用户名: 密码: 验证码:
基于荧光与磷光复合的白光有机电致发光器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光器件(OLED)因为具备发光效率高、驱动电压低、响应速度快、可视化角度大、可实现柔性化等优点,已经被普遍认为是下一代全彩显示与固体照明的主流技术。OLED发展至今仍然存在一些问题需要进一步研究与完善。在效率方面,蓝色OLED的效率普遍较低,磷光OLED在高亮度下效率下降严重;在光源品质方面,OLED的显色指数需要进一步提高。本论文从以上提出的问题出发,结合OLED的基本理论、发光机理与过程开展了一系列基础与应用研究。主要研究内容包括以下方面:
     (1)在蓝色荧光OLED研究中,由于蓝光器件的效率相比绿光与红光器件较低,同时又缺乏深蓝光的材料,使得深蓝光器件成为OLED发展的最大阻碍。首先,对一种发射峰为452nm的新型蓝色荧光材料6,12-bis{[N-(3,4-dimethylphenyl)-N-(2,4,5-trimethylphenyl)]amino}chrysene(BmPAC)进行了初步研究。在以BmPAC为发光客体的OLED器件中,获得了最高发光亮度12500cd/m~2,在电流密度为23mA/cm~2的情况下获得了最大电流效率4.89cd/A,同时器件的电致发光峰为456nm,CIE坐标为(0.16,0.17)。然后将BmPAC与黄光染料搭配,制备了白光OLED。在发光层结构为黄光发光层-阻隔层-蓝光发光层的器件中,启亮电压为4V,在1300cd/m~2亮度下获得了最大电流效率36.11cd/A和最大功率效率22.78lm/W,电流效率在100cd/m~2和1000cd/m~2亮度下下降为34.59cd/A和35.61cd/A。随着亮度的增加,器件的发光光谱基本稳定,相对于黄光,蓝光的发射强度只有轻微的下降,器件的发光光谱为暖白光,最高显色指数为45。在发光层结构为蓝光发光层-阻隔层-黄光发光层-阻隔层-蓝光发光层的器件中,启亮电压降为2.5V,最大电流效率和最大功率效率分别提高到40.9cd/A和49.4lm/W,电流效率在100cd/m~2和1000cd/m~2亮度下下降为37.3cd/A和33.1cd/A,同时器件的最高显色指数提高至53。我们把这种改善归因于使用双蓝光发光层可以得到最好的载流子平衡。最后在9,10-di(2-naphthyl)anthracene (ADN):1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene (DSA-ph)的发光层中共掺入质量比为1%的深蓝光BD-3染料,通过与无共掺杂的器件相比,器件的发光效率和工作寿命都得到改善与提高,我们把这种提高归因于载流子平衡的改善和激子复合区域的扩宽。共掺杂方法使得ADN本来比空穴迁移率高的电子迁移率降低,从而得到更好的载流子平衡。
     (2)在磷光OLED器件中,由于在高亮度下产生大量的三重态激子,会发生三重态-三重态激子淬灭,导致严重的效率滚降现象。首先分别使用双主体掺杂的发光层、双发光层、双主体掺杂的空间阻隔层三种方法研究对效率滚降的改善作用。以Ir(ppy)3为发光客体的绿色磷光OLED器件为研究对象,在使用双主体掺杂的发光层的器件中获得最大电流效率和功率效率分别为26.23cd/A和31.67lm/W,使用双发光层的器件中获得最大电流效率和功率效率分别为29.14cd/A和22.29lm/W,使用双主体掺杂的空间阻隔层的器件中获得最大的电流效率和功率效率分别为50.38cd/A和29.29lm/W。相对其它方法,使用空间阻隔层可以获得最高的发光效率和最轻微的效率滚降。双主体掺杂的空间阻隔层可以最大程度上实现促进载流子向发光层输运与扩宽激子的复合区域。然后研究了使用超薄发光层对磷光OLED的发光效率和效率滚降现象的改善作用。比较使用超薄发光层和普通厚度发光层的器件,通过仔细调节超薄发光层与阻隔层的厚度,我们获得了显色指数高达80的白光OLED,并且最高电流效率29.2cd/A在1000cd/m~2亮度下仅下降到22.8cd/A。而使用普通厚度发光层的器件最高显色指数不足40,最高电流效率只有15.8cd/A,在1000cd/m~2亮度下下降到11.4cd/A。我们把这种提高与改善归因于超薄发光层不仅可以促进载流子的注入与传输,而且超薄发光层中形成的岛状形貌可以为激子的复合提供足够大的空间,极大程度上减少了三重态-三重态激子之间的湮灭。
     (3)高显色指数是白光OLED能够应用到高品质照明光源中的关键因素。我们研究了具有双波段、三波段、与四波段电致发光光谱的三种类型白光OLED。在双波段白光器件中获得了较为稳定的白光发射,CIE坐标在(0.47,0.42)附近,最高显色指数为45,同时器件在100cd/m~2亮度下的电流效率为34.59cd/A。对于三波段的白光OLED,最大电流效率为27.29cd/A,最高显色指数为88,在所有亮度下色温低于2800K。对于四波段的白光OLED,在亮度从100cd/m~2变化到5000cd/m~2的过程中,发光光谱从冷白光变化至暖白光,实现了色温可调,并且在5000cd/m~2的亮度下获得了显色指数为89的类太阳光光谱。我们证明了增加发光峰的数目可以扩大发光光谱在可见光区域的覆盖范围,从而实现显色指数的提高,尤其重点研究了黄光发射的增加对白光OLED光源品质的影响。
Organic Light-Emitting Diodes (OLEDs) have been considered as nextgeneration full color displays and solid-state lighting sources, because of their highluminous efficiency, low driving voltage, fast response, wide visual angle, andflexible characteristics, etc. There still are some issues which need to be investigatedand improved in OLED. For the efficiency, the blue OLEDs are not as good as theirgreen and red counterparts, the phosphorescent OLEDs have serious efficiencyroll-off at high luminance. For the quality of lighting sources, the color renderingindex (CRI) of OLEDs needs to be improved further. In this thesis, based on theissues mentioned above, we develop fundamental and applicable research combiningOLEDs theory, electroluminescent mechanism and process. Some results have beenobtained as follows:
