用户名: 密码: 验证码:
Wnt信号通路及TCF7L2在2型糖尿病中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究2型糖尿病(T2DM)病人胰腺组织基因表达谱变化;筛选出Wnt信号通路相关的差异表达基因;并验证转录因子7类似物2(TCF7L2)依赖的Wnt信号通路相关基因的表达水平。
     方法:胰腺组织标本来源于复旦大学上海医学院病理科组织样本库。芯片样本为2例T2DM(平均年龄55岁)和1例非糖尿病(50岁),PCR样本包括4例T2DM(72±3.72岁)和5例非糖尿病(52±11.1岁)。捐赠者死亡后迅速获取胰腺组织,抽提总RNA。应用18,000个克隆的杂交膜进行cDNA微阵列杂交。芯片数据标准化处理后,采用倍数法筛选糖尿病和非糖尿病之间的差异表达基因,阈值为1.5倍。采用DAVID (http://david. abcc. ncifcrf. gov/)在线分析工具,对差异表达基因进行日本京都基因和基因组百科全书代谢通路(KEGG pathway)功能富集分析。并用实时荧光定量PCR验证部分Wnt信号通路的基因表达,同时使用Western Blot检测核蛋白TCF7L2的水平。采用非参数Mann-Whiteney统计方法检验基因芯片结果与PCR结果的差异。
     结果:基因芯片数据分析结果显示T2DM病人的胰腺差异表达基因有4200条;这些差异表达基因富集于Wnt信号通路、粘着斑、胰岛素信号通路、泛素化介导的蛋白降解通路,以及氧化磷酸化等40余条代谢通路;在Wnt信号通路中有41个差异表达基因,这些基因分布在Wnt信号通路的各个分支;定量PCR结果显示:与非糖尿病相比,T2DM胰腺Wnt4的mRNA相对表达量为1.691,Frizzled-4受体(FZD4)为1.158,糖原合酶激酶3β(GSK 3β)为2.273,Ib异构体血小板活化因子乙酰水解酶的α亚基(PAFAHB1)为1.889,蛋白磷酸化酶2调节亚基2 Y(PPP2R5C)为1.892,果蝇散乱基因(DVL1)为1.603,β连环蛋白(CTNNB1)为1.190,TCF7L2为1.929,这些数据与基因芯片表达水平相符;此外T2DM胰腺TCF7L2蛋白水平下调。
     结论:①T2DM胰岛β细胞功能受损可能与Wnt信号通路、粘着斑、胰岛素信号通路、泛素化介导的蛋白降解通路,以及氧化磷酸化等代谢通路有关;②根据Wnt信号通路相关基因的芯片数据和PCR验证结果,推测T2DM时胰腺Wnt信号通路失调,可能处于受抑制或失活状态。TCF7L2是Wnt信号通路中的关键转录因子,TCF7L2表达水平的改变可能对其下游靶基因有重要影响,因此有待于进一步深入研究TCF7L2对全基因组转录的影响。
     目的:TCF7L2为经典Wnt信号通路的关键转录因子,近来研究证实TCF7L2与T2DM发病密切相关,本研究利用染色质免疫共沉淀测序(ChIP-Seq)新技术研究TCF7L2在小鼠胰岛β细胞全基因组的结合位点,寻找TCF7L2的潜在靶基因。
     方法:采用Western Blot检测小鼠胰岛β细胞株MIN6细胞的TCF7L2蛋白表达水平,氯化锂干预培养的MIN6细胞24小时,利用染色质免疫共沉淀技术(ChIP)获取TCF7L2蛋白结合的全基因组片段,利用基于solexa的新一代测序技术,在Illumina Genome AnalyzerⅡⅩ平台上对TCF7L2获得的片段产物和Input对照片段进行测序。利用eland算法将测序片段比对到小鼠的参考基因组(mm9);用macs软件包获取TCF7L2在全基因组上的侯选结合位点;利用meme软件包计算TCF7L2的基序(motif);并利用课题组研制的软件包统计TCF7L2结合位点在全基因组上的分布;基于国家生物技术信息中心(NCBI)的基因表达数据库(GEO),分析TCF7L2与DNA结合对基因转录的影响;对启动子区有TCF7L2结合的基因利用DAVID在线工具进行功能富集分析。
     结果:对TCF7L2和Input样品,利用ChIP-Seq技术,分别获得了2418万和3400万的原始序列簇(raw cluster);比对到mm9之后,分别获得了450万和1220万的特异比对片段(Unique Reads),测序错误率小于0.5%;通过生物信息学分析获得了17347个TCF7L2在全基因组上的结合位点;在这些结合位点中,有17.3%分布启动子区,有23.7%在内含子区,有2.1%在外显子区,有57.0%在基因间区;用meme软件包分析显示TCF7L2的基序为GAGA、TCTC重复序列;结合基因表达数据分析显示表达水平高的基因的转录起始位点(TSS)附近TCF7L2富集幅度低,而低表达基因富集幅度反而高;注释基因TSS±10kb内TCF7L2的候选靶基因有3600个,其中有15个明确是Wnt靶基因,有12个是已知的2型糖尿病易感基因;注释基因TSS±2kb内TCF7L2的候选靶基因有703个,KEGG代谢通路分析显示这些候选靶基因富集于丝裂原活化蛋白激酶信号通路(MAPK)、Toll样受体信号通路、Janus激酶-信号转导转录激活因子(JAK-STAT)、胰岛素信号通路、细胞周期、凋亡等20余条通路,基因本体(GO)分析显示富集于细胞分化、减数分裂细胞周期、细胞成熟、细胞周期各阶段等生物过程。
     结论:在MIN6细胞中,TCF7L2蛋白主要结合在基因间区,但对启动子和内含子有更高的结合倾向;TCF7L2对基因转录有抑制也有促进作用,但以抑制占优势。TCF7L2蛋白的全基因组结合位点包含明确的Wnt靶基因和已知的糖尿病易感基因,候选的TCF7L2靶基因主要参与细胞的生长、发育,及富集于MAPK、JAK-STAT、Toll样受体等与炎症相关的代谢通路。通过对小鼠胰岛β细胞TCF7L2蛋白候选靶基因的分析,推测TCF7L2可能通过已知的糖尿病易感基因、调控胰岛β细胞的增殖和凋亡、炎症相关基因等参与糖尿病的发生发展。为了证实TCF7L2真正的靶基因,尚需进一步研究TCF7L2在胰岛β细胞中对基因转录表达的影响。
Objective:To investigate the change of gene expression profile in pancreas of patients with type 2 diabetes mellitus (T2DM); to screen differentially expressed genes in Wnt signaling pathway; and to validate the expression level of genes involved in transcription factor 7-like 2 (TCF7L2)-dependent Wnt signaling pathway.
