941-944.
    [144] R. M. Haralick, K. Shanmngam, et al. Texture feature for image classification[J]. IEEE Transactions on System, Man, and Cybernetics, 1973, SMC-3(6) : 768-780.
    [145] 王煦法,庄镇泉,王东生.C语言图像处理程序设计[M].合肥,中国科学技术大学出版社,1995.
    [146] 盛文,杨江平,柳健等.一种基于纹理元灰度模式统计的图像纹理分析方法.电子学报,2000,Vol.28,No.4,pp.73-75
    [147] Chang T, Kuo C. C. J, Texture analysis and classification with tree-structured wavelet transform[J]. IEEE Transactions Image Processing. 1993, 2(10) : 219-221.
    [148] Pichler Olaf, etc. A comparision of texture feature extraction using adaptive gabor filtering, pyramidal and tree-structured wavelet transforms[J]. Pattern Recognition, 1996, 29(5) : 733-742.
    [149] Soo Chang Kim, Tae Jin Kang. Texture classification and segmentation using incomplete tree-structured wavelet packet frame and gaussian mixture model. IEEE IST 2005, pp. 46-51.
    [150] Tianhorng Chang, C. -C. Jay Kuo. Texture classification with tree-structured wavelet transform. IEEE, Signal and Image Processing Institute. I992, pp. 256-259.
    [151] Serkan Hatipoglu, Sanjit K. Mitra, Nick Kingsbury. Texture classification using dual-tree complex wavelet transform. Image Processing and its Applications, Conference Publication No. 465, IEE, 1999, pp. 344-347.
    [152] Victor Debrunner, Madhavi Kadiyala. Effect of wavelet bases in texture classification using a tree-structured wavelet transform, IEEE, 1999, pp. 1292-1296.
    [153] Bing-Yu Sun, De-Shuang Huang. Texture classification based on support vector machine and wavelet transform. Proceedings of the 5th World Congress on Intelligent Control and Automation, 2004, pp. 1862-1864.
    [154] Zhong Xue, Dinggang Shen, Christos Davatzikos. Determining correspondence in 3-D MR brain images using attribute vectors as morphological signatures of vexels. IEEE Transactions on medical imaging, 2004, 23(10) : 1276-1291.
    [155] Lindsay Semler, Lucia Dettori, Jacob Furst. Wavelet-based texture classification of tissues in computed tomography. Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems. 2005.
    [156] Pietrzyk U, Herholz K, Schuster A, Stockhausen H-Mv, Lucht H. Clinical applications of registration and fusion of multimodality brain images from PET, SPECT, CT and MRI. European Journal of Radiology. 1996, 21 (3): 174-182.
    [157] Nowinski WL, Thirunavuukarasuu A. Atlas-assisted localization analysis of functional images. Medical Image Analysis. 2001, 5(3):207-220.
    [158] Sabbah P, Foehrenbach H, Dutenre G, Nioche C, DeDreuille O, Bellegou N, Mangin JF. Multimodal anatimic, functional, and metabolic brain imaging for tumor resection. Clinical Imaging. 2002, 26(1):6-12.
    [159] Nimsky, Ganslandt O, Keller Bv, Fahtbusch R. Registration of preoperative and intraoperative high-field MR image data allows automatic updating of neuronavigation. International Congress Series 1268: 673-677,2004.
    [160] Hastreiter P, Pezk-Salama C, Soza G, Bauer M, Greiner G. Strategies for brain shift evaluation. Medical Image Analysis. 2004, 8(4): 447-464.
    [161] Pennec X, Cachier P, Ayache N. Tracking brain deformations in time sequences of 3D US images. Pattern Recognition Letters. 2003, 24(4-5): 801-813.
    [162] Kopf H, Mattes J, Bale R, Donnemiller E, Trinka E, Schubert R. A modular registration platform for multimodal image matching using ITK-first clinical application: localizing epileptogenic foci. International Congress Series 1268(1237, 2004.
    [163] Richard FJP, Cohen LD. A new Image Registration technique with free boundary constraints: application to mammography. Computer Vision and Image Understanding 89(2-3): 166-196, 2003.