     (1) The efficiency and lifetime of blue-light-emitting devices are usually not asgood as those of their green and red counterparts. Additionally, it is difficult togenerate high-performance pure/deep blue emission devices. These two reasonsindicate that the blue devices become the biggest impediment for the development ofwhite OLEDs. First, we assess a novel fluorescence dye named6,12-bis{[N-(3,4-dimethylphenyl)-N-(2,4,5-trimethylphenyl)]amino}chrysene(BmPAC) with emission peak of452nm. We fabricate blue OLED using BmPAC asemitter, the highest luminescence of12500cd/m~2is obtained, and the maximumcurrent efficiency reaches4.89cd/A at current density of23mA/cm~2. The emissionpeak of blue OLED is located at456nm, with CIE coordinates of (0.16,0.17). Thenwe combine orange dye with BmPAC to fabricate white OLED, with the emittinglayer (EML) structure of orange EML-interlayer-blue EML. The turn-on voltage forwhite OLED is4V, the maximum current efficiency and power efficiency are36.11cd/A and22.78lm/W at1300cd/m~2, and the current efficiency rolls off to34.59cd/A and35.61cd/A at100cd/m~2and1000cd/m~2, respectively. The spectra which are warm white lights, are almost stable with the increase of luminance. We only finda slight decrease of blue emission with the increasing brightness, and the highestCRI of45is obtained. We change the EML structure to be blue EML-interlayer-orange EML-interlayer-blue EML to improve the performance of white OLED. Theturn-on voltage is reduced to2.5V, the maximum current efficiency and powerefficiency are enhanced to40.9cd/A and49.4lm/W, respectively. The currentefficiency is37.3cd/A at100cd/m~2, or33.1cd/A at1000cd/m~2. Meanwhile a higherCRI of53is realized. We attribute the improvement to better balance of hole andelectron charges by using double blue EMLs. Finally, we demonstrate efficient blueorganic light-emitting diode with the EML structure of1,4-bis[N-(1-naphthyl)-N'-phenylamino]-4,4'-diamine/9,10-di(2-naphthyl)anthracene(ADN):1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene (DSA-ph). Improvedefficiencies and longer operational lifetime are obtained by co-doping astyrylamine-based deep blue dopant BD-3(0.1wt%) into the emitting layer of ADNdoped with DSA-ph compared to the case of non-co-doping. This is due to theimproved charge balance and expansion of exciton recombination zone. The bettercharge balance is obtained by reducing the electron mobility of ADN which is higherthan the hole mobility in the case of non-co-doping.