     Methods:Samples of Pancreas were obtained from the tissue bank of pathology department, Shanghai Medical College, Fudan University. We used microarray to detect 2 samples with T2DM (average age 55 years) and one without T2DM (50 years old), and used PCR to validate gene expressions for four cases with T2DM (average age 72±3.72 years) and five without T2DM (average age 52±11.1 years). Pancreas samples were isolated from each donor after death and extracted for total RNA. The cDNA microarray was hybridized using hybond membrane with 18,000 clones. After the raw array data were normalized, the differential expression of genes between diabetic and control groups was evaluated using fold change (cutoff=1.5). We performed functional enrichment analysis of KEGG (Kyoto Encyclopedia of Genes and Genomes) for these differential expressional genes with DAVID (http://david.abcc.ncifcrf.gov/) online tools. The expression level of selected genes from the Wnt signaling pathway was validated by real time quantitive PCR, and the nucleoprotein TCF7L2 was detected by the Western Blot. The statistical test of non-parametric Mann-Whiteney was used for testing the difference between the result of microarray and that of PCR.
     Results:Compared with the control, there were 4200 differentially expressed genes in the gene chip of pancreas of patients with T2DM. The analysis of KEGG pathway showed that these differential expression genes were mainly enriched in more than 40 pathway including Wnt signaling pathway, focal adhesion, insulin signaling pathway, ubiquitin mediated proteolysis, oxidative phosphorylation; and there were 41 differentially expressed genes in Wnt signaling pathway, which were distributed in various branches of Wnt signaling pathway. Using quantitative PCR, in pancreas of patients with T2DM compared with non-diabetic patients, relative mRNA expression of wingless-type MMTV integration site family, member 4 (Wnt4) was 1.691, frizzled homolog 4 (FZD4) 1.158, glycogen synthase kinase 3 beta (GSK 3β) 2.273 platelet-activating factor acetylhydrolase, isoformⅠb, alpha subunit (PAFAHB1) 1.889, protein phosphatase 2, regulatory subunit B (B56), gamma isoform(PPP2R5C) 1.892, dishevelled 1(DVL1)1.603, Catenin, beta-1 (CTNNB1) 1.190 TCF7L2 1.929, which corresponded with the expression level of gene chips. In addition, the protein of TCF7L2 was decreased in pancreas of patients with T2DM.
     Conclusion:Islet P-cell dysfunction in T2DM may be associated with Wnt signaling pathway, focal adhesion, insulin signaling pathway, ubiquitination-mediated protein degradation pathway, and oxidative phosphorylation et.al. Based on the expression of Wnt signaling pathway genes in microarray data and PCR results, it was supposed that the Wnt signaling was dysregulated in diabetic pancreas, and it may be inhibited or not activited. TCF7L2 is a key Wnt signaling pathway transcription factors, and the change of TCF7L2 expression may have important impact on its downstream target genes. Therefore, the effect of TCF7L2 on the whole genome transcription need to be further studied.
     Objective:TCF7L2 is the key transcription factor of classical Wnt signaling pathway. Recent studies have confirmed that TCF7L2 is strongly associated with T2DM. In the study, the new chromatin immunoprecipitation sequence (ChIP-Seq) technique was used to investigate the whole genome binding sites of TCF7L2 in mouse pancreatic isletβcell in order to seek out the potential target genes of TCF7L2.
     Methods:The TCF7L2 protein level was detected by Western Blot in mouse pancreaticβcell line MIN6 cell. MIN6 cell was cultured in medium with lithium chloride for 24 hours. The binding fragment of the whole genome of TCF7L2 protein was obtained by chromatin immunoprecipitation technique (ChIP). Using the new generation of sequencing technology based on Solexa, the DNA fragments of TCF7L2 obtained and Input control were sequenced on the Illumina Genome Analyzer II X platform. Then the sequenced fragments were mapped to the reference mouse genome(mm9) by Eland algorithm; the candidate binding sites of TCF7L2 in the whole genome were obtained by MACS packages; The motifs of TCF7L2 were calculated using meme package; the TCF7L2 binding sites in the genome-wide distribution were counted by package developed by our group; based on the Gene Expression Omnibus (GEO) from National Center for Biotechnology information (NCBI), the effect of the binding between TCF7L2 and DNA on the gene transcription was analyzed; these genes, whose promoter region were bound by TCF7L2 protein, were performed functional enrichment analysis using online tools of DAVID.