    [164] Frenoux E, Barra V, Boire J-Y, Habert M-O. A new method for the quantitative study of neurotransmission. In Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE,vol 1. 959-962; 2003.
    [165] Subsol G, Roberts N, Doran M, Thirion J-P, Whitehouse GH. Automatic analysis of cerebral atrophy. Magnetic Resonance Imaging 15(8): 917-927, 1997.
    [167] Lee J-M, Kim SH, Jang DP, Ha TH, Kim J-J, Kim IY, Kwon JS. Deformable model with surface registration for hippocampal shape deformity analysis in schizophrenia. Neurolmage 22(2): 831-840, 2004.
    [168] Baete K, Nuyts J, Van Paesschen W, Suetens P, Dupont P. Evaluation of an anatomical based MAP reconstruction algorithm for PET in epilepsy. In Nuclear Science Symposium Conference Record, 2003 IEEE,vol 3.2017-2021; 2003.
    [169] Baete K, Nuyts J, Laere KV, Van Paesschen W, Ceyssens S, De Ceuninck L. Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET. Neurolmage 23(1): 305-317, 2004.
    [170] DeQuardo JR, Bookstein FL, Brunberg JA, Tandon R. Quantitative neuroanatomic study of schizophrenia: landmark-based analysis. Schizophrenia Research 18(2-3): 188, 1996.
    [171] Bajcsy R, Kovacic S. Multiresolution elastic matching. Comput. Vision Graph. Image Process. 46(1): 1-21, 1989.
    [172] Broit C. Optimal registration of deformed images, PhD Dissertation. In USA University of Pennsylvania, 1981.
    [173] Christensen GE, Rabbitt RD, Miller MI. A deformable neuroanatomy textbook based on viscous fluid mechanics. In 27th Annual Conference on Information Sciences and Systems,vol 211-216.1993.
    [174] Bro-Nielsen M, Gramkow C. Fast fluid registration of medical images. In Proc. Visualization in Biomedical Computing (VBC'96), Hamburg, Germany, September, Springer Lecture Notes in Computer Science,vol 1131. 267-276; 1996.
    [175] Sprengel R, Rohr K, Stiehl HS. Thin-plate spline approximation for image registration. In Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE,vol 3. 1190- 1191; 1996.
    [176] Feldmar J, Declerck J, Malandain G, Ayache N. Extension of the ICP Algorithm to Nonrigid Intensity-Based Registration of 3D Volumes. Computer Vision and Image Understanding 66(2): 193-206, 1997.
    [177] Cao Z, Pan S, Li R, Balachandran R, Fitzpatrick JM, Chapman WC. Registration of medical images using an interpolated closest point transform: method and validation. Medical Image Analysis 8(4): 421-427, 2004.
    [178] Thompson P, Toga AW. A surface-based technique for warping three-dimensional images of the brain. Medical Imaging, IEEE Transactions 15(4): 402-417, 1996.
    [179] Park S-Y, Subbarao M. An accurate and fast point-to-plane registration technique. Pattern Recognition Letters 24(16): 2967-2976, 2003.
    [180] Lin H-D, Lin K-P. 3D deformable image processing and integration. International Congress Series 1265: 39-48, 2004.
    [181] Shenton ME, Kikinis R, McCarley W, Saiviroonporn P, Hokama HH, Robatino A, Metcalf D, Wible CG, Portas CM, Iosifescu DV, Donnino R, Goldstein JM, Jolesz FA. Harvard brain atlas: a teaching and visualization tool. In Biomedical Visualization, 1995. Proceedings,vol 10- 17, 81; 1995.
    [182] Liu D, Wang T, Wang Z, Tang Z, Tian Z, Du J, Zhao Q. Study on robot-assisted minimally invasive neurosurgery and its clinical application. In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference,vol 2. 2008-2013; 2001.
    [183] Lee J-D, Huang C-H, Lee S-T. Improving stereotactic surgery using 3-D reconstruction. Engineering in Medicine and Biology Magazine, IEEE 21(6): 109-116, 2002.