     (2) Utilization of phosphorescent emitters may solve the problem of achievingefficient emissions. A large number of triplet excitons formed at high luminance cancause serious triplet-triplet annihilation, which results in roll-off phenomenon inphosphorescent OLEDs. Mixed host EML, double EMLs, and interlayer betweentwo adjacent EMLs structures are employed here to improve the roll-off problem,respectively. We employ Ir(ppy)3as green emitter for phosphorescent OLEDs. Formixed host EML structure device, the maximum current efficiency of26.23cd/A andthe maximum power efficiency of31.67lm/W are obtained respectively. For doubleEMLs structure device, the maximum current efficiency of29.14cd/A and themaximum power efficiency of22.29lm/W are obtained respectively. For interlayer between two adjacent EMLs structure device, the maximum current efficiency of50.38cd/A and the maximum power efficiency of29.29lm/W are obtainedrespectively. Compared with the other two methods, using interlayer can result in thehighest efficiency and slightest roll-off. Employing mixed host EML structure couldimprove the transport of carriers into EML and expand the recombination zone. Thenwe report successful fabrication of efficient and high-color-rendering phosphorescentwhite OLED by employing ultra-thin red emitter-spacer layer-ultra-thin greenemitter architecture. By fine-tuning the thicknesses of emitting layers and spacerlayer, we obtain white OLED with a high CRI of80and high luminance efficiencyof29.2cd/A which only rolls off to22.8cd/A at1000cd/m~2. A typical WOLED forcomparison exhibits a CRI below40and maximum luminance efficiency of15.8cd/A which decreases to11.4cd/A at1000cd/m~2. We attribute the improvement tothe island-like morphology generated by deposition of ultra-thin film. This allowssufficient space for exciton formation and possibility of minimizing triplet-tripletannihilation.
     (3) High CRI is crucial for white OLED which can be applied in thehigh-quality lighting sources. We develop three types of white OLEDs with two-,three-and four-peak electroluminescence spectra. For two-peak OLED, a luminanceefficiency of34.59cd/A at100cd/m~2with a CRI of45and almost stable whiteemission with CIE coordinates around (0.47,0.42) are obtained. For three-peakOLED, highest CRI of88and correlated color temperature (CCT) below2800K atvarious brightness and a maximum luminance efficiency of27.29cd/A are realized.For four-peak OLED, color-temperature tunable white emission in the luminancerange of100cd/m~2to5000cd/m~2is obtained, the spectra turns from cold whiteemission to warm white emission with the change of luminance. Additionally, asunlight-like spectrum with a highest CRI of89is realized at5000cd/m~2. Wedemonstrate that to increase the number of emission wavebands could expand thecoverage area of visible light for the spectra of OLEDs, which results in higher CRI. Especially, we focus on the role of orange component on how to enhance the qualityof lighting source.
引文
【1】. C. W. Tang, S. A. Vanslyke, Organic Electroluminescent Diodes [J], Appl. Phys. Lett.,1987,51(12):913-915.
    【2】. L. S. Hung, C. H. Chen, Recent progress of molecular organic electroluminescentmaterials and devices [J], Mat. Sci. Eng. R,2002,39(5-6):143-222.
    【3】. M. Granstrom, K. Petritsch, A. C. Arias, et al. Laminated fabrication of polymericphotovoltaic diodes [J], Nature,1998,395(6699):257-260.