     Results:Using ChIP-Seq,24.18 million and 34 million of the raw sequence cluster were respectively obtained in the sample immunoprecipited by TCF7L2 and Input sample; after mapping to mm9,4.5 million and 12.2 million of Unique Reads were respectively obtained, their sequencing error rates were both less than 0.5%; 17,347 binding sites of TCF7L2 protein in the whole-genome were obtained by bioinformatics analysis; 17.3%of those binding sites was distributed in promoter regions,23.7% in introns,2.1% in exons,57.0% in intergenic; The meme, a motif finding package, defined the in vivo-occupied TCF7L2-binding site as GAGA and TCTC repeat sequence; combined with gene expression data, it showed that peaks of binding sites of TCF7L2 were lower near the transcription start sites (TSS) of genes whose gene expression were higher, the peaks were high near the low expression genes; there were 3600 candidate target genes of TCF7L2 within TSS±10kb of annotated genes,15 of which were known as Wnt targeted genes, and 12 known as susceptibility gene of T2DM; there were 703 candidate target genes of TCF7L2 within TSS±2kb of annotated genes, KEGG pathway analysis revealed that those candidate target genes were enriched in more than 20 pathway, including mitogen-activated protein kinase signaling pathway (MAPK), Toll-like receptor signaling pathway, Janus kinase-signal transducer activator of transcription (JAK-STAT), insulin signaling pathway, cell cycle, apoptosis; Gene Ontology (GO) analysis showed that these genes were involved in many biological processes, such as cell differentiation, meiotic cell cycle, cell maturation, cell cycle stages.
     Conclusion:In MIN6 cell, TCF7L2 protein mostly bound to intergenic, but had higher affinity with promoter and intron; it was supposed that TCF7L2 protein could inhibit and activate the gene transcription, but transcriptional inhibition may be dominant. The binding sites of TCF7L2 protein in the whole-genome included known Wnt targeted genes and diabetic susceptibility gene. The candidate target genes of TCF7L2 mostly were involved in cell growth, development and inflammation-related metabolic pathways, such as MAPK, JAK-STAT, Toll-like receptors pathway. By the analysis of candidate target gene of TCF7L2 in mouse pancreaticβcell, it was speculated that TCF7L2 may participate in the development of diabetes through those known diabetic genes, genes regulating pancreaticβcell proliferation and apoptosis, genes involved in inflammation. In order to identify true target TCF7L2 gene, further studies are needed to investigate the effect of TCF7L2 on transcription of gene expression in pancreatic islet (3 cell.
引文
[1]Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic[J]. Nature,2001; 414(6865):782-787.
    [2]Barroso I, Gurnell M, Crowley VE, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension[J]. Nature,1999; 402(6764):880-883.
    [3]Gloyn AL, Pearson ER, Antcliff JF, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes[J]. N Engl J Med,2004; 350(18):1838-1849.
    [4]Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity [J]. Science,2007; 316(5826):889-894.
    [5]Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes[J]. Nat Genet,2006; 38(3):320-323.
    [6]Zhang C, Qi L, Hunter DJ, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene and the risk of type 2 diabetes in large cohorts of U.S. women and men[J]. Diabetes,2006; 55(9):2645-2648.
    [7]Cauchi S, Meyre D, Dina C, et al. Transcription factor TCF7L2 genetic study in the French population:expression in human beta-cells and adipose tissue and strong association with type 2 diabetes[J]. Diabetes,2006; 55(10):2903-2908.
    [8]Groves CJ, Zeggini E, Minton J, et al. Association analysis of 6,736 U.K. subjects provides replication and confirms TCF7L2 as a type 2 diabetes susceptibility gene with a substantial effect on individual risk[J]. Diabetes,2006; 55(9):2640-2644.
    [9]Scott LJ, Bonnycastle LL, Willer CJ, et al. Association of transcription factor 7-like 2 (TCF7L2) variants with type 2 diabetes in a Finnish sample[J]. Diabetes,2006; 55(9):2649-2653.
    [10]Parra EJ, Cameron E, Simmonds L, et al. Association of TCF7L2 polymorphisms with type 2 diabetes in Mexico City[J]. Clin Genet,2007; 71(4):359-366.
    [11]Horikoshi M, Hara K, Ito C, et al. A genetic variation of the transcription factor 7-like 2 gene is associated with risk of type 2 diabetes in the Japanese population[J]. Diabetologia, 2007;50(4):747-751.
    [12]Ng MC, Park KS, Oh B, et al. Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians[J]. Diabetes,2008; 57(8):2226-2233.
    [13]李文毅,骆天红,张宏利,等.TCF7L2基因多态性与中国人群2型糖尿病发病风险的 关联研究[J].诊断学理论与实践,2007;6(2):111-114.
    [14]Chang YC, Chang TJ, Jiang YD, et al. Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population[J]. Diabetes,2007; 56(10):2631-2637.
    [15]Ng MC, Tam CH, Lam VK, et al. Replication and identification of novel variants at TCF7L2 associated with type 2 diabetes in Hong Kong Chinese[J]. J Clin Endocrinol Metab,2007; 92(9):3733-3737.
    [16]Ren Q, Han XY, Wang F, et al. Exon sequencing and association analysis of polymorphisms in TCF7L2 with type 2 diabetes in a Chinese population[J]. Diabetologia, 2008;51(7):1146-1152.
    [17]Wen J, Ronn T, Olsson A, et al. Investigation of type 2 diabetes risk alleles support CDKN2A/B, CDKAL1, and TCF7L2 as susceptibility genes in a Han Chinese cohort[J]. PLoS One; 5(2):e9153.
    [18]汪志红,张素华,王曾产,等.中国汉族人群TCF7L2基因多态性与2型糖尿病的关联研究[J].中华内分泌代谢杂志,2009;25(2):139-143.
    [19]张勇,荣海钦,王辉,et al. TCF7L2基因rs290487多态性与2型糖尿病相关研究[J].实用糖尿病杂志,2009;5(3):27-29.