    [184] Nowinski WL, Yang GL, Yeo TT. Computer-aided stereotactic functional neurosurgery enhanced by the use of the multiple brain atlas database. Medical Imaging, IEEE Transactions 19(1): 62-69, 2000.
    [185] Webb J, Guimond A, Eldridge P, Chadwick D, Meunier J, Thirion J-P. Automatic detection of hippocampal atrophy on magnetic resonance images. Magnetic Resonance Imaging 17(8): 1149-1161, 1999.
    [186] Evans AC, Collins DL, Milner B. An MRI-based stereotactic brain atlas from 300 young normal subjects. In Proceedings of the 22nd Symposium of the Society for Neuroscience, Anaheim, vol 408; 1992.
    [187] Andreasen NC, Arndt S, Swayze V, al. e. Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 266: 294-298, 1994.
    [188] Evans AC, Collins DL, Neelin P. Three-dimensional correlative imaging: applications in human brain mapping. In: Thatcher RW, Hallett ZM, Zeffiro T, eds. Functional Neuroimaging: Technical Foundations, vol 145-162; 1994.
    [189] Thompson PM, Mega MS, Woods RP, Blanton RE, Moussai J, Zoumalan CI, Aron J, Cummings JL, Toga AW. A Probabilistic Atlas of the Human Brain in Alzheimer's Disease: Emerging Patterns of Variability, Asymmetry and Degeneration. In 5th International Conference on Functional Mapping of the Human Brain, Dusseldorf, Germany,vol 1999.
    [190] Bookstein FL. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis 1(3): 225-243, 1997.
    [191] Woods RP, Mazziotta JC, Cherry SR. MRI-PET registration with automated algorithm. Journal of Computer Assisted Tomography 17: 536-546, 1993.
    [192] Woods RP, Grafton ST, Watson JD, Sicotte NL, Mazziotta JC. Automated image registration: II. Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr. 22(1): 153-165, 1998.
    [193] 罗述谦,周果宏.医学图象处理与分析.北京,科学出版社,2003.
    [194] Studholme C, Cardenas V. A template free approach to volumetric spatial normalization of brain anatomy. Pattern Recognition Letters 25(10): 1191-1202, 2004.
    [195] Otaky N, Paus T, D'Avirro D. Volumetric analysis of the human cingulate, paracingulate, and superior rostral sulci. Society for Neuroscience Abstracts 21(1): 154, 1995.
    [196] Paus T, Tomaioulo F, Otaky N, et a. Human cingulate and paracingulate sulci: pattern, variability, asymmetry and probabilistic map. Cerebral Cortex 6: 207-214, 1996.
    [197] Thompson PM, Narr KL, Blanton RE. Mapping Structural Alterations of the Corpus Callosum during Brain Development and Degeneration. In: Marco Iacoboni EZ, ed. The Parallel Brain,vol MIT Press, Cambridge, 2003.
    [198] Thompson P, Mega MS, Toga AW. Disease-specific probabilistic brain atlases. In Mathematical Methods in Biomedical Image Analysis, 2000. Proceedings. IEEE Workshop,vol Academic Press, New York, 227-234; 2000.
    [199] Thompson PM, MacDonald D, Mega MS. Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. Journal of Computer Assisted Tomography 21 (4): 567-581, 1997.
    [200] Grenander U, Miller MI. Computational anatomy: an emerging discipline. In Technical Report, Department of Mathematics, Brown University,vol 1998.
    [201] Riddle WR, Li R, Fitzpatrick JM, DonLevy SC, Dawant BM. Characterizing changes in MR images with color-coded Jacobians. Magnetic Resonance Imaging 22(6): 769-777, 2004.
    [202] 李传富,周康源,吴月娥,何力等.基于非刚性配准的自动化病变区域分割及其特征提取算法.中国生物医学工程学报(已录用)
    [203] Thirion J-P. Non-rigid Matching using demons. In computer Vision and Pattern Recoginition, 1996. Procedings CVRP'96, 1996 IEEE Computer Society Conference, vol 245-251; 1996.
    [204] Hellier P, Barillot C, Corouge I, etc. Retrospective evaluation of intersubject brain registration. Medical Imaging, IEEE Transactions 22(9) : 1120-1130, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700