    【4】. S. Gunes, H. Neugebauer, N. S. Sariciftci, Conjugated polymer-based organic solarcells [J], Chem. Rev.,2007,107(4):1324-1338.
    【5】. F. Garnier, R. Hajlaoui, A. Yassar, et al. All-polymer field-effect transistor realized byprinting techniques [J], Science,1994,265(5179):1684-1686.
    【6】. I. D. W. Samuel, G. A. Turnbull, Organic semiconductor lasers [J], Chem. Rev.,2007107,(4):1272-1295.
    【7】. V. G. Kozlov, V. Bulovic, P. E. Burrows, et al. Laser action in organic semiconductorwaveguide and double-heterostructure [J], Nature,1997,389(6649):362-364.
    【8】. L. D. Bozano, B. W. Kean, M. Beinhoff, et al. Organic materials and thin-filmstructures for cross-point memory cells based on trapping in metallic nanopaticles [J],Adv. Func. Mater.,2005,15(12):1933-1939.
    【9】. Y. Yang, J. Ouyang, L. Ma, et al. Electrical switching and bistability inorganic/polymeric thin films and memory devices [J], Adv. Func. Mater.,2006,16(8):1001-1004.
    【10】. M. Pope, H. Kallmann, P. J. Magnante, Electroluminescence in organic crystals [J],Journal of Chemical Physics,1963,38:2042-2049.
    【11】. P. S. Vincett, W. A. Barlow, R. A. Han, et al. Electrical conduction and low voltageblue electroluminescence in vacuum-deposited organic film. Thin Solid Films,1982,94:171-183.
    【12】. C. Adachi, S. Tokito, T. Tsutsui, et al. Electroluminescence in Organic Films withThree-Layer Structure [J], Jpn. J. Appl. Phys.,1988,27: L269-L271.
    【13】. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, et al. Light-emitting diodes based onconjugated polymers [J], Nature,1990,347:539-541.
    【14】. L. S. Hung, C. W. Tang, M. G. Mason, Enhanced electron injection in organicelectroluminescence devices using an Al/LiF electrode [J], Appl. Phys. Lett.,1997,70:152-154.
    【15】. M. A. Baldo, D. F. O’Brien, Y. You, et al. Highly efficient phosphorescent emissionfrom organic electroluminescent devices [J], Nature,1998,395:151-154.
    【16】. B. W. D’Andrade, S. R. Forrest, White organic light-emitting devices for solid-statelighting [J], Adv. Mater.,2004,16:1585-1595.
    【17】. Y. Sun, Noel C. Giebink, H. Kanno, B. Ma, Mark E. Tompson, S. R. Forrest,Management of singlet and triplet excitons for efficient white organic light-emittingdevices [J], Nature,2006,440:908-912.
    【18】. S. Reineke, F. Lindner, G. Schwartz, et al. White organic light-emitting diodes withfluorescent tube efficiency [J], Nature,2009,459:234-238.
    【19】. M. H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, et al. High-efficiency top-emittingorganic light-emitting devices [J], Appl. Phys. Lett.,2002,81:3921-3923.
    【20】. Y. Qiu, Y. Gao, P. Wei, L. Wang, Organic light-emitting diodes with improvedhole-electron balance by using copper phthalocyanine/aromatic diamine multiplequantum wells [J], Appl. Phys. Lett.,2002,80:2628-2630.
    【21】. H. Aziz, Z. D. Popovic, Study of organic light emitting devices with a5,6,11,12-tetraphenylnaphthacene (rubrene)-doped hole transport layer [J], Appl. Phys.Lett.,2002,80:2180-2182.
    【22】. H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, G. Xu, Degradation mechanism of smallmolecule-based organic light-emitting devices [J], Science,1999,283:1900-1902.
    【23】. V. E. Chong, S. Shi, J. Curless, C. L. Shieh, C. H. Lee, F. So, J. Shen, J. Yang, Organiclight-emitting diodes with a bipolar transport layer [J], Appl. Phys. Lett.,1999,75:172-174.
    【24】. D. Ma, C. S. Lee, S. T. Lee, L. S. Hung, Improved efficiency by a graded emissiveregion in organic light-emitting diodes [J], Appl. Phys. Lett.,2002,80:3641-3643.