    [20]Weedon MN, McCarthy MI, Hitman G, et al. Combining information from common type 2 diabetes risk polymorphisms improves disease prediction[J]. PLoS Med,2006; 3(10):e374.
    [21]Duval A, Busson-Leconiat M, Berger R, et al. Assignment of the TCF-4 gene (TCF7L2) to human chromosome band 10q25.3[J]. Cytogenet Cell Genet,2000; 88(3-4):264-265.
    [22]van Es JH, Barker N, Clevers H. You Wnt some, you lose some:oncogenes in the Wnt signaling pathway[J]. Curr Opin Genet Dev,2003; 13(1):28-33.
    [23]Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis-a look outside the nucleus[J]. Science,2000; 287(5458):1606-1609.
    [24]Doble BW, Woodgett JR. GSK-3:tricks of the trade for a multi-tasking kinase[J]. J Cell Sci,2003; 116(Pt 7):1175-1186.
    [25]Zeng X, Tamai K, Doble B, et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation[J]. Nature,2005; 438(7069):873-877.
    [26]Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta[J]. J Biol Chem, 2005; 280(2):1457-1464.
    [27]Schafer SA, Tschritter O, Machicao F, et al. Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms[J]. Diabetologia,2007; 50(12):2443-2450.
    [28]Liu Z, Habener JF. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation[J]. J Biol Chem,2008; 283(13):8723-8735.
    [29]Rulifson IC, Karnik SK, Heiser PW, et al. Wnt signaling regulates pancreatic beta cell proliferation[J]. Proc Natl Acad Sci U S A,2007; 104(15):6247-6252.
    [30]Shu L, Sauter NS, Schulthess FT, et al. Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets[J]. Diabetes,2008; 57(3):645-653.
    [31]Florez JC, Jablonski KA, Bayley N, et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program[J]. N Engl J Med,2006; 355(3):241-250.
    [32]Lyssenko V, Lupi R, Marchetti P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes[J]. J Clin Invest,2007; 117(8):2155-2163.
    [33]Shu L, Matveyenko AV, Kerr-Conte J, et al. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP-and GLP-1 receptors and impaired beta-cell function[J]. Hum Mol Genet,2009; 18(13):2388-2399.
    [34]Loder MK, da Silva Xavier G, McDonald A, et al. TCF7L2 controls insulin gene expression and insulin secretion in mature pancreatic beta-cells [J]. Biochem Soc Trans, 2008;36(Pt 3):357-359.
    [35]O'Rahilly S, Wareham NJ. Genetic variants and common diseases-better late than never[J]. N Engl J Med,2006; 355(3):306-308.
    [36]Fujino T, Asaba H, Kang MJ, et al. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion[J]. Proc Natl Acad Sci U S A,2003; 100(1):229-234.
    [37]Ni Z, Anini Y, Fang X, et al. Transcriptional activation of the proglucagon gene by lithium and beta-catenin in intestinal endocrine L cells[J]. J Biol Chem,2003; 278(2):1380-1387.
    [38]Yi F, Sun J, Lim GE, et al. Cross talk between the insulin and Wnt signaling pathways: evidence from intestinal endocrine L cells[J]. Endocrinology,2008; 149(5):2341-2351.
    [39]Guo YF, Xiong DH, Shen H, et al. Polymorphisms of the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with obesity phenotypes in a large family-based association study[J]. J Med Genet,2006; 43(10):798-803.
    [40]Mani A, Radhakrishnan J, Wang H, et al. LRP6 mutation in a family with early coronary disease and metabolic risk factors[J]. Science,2007; 315(5816):1278-1282.
    [41]Kokubu C, Heinzmann U, Kokubu T, et al. Skeletal defects in ringelschwanz mutant mice reveal that Lrp6 is required for proper somitogenesis and osteogenesis[J]. Development, 2004; 131(21):5469-5480.
    [42]Kanazawa A, Tsukada S, Sekine A, et al. Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes[J]. Am J Hum Genet,2004; 75(5):832-843.
    [43]Murphy LL, Hughes CC. Endothelial cells stimulate T cell NFAT nuclear translocation in the presence of cyclosporin A:involvement of the wnt/glycogen synthase kinase-3 beta pathway[J]. J Immunol,2002; 169(7):3717-3725.
    [44]Heit JJ, Apelqvist AA, Gu X, et al. Calcineurin/NFAT signalling regulates pancreatic beta-cell growth and function[J]. Nature,2006; 443(7109):345-349.
    [45]Heller RS, Dichmann DS, Jensen J, et al. Expression patterns of Wnts, Frizzleds, sFRPs, and misexpression in transgenic mice suggesting a role for Wnts in pancreas and foregut pattern formation[J]. Dev Dyn,2002; 225(3):260-270.
    [46]Papadopoulou S, Edlund H. Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function[J]. Diabetes,2005; 54(10):2844-2851.
    [47]Murtaugh LC, Law AC, Dor Y, et al. Beta-catenin is essential for pancreatic acinar but not islet development[J]. Development,2005; 132(21):4663-4674.
    [48]Heiser PW, Lau J, Taketo MM, et al. Stabilization of beta-catenin impacts pancreas growth[J]. Development,2006; 133(10):2023-2032.
    [49]Krutzfeldt J, Stoffel M. Regulation of wingless-type MMTV integration site family (WNT) signalling in pancreatic islets from wild-type and obese mice[J]. Diabetologia,2009; 53(1):123-127.
    [50]Lee SH, Demeterco C, Geron I, et al. Islet specific Wnt activation in human type Ⅱ diabetes[J]. Exp Diabetes Res,2008; 2008(728763.
    [51]范德刚,范清宇,张惠中,等.利用基因芯片技术筛选不同转移能力骨肉瘤细胞差异表达基因[J].第四军医大学学报,2003;24(9):816-819.
    [52]杨磊,顾永清,潘泽民,等.长期砷诱导L02细胞的表达谱基因芯片实验[J].第四军医大学学报,2004;25(13):1205-1207.
    [53]Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis:a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci U S A,2005; 102(43):15545-15550.
    [54]Dennis G, Jr., Sherman BT, Hosack DA, et al. DAVID:Database for Annotation, Visualization, and Integrated Discovery[J]. Genome Biol,2003; 4(5):P3.
    [55]Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc,2009; 4(1):44-57.
    [56]Kanehisa M. The KEGG database[J]. Novartis Found Symp,2002; 247(91-101; discussion 101-103,119-128,244-152.
    [57]Dahlquist KD, Salomonis N, Vranizan K, et al. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways[J]. Nat Genet,2002;31(1):19-20.
    [58]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001; 25(4):402-408.
    [59]Schmittgen TD, Zakrajsek BA, Mills AG, et al. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay:comparison of endpoint and real-time methods[J]. Anal Biochem,2000; 285(2):194-204.
    [60]Lim AK, Nikolic-Paterson DJ, Ma FY, et al. Role of MKK3-p38 MAPK signalling in the development of type 2 diabetes and renal injury in obese db/db mice[J]. Diabetologia,
    2009; 52(2):347-358.
    [61]Rosso A, Balsamo A, Gambino R, et al. p53 Mediates the accelerated onset of senescence of endothelial progenitor cells in diabetes[J]. J Biol Chem,2006; 281(7):4339-4347.
    [62]Webb GC, Akbar MS, Zhao C, et al. Expression profiling of pancreatic beta cells:glucose regulation of secretory and metabolic pathway genes[J]. Proc Natl Acad Sci U S A,2000; 97(11):5773-5778.
    [63]Sabek OM, Marshall DR, Penmetsa R, et al. Examination of gene expression profile of functional human pancreatic islets after 2-week culture[J]. Transplant Proc,2006; 38(10):3678-3679.
    [64]Imai Y, Patel HR, Doliba NM, et al. Analysis of gene expression in pancreatic islets from diet-induced obese mice[J]. Physiol Genomics,2008; 36(1):43-51.
    [65]Keller MP, Choi Y, Wang P, et al. A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility [J]. Genome Res,2008; 18(5):706-716.
    [66]Bensellam M, Van Lommel L, Overbergh L, et al. Cluster analysis of rat pancreatic islet gene mRNA levels after culture in low-, intermediate-and high-glucose concentrations [J]. Diabetologia,2009; 52(3):463-476.
    [67]Lawrence MC, Bhatt HS, Easom RA. NFAT regulates insulin gene promoter activity in response to synergistic pathways induced by glucose and glucagon-like peptide-1[J]. Diabetes,2002; 51(3):691-698.
    [68]Schinner S, Ulgen F, Papewalis C, et al. Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipocyte-derived Wnt signalling molecules[J]. Diabetologia,2008; 51(1):147-154.
    [69]Tanaka S, Akiyoshi T, Mori M, et al. A novel frizzled gene identified in human esophageal carcinoma mediates APC/beta-catenin signals[J]. Proc Natl Acad Sci U S A,1998; 95(17):10164-10169.
    [70]Sagara N, Kirikoshi H, Terasaki H, et al. FZD4S, a splicing variant of frizzled-4, encodes a soluble-type positive regulator of the WNT signaling pathway [J]. Biochem Biophys Res Commun,2001; 282(3):750-756.
    [71]Sun J, Wang D, Jin T. Insulin alters the expression of components of the Wnt signaling pathway including TCF-4 in the intestinal cells[J]. Biochim Biophys Acta; 1800(3):344-351.
    [72]Padmanabhan S, Mukhopadhyay A, Narasimhan SD, et al. A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation[J]. Cell,2009; 136(5):939-951.
    [73]Castrop J, van Norren K, Clevers H. A gene family of HMG-box transcription factors with homology to TCF-1 [J]. Nucleic Acids Res,1992; 20(3):611.
    [74]Railo A, Pajunen A, Itaranta P, et al. Genomic response to Wnt signalling is highly context-dependent-evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets[J]. Exp Cell Res,2009; 315(16):2690-2704.
    [75]He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway[J]. Science,1998; 281(5382):1509-1512.
    [76]Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells[J]. Nature,1999; 398(6726):422-426.
    [77]Sansom OJ, Reed KR, van de Wetering M, et al. Cyclin D1 is not an immediate target of beta-catenin following Apc loss in the intestine[J]. J Biol Chem,2005; 280(31):28463-28467.
    [78]Shtutman M, Zhurinsky J, Simcha I, et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway[J].Proc Natl Acad Sci U S A,1999; 96(10):5522-5527.
    [79]He TC, Chan TA, Vogelstein B, et al. PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs[J]. Cell,1999; 99(3):335-345.
    [80]Yan D, Wiesmann M, Rohan M, et al. Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/beta-catenin signaling is activated in human colon tumors[J]. Proc Natl Acad Sci U S A,2001; 98(26):14973-14978.
    [81]Lustig B, Jerchow B, Sachs M, et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors[J]. Mol Cell Biol,2002; 22(4):1184-1193.
    [82]Jho EH, Zhang T, Domon C, et al. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway[J]. Mol Cell Biol,2002; 22(4):1172-1183.
    [83]Carroll JS, Meyer CA, Song J, et al. Genome-wide analysis of estrogen receptor binding sites[J]. Nat Genet,2006; 38(11):1289-1297.