    【25】. Y. Shao, Y. Yang, Naturally formed graded junction for organic light-emitting diodes[J], Appl. Phys. Lett.,2003,83:2453-2455.
    【26】. J. J. Shianga, A. R. Duggal, Application of radiative transport theory to light extractionfrom organic light emitting diodes [J], J. Appl. Phys.,2004,95:2880-2888.
    【27】. J. J. Shianga, A. R. Duggal, Experimental demonstration of increased organic lightemitting device output via volumetric light scattering [J], J. Appl. Phys.,2004,95:2889-2895.
    【28】. S. Moller, S. R. Forrest, Improved light out-coupling in organic light emitting diodesemploying ordered microlens arrays [J], J. Appl. Phys.,2002,91:3324-3327.
    【29】. G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Vendakesh, S. R. Forrest, M. E. Tompson,High-external quantum-efficiency organic light-emitting devices [J], Opt. Lett.,1997,22:396-398.
    【30】. L. S. Liao, K. P. Klubek, C. W. Tang, High-efficiency tandem organic light-emittingdiodes [J], Appl. Phys. Lett.,2004,84:167-169.
    【31】. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organiclight-emitting diodes from delayed fluorescence [J], Nature,2012,492:234-238.
    【32】. I. H. Campbell, P. S. Davids, D. L. Smith, et al. The Schottky energy barrierdependence of charge injection in organic light-emitting diodes [J], Appl. Phys. Lett.,1998,72:1863-1865.
    【33】.高观志,黄维.固体中的电输运[M].北京:科学出版社,1991,75-332.
    【34】.王军,魏孝强,饶海波,成建波,蒋亚东,基于铱配合物材料的高效高稳定性有机发光二极管[J].物理学报,2007,56(2):1156-1161.
    【35】.胡越,饶海波,单层有机器件的电子传输特性的数值模拟[J].物理学报,2009,58(5):3474-3478.
    【36】.张睿,李传南,李涛,崔国宇,侯晶莹,赵毅,刘式墉,一种采用Li3N掺杂电子注入层的底发射倒置OLED的制备[J].光子学报,2011,40(2):199-203.
    【37】. M. Raikh, X. Wei, Current-voltage characteristics of polymer light-emitting diode atlow voltages [J], Mol. Crys.&Liq. Crys.,1994,256:563-569.
    【38】. U. Lemmer, M. Scheidler, R. Kerting, et al, Hopping and related phenomena:proceeding of6thinternational conference on hopping and related phenomena [M],Israel,1995,400.
    【39】. F. Gutmann, L. E. Lysons, Organic semiconductors [M],1stedition, New York: JohnWiley&Sons, Inc.,1967, chap.7.
    【40】.[37].J. Shinar, V. Savvateev, Asurvey of organic light-emitting devices [M],1stedition,New York: Springer-Verlag Co.,2002, chap.1.
    【41】. A. Vannikov, A. D. Grishina, S. V. Novikov, Electron transport andelectroluminescence in polymer layers [J], Russ. Chem. Rev.,1994,63(2):103-129.
    【42】. M. A. Baldo, D. F. O’Brien, M. E. Thompson, et al, Excitonic singlet-triplet ratios in asemiconducting organic thin film [J], Phys. Rev. B,1999,60(20):14422-14428.
    【43】. Y. Cao, I. D. Parker, G. Xu, et al, Improved quantum efficiency forelectroluminescence in semiconducting polymers [J], Nature,1999,397(6718):414-417.
    【44】. S. M. Sze, Physics of semiconductor devices [M], New York: Wiley,1981.
    【45】.甄红宇,杨伟,朱卫国,曹镛,利用三线态激子提高有机高分子发光器件的量子效率[J].化学进展,2004,16(1):99-104.
    【46】.谢玉卿,郭建华,彭俊彪,曹镛,王悦,掺咔唑取代卟啉铂的高效聚合物红色磷光发射[J].物理学报,2005,54(7):3424-3428.