    [84]Cawley S, Bekiranov S, Ng HH, et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs[J]. Cell,2004; 116(4):499-509.
    [85]Loh YH, Wu Q, Chew JL, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells[J]. Nat Genet,2006; 38(4):431-440.
    [86]Cheng AS, Jin VX, Fan M, et al. Combinatorial analysis of transcription factor partners reveals recruitment of c-MYC to estrogen receptor-alpha responsive promoters[J]. Mol Cell,2006;21(3):393-404.
    [87]Park PJ. ChIP-seq:advantages and challenges of a maturing technology [J]. Nat Rev Genet, 2009; 10(10):669-680.
    [88]Hatzis P, van der Flier LG, van Driel MA, et al. Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells[J]. Mol Cell Biol,2008; 28(8):2732-2744.
    [89]Wei CL, Wu Q, Vega VB, et al. A global map of p53 transcription-factor binding sites in the human genome[J]. Cell,2006; 124(1):207-219.
    [90]Martone R, Euskirchen G, Bertone P, et al. Distribution of NF-kappaB-binding sites across human chromosome 22[J]. Proc Natl Acad Sci U S A,2003; 100(21):12247-12252.
    [91]Zhang T, Otevrel T, Gao Z, et al. Evidence that APC regulates survivin expression:a possible mechanism contributing to the stem cell origin of colon cancer[J]. Cancer Res, 2001; 61(24):8664-8667.
    [92]Spiegelman VS, Slaga TJ, Pagano M, et al. Wnt/beta-catenin signaling induces the expression and activity of betaTrCP ubiquitin ligase receptor[J]. Mol Cell,2000; 5(5):877-882.
    [93]Niida A, Hiroko T, Kasai M, et al. DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway[J]. Oncogene,2004; 23(52):8520-8526.
    [94]Gonzalez-Sancho JM, Aguilera O, Garcia JM, et al. The Wnt antagonist DICKKOPF-1 gene is a downstream target of beta-catenin/TCF and is downregulated in human colon cancer[J]. Oncogene,2005; 24(6):1098-1103.
    [95]Chamorro MN, Schwartz DR, Vonica A, et al. FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development[J]. EMBO J, 2005; 24(1):73-84.
    [96]Longo KA, Kennell JA, Ochocinska MJ, et al. Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors[J]. J Biol Chem,2002; 277(41):38239-38244.
    [97]Balciunaite G, Keller MP, Balciunaite E, et al. Wnt glycoproteins regulate the expression of FoxNl, the gene defective in nude mice[J]. Nat Immunol,2002; 3(11):1102-1108.
    [98]Tice DA, Szeto W, Soloviev I, et al. Synergistic induction of tumor antigens by Wnt-1 signaling and retinoic acid revealed by gene expression profiling[J]. J Biol Chem,2002; 277(16):14329-14335.
    [99]Rodilla V, Villanueva A, Obrador-Hevia A, et al. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer[J]. Proc Natl Acad Sci U S A,2009; 106(15):6315-6320.
    [100]Boon EM, van der Neut R, van de Wetering M, et al. Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer[J]. Cancer Res,2002; 62(18):5126-5128.
    [101]Wu B, Crampton SP, Hughes CC. Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration[J]. Immunity,2007; 26(2):227-239.
    [102]ten Berge D, Brugmann SA, Helms JA, et al. Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development[J]. Development,2008; 135(19):3247-3257.
    [103]Zhou C, Liu S, Zhou X, et al. Overexpression of human pituitary tumor transforming gene (hPTTG), is regulated by beta-catenin/TCF pathway in human esophageal squamous cell carcinoma[J]. Int J Cancer,2005; 113(6):891-898.
    [104]Dong YF, Soung do Y, Schwarz EM, et al. Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor[J]. J Cell Physiol,2006; 208(1):77-86.
    [105]Kolligs FT, Nieman MT, Winer I, et al. ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with beta-catenin defects and promotes neoplastic transformation[J]. Cancer Cell,2002; 1(2):145-155.
    [106]Aguilar-Bryan L, Bryan J. Molecular biology of adenosine triphosphate-sensitive potassium channels[J]. Endocr Rev,1999; 20(2):101-135.
    [107]Hani EH, Boutin P, Durand E, et al. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR):a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians[J]. Diabetologia,1998; 41(12):1511-1515.
    [108]Gloyn AL, Weedon MN, Owen KR, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes[J]. Diabetes,2003; 52(2):568-572.
    [109]Nielsen EM, Hansen L, Carstensen B, et al. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes[J]. Diabetes,2003; 52(2):573-577.
    [110]Barroso I, Luan J, Middelberg RP, et al. Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action[J]. PLoS Biol,2003; 1(1):E20.
    [111]Ong KK, Phillips DI, Fall C, et al. The insulin gene VNTR, type 2 diabetes and birth weight[J]. Nat Genet,1999; 21(3):262-263.
    [112]Herbach N, Rathkolb B, Kemter E, et al. Dominant-negative effects of a novel mutated Ins2 allele causes early-onset diabetes and severe beta-cell loss in Munich Ins2C95S mutant mice[J]. Diabetes,2007; 56(5):1268-1276.
    [113]Mishima Y, Kuyama A, Tada A, et al. Relationship between serum tumor necrosis factor-alpha and insulin resistance in obese men with Type 2 diabetes mellitus[J]. Diabetes Res Clin Pract,2001; 52(2):119-123.
    [114]Hansen T, Andersen CB, Echwald SM, et al. Identification of a common amino acid polymorphism in the p85alpha regulatory subunit of phosphatidylinositol 3-kinase:effects on glucose disappearance constant, glucose effectiveness, and the insulin sensitivity index[J]. Diabetes,1997; 46(3):494-501.
    [115]Kataoka K, Han SI, Shioda S, et al. MafA is a glucose-regulated and pancreatic beta-cell-specific transcriptional activator for the insulin gene[J]. J Biol Chem,2002; 277(51):49903-49910.
    [116]Kaneto H, Matsuoka TA, Nakatani Y, et al. A crucial role of MafA as a novel therapeutic target for diabetes[J]. J Biol Chem,2005; 280(15):15047-15052.
    [117]Ueki K, Kadowaki T, Kahn CR. Role of suppressors of cytokine signaling SOCS-1 and SOCS-3 in hepatic steatosis and the metabolic syndrome[J]. Hepatol Res,2005; 33(2):185-192.
    [118]Jamieson E, Chong MM, Steinberg GR, et al. Socsl deficiency enhances hepatic insulin signaling[J]. J Biol Chem,2005; 280(36):31516-31521.
    [119]Roder ME, Vissing H, Nauck MA. Hyperproinsulinemia in a three-generation Caucasian family due to mutant proinsulin (Arg65-His) not associated with imparied glucose tolerance:the contribution of mutant proinsulin to insulin bioactivity[J]. J Clin Endocrinol Metab,1996; 81(4):1634-1640.
    [120]Warren-Perry MG, Manley SE, Ostrega D, et al. A novel point mutation in the insulin gene giving rise to hyperproinsulinemia[J]. J Clin Endocrinol Metab,1997; 82(5):1629-1631.
    [121]Johnson GC, Payne F, Nutland S, et al. A comprehensive, statistically powered analysis of GAD2 in type 1 diabetes[J]. Diabetes,2002; 51(9):2866-2870.
    [1]Miller JR. The Wnts[J]. Genome Biol,2002; 3(1):REVIEWS3001.
    [2]Akiyama T. Wnt/beta-catenin signaling[J]. Cytokine Growth Factor Rev,2000; 11(4):273-282.
    [3]Kanazawa A, Tsukada S, Sekine A, et al. Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes[J]. Am J Hum Genet,2004; 75(5):832-843.
    [4]Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes[J]. Nat Genet,2006; 38(3):320-323.
    [5]Willert K, Nusse R. Beta-catenin:a key mediator of Wnt signaling[J]. Curr Opin Genet Dev, 1998; 8(1):95-102.
    [6]Welters HJ, Kulkarni RN. Wnt signaling:relevance to beta-cell biology and diabetes[J]. Trends Endocrinol Metab,2008; 19(10):349-355.
    [7]Prestwich TC, Macdougald OA. Wnt/beta-catenin signaling in adipogenesis and metabolism[J]. Curr Opin Cell Biol,2007; 19(6):612-617.
    [8]Kanazawa A, Tsukada S, Kamiyama M, et al. Wnt5b partially inhibits canonical Wnt/beta-catenin signaling pathway and promotes adipogenesis in 3T3-L1 preadipocytes[J]. Biochem Biophys Res Commun,2005; 330(2):505-510.
    [9]Lyssenko V, Lupi R, Marchetti P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes[J]. J Clin Invest,2007; 117(8):2155-2163.
    [10]Schafer SA, Tschritter O, Machicao F, et al. Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms[J]. Diabetologia,2007; 50(12):2443-2450.
    [11]Damcott CM, Pollin TI, Reinhart LJ, et al. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish:replication and evidence for a role in both insulin secretion and insulin resistance[J]. Diabetes,2006; 55(9):2654-2659.
    [12]Wegner L, Hussain MS, Pilgaard K, et al. Impact of TCF7L2 rs7903146 on insulin secretion and action in young and elderly Danish twins[J]. J Clin Endocrinol Metab,2008; 93(10):4013-4019.
    [13]Hermann M, Pirkebner D, Draxl A, et al. Dickkopf-3 is expressed in a subset of adult human pancreatic beta cells[J]. Histochem Cell Biol,2007; 127(5):513-521.
    [14]Shu L, Sauter NS, Schulthess FT, et al. Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets[J]. Diabetes,2008; 57(3):645-653.
    [15]Dessimoz J, Bonnard C, Huelsken J, et al. Pancreas-specific deletion of beta-catenin reveals Wnt-dependent and Wnt-independent functions during development[J]. Curr Biol,2005; 15(18):1677-1683.
    [16]Rulifson IC, Karnik SK, Heiser PW, et al. Wnt signaling regulates pancreatic beta cell proliferation[J]. Proc Natl Acad Sci U S A,2007; 104(15):6247-6252.
    [17]Zhurinsky J, Shtutman M, Ben-Ze'ev A. Plakoglobin and beta-catenin:protein interactions, regulation and biological roles[J]. J Cell Sci,2000; 113 (Pt 18)(3127-3139.
    [18]Liu Z, Habener JF. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation[J]. J Biol Chem,2008; 283(13):8723-8735.
    [19]Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta[J]. J Biol Chem,2005; 280(2):1457-1464.
    [20]Mulholland DJ, Dedhar S, Coetzee GA, et al. Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis:Wnt you like to know?[J]. Endocr Rev,2005; 26(7):898-915.
    [21]Chou FS, Wang PS, Kulp S, et al. Effects of thiazolidinediones on differentiation, proliferation, and apoptosis[J]. Mol Cancer Res,2007; 5(6):523-530.
    [22]Baggio LL, Drucker DJ. Biology of incretins:GLP-1 and GIP[J]. Gastroenterology,2007; 132(6):2131-2157.
    [23]Shu L, Matveyenko AV, Kerr-Conte J, et al. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function[J]. Hum Mol Genet,2009; 18(13):2388-2399.
    [24]Welters HJ, Oknianska A, Erdmann KS, et al. The protein tyrosine phosphatase-BL, modulates pancreatic beta-cell proliferation by interaction with the Wnt signalling pathway[J]. J Endocrinol,2008; 197(3):543-552.
    [25]Schinner S, Ulgen F, Papewalis C, et al. Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipocyte-derived Wnt signalling molecules[J]. Diabetologia,2008; 51(1):147-154.
    [26]Cozar-Castellano I, Fiaschi-Taesch N, Bigatel TA, et al. Molecular control of cell cycle progression in the pancreatic beta-cell[J]. Endocr Rev,2006; 27(4):356-370.
    [27]Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes[J]. Diabetes,2003; 52(1):102-110.
    [28]Baetens D, Stefan Y, Ravazzola M, et al. Alteration of islet cell populations in spontaneously diabetic mice[J]. Diabetes,1978; 27(1):1-7.
    [29]Larsson LI, Boder GB, Shaw WN. Changes in the islets of langerhans in the obese Zucker rat[J]. Lab Invest,1977; 36(6):593-598.
    [30]Tomita T, Doull V, Pollock HG, et al. Pancreatic islets of obese hyperglycemic mice (ob/ob)[J]. Pancreas,1992; 7(3):367-375.
    [31]Hino S, Tanji C, Nakayama KI, et al. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination[J]. Mol Cell Biol,2005; 25(20):9063-9072.
    [32]Egan JM, Bulotta A, Hui H, et al. GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet beta cells[J]. Diabetes Metab Res Rev,2003; 19(2):115-123.
    [33]Xu G, Stoffers DA, Habener JF, et al. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats[J]. Diabetes,1999; 48(12):2270-2276.
    [34]List JF, Habener JF. Glucagon-like peptide 1 agonists and the development and growth of pancreatic beta-cells[J]. Am J Physiol Endocrinol Metab,2004; 286(6):E875-881.
    [35]Patel S, Doble B, Woodgett JR. Glycogen synthase kinase-3 in insulin and Wnt signalling:a double-edged sword?[J]. Biochem Soc Trans,2004; 32(Pt 5):803-808.
    [36]Okada T, Liew CW, Hu J, et al. Insulin receptors in beta-cells are critical for islet compensatory growth response to insulin resistance [J]. Proc Natl Acad Sci U S A,2007; 104(21):8977-8982.
    [37]Yi F, Sun J, Lim GE, et al. Cross talk between the insulin and Wnt signaling pathways: evidence from intestinal endocrine L cells[J]. Endocrinology,2008; 149(5):2341-2351.
    [38]Sun J, Jin T. Both Wnt and mTOR signaling pathways are involved in insulin-stimulated proto-oncogene expression in intestinal cells[J]. Cell Signal,2008; 20(1):219-229.
    [39]Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoel MJ, et al. Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation[J]. Oncogene,2001; 20(2):252-259.
    [40]Mussmann R, Geese M, Harder F, et al. Inhibition of GSK3 promotes replication and survival of pancreatic beta cells[J]. J Biol Chem,2007; 282(16):12030-12037.
    [41]Liu Z, Tanabe K, Bernal-Mizrachi E, et al. Mice with beta cell overexpression of glycogen synthase kinase-3beta have reduced beta cell mass and proliferation[J]. Diabetologia,2008; 51(4):623-631.
    [42]Brembeck FH, Rosario M, Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of beta-catenin [J]. Curr Opin Genet Dev,2006; 16(1):51-59.
    [43]Aberle H, Schwartz H, Kemler R. Cadherin-catenin complex:protein interactions and their implications for cadherin function[J]. J Cell Biochem,1996; 61(4):514-523.
    [44]Carvell MJ, Marsh PJ, Persaud SJ, et al. E-cadherin interactions regulate beta-cell proliferation in islet-like structures[J]. Cell Physiol Biochem,2007; 20(5):617-626.
    [45]Gahr S, Merger M, Bollheimer LC, et al. Hepatocyte growth factor stimulates proliferation of pancreatic beta-cells particularly in the presence of subphysiological glucose concentrations[J]. J Mol Endocrinol,2002; 28(2):99-110.
    [46]Garcia-Ocana A, Takane KK, Syed MA, et al. Hepatocyte growth factor overexpression in the islet of transgenic mice increases beta cell proliferation, enhances islet mass, and induces mild hypoglycemia[J]. J Biol Chem,2000; 275(2):1226-1232.
    [47]Monga SP, Mars WM, Pediaditakis P, et al. Hepatocyte growth factor induces Wnt-independent nuclear translocation of beta-catenin after Met-beta-catenin dissociation in hepatocytes[J]. Cancer Res,2002; 62(7):2064-2071.
    [48]Apte U, Zeng G, Muller P, et al. Activation of Wnt/beta-catenin pathway during hepatocyte growth factor-induced hepatomegaly in mice[J]. Hepatology,2006; 44(4):992-1002.
    [49]Li Y, Guessous F, Johnson EB, et al. Functional and molecular interactions between the HGF/c-Met pathway and c-Myc in large-cell medulloblastoma[J]. Lab Invest,2008; 88(2):98-111.
    [50]Kitamura YI, Kitamura T, Kruse JP, et al. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction[J]. Cell Metab,2005; 2(3):153-163.
    [51]Buteau J, Accili D. Regulation of pancreatic beta-cell function by the forkhead protein FoxO1[J]. Diabetes Obes Metab,2007; 9 Suppl 2(140-146.
    [52]Holst JJ. Treatment of type 2 diabetes mellitus with agonists of the GLP-1 receptor or DPP-IV inhibitors[J]. Expert Opin Emerg Drugs,2004; 9(1):155-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700