    【47】.陈文彬,李响,OLED外发光效率增强模型研究[J].红外与激光工程,2007,36(5):718-721.
    【48】. Z. D. Popovic, S. Xie, N. Hu, et al. Life extension of organic LED’s by doping a holetransport layer [J], Thin Solid Films,2000,363(1-2):6-8.
    【49】. J. Kido, K. Hongawa, K. Okuyama, et al. White light-emitting organicelectroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped withthree fluorescent dyes [J], Appl. Phys. Lett.,1994,64(7):815-817.
    【50】. Y. W. Ko, C. H. Chung, J. H. Lee, et al. Efficient white organic light emission by singleemitting layer [J], Thin Solid Films,2003,426(1-2):246-249.
    【51】. R. S. Deshpande, V. Bulovic, S. R. Forrest, White-light-emitting organicelectroluminescent devices based on interlayer sequential energy transfer [J], Appl.Phys. Lett.,1999,75(7):888-890.
    【52】. G. Parthasarathy, P. E. Burrows, V. Khalfin, et al. A metal-free cathode for organicsemiconductor devices [J], Appl. Phys. Lett.,1998,72(17):2318-2140.
    【53】. T. Matsumoto, T. Nakada, J. Endo, et al. Multiphoto emission OLED: structureand property [J], Proc. Int. Disp. Workshops,2003,10:1285-1288.
    【54】. A. R. Duggal, J. J. Shiang, C. M. Heller, Organic light-emitting devices forillumination quality white light [J], Appl. Phys. Lett.,2002,80(19):3470-3472.
    【55】. Y. Tomita, C. May, M. Torker, J. Amelung, et al. Large area p-i-n type OLEDsfor lighting [J], Proceeding of SID07, Long Beach, CA, USA, May20-25,2007,1030.
    【56】. J. Kido, High Performance OLEDs for displays and general lighting [J], SIDSymposium Digest of Technical Papers,2008,39(1):931-932.
    【57】.王琦,马东阁,白光有机发光二极管的制备方法[J].液晶与显示,2009,24(5):617-629.
    【58】.许运华,彭俊彪,曹镛,白光有机电致发光器件进展[J].化学进展,2006,18(4):389-398.
    【59】.汪磊,雷钢铁,易晓华,基于荧光与磷光复合的有机电致发光器件[J].化学进展,2008,20(7/8):1050-1056.
    【60】.张国辉,华玉林,吴晓明,印寿根,牛霞,惠娟利,王宇,张丽娟,一种多层白色磷光有机电致发光器件的制备及性能研究[J].物理学报,2007,56(9):5408-5412.
    【61】. H. Sasabe, J. Takamatsu, T. Motoyama, et al. High-efficiency blue and whiteorganic light-emitting devices incorporating a blue Iridium carbine complex [J],Adv. Mater.,2010,22(44):5003-5007.
    【62】. Y. Li, F. Li, J. Zhang, et al. Improved light extraction efficiency of whiteorganic light-emitting devices by biomimetic antireflective surfaces [J], Appl.Phys. Lett.,2010,96(15):153305-153307.
    【63】. J. Zhou, N. Ai, L. Wang, et al. Roughening the white OLED substrate’s surfacethrough sandblasting to improve the external quantum efficiency [J], OrganicElectronics,2011,12(4):648-653.
    【64】. J.-H. Jou, Y.-C. Chou, S.-M. Shen, et al. High-efficiency, very-high colorrendering white organic light-emitting diode with a high triplet interlayer [J], J.Mater. Chem.2011,12:18523-18526.
    【65】. T.-H. Han, Y. Lee, et al. Extremely efficient flexible organic light-emittingdiodes with modified grapheme anode [J], Nature Photonics,2012,6:105-110.
    【66】. B. Zhang, G. Tan, C.-S. Lam, et al. High-efficiency single emissive layer whiteorganic light-emitting diodes based on solution-processed dendritic host andnew orange-emitting Iridium complex [J], Adv. Mater.,2012,24(14):1873-1877.
    【67】. J. P. Zhang, T. J. Zhou, H. Wu, et al. Constant-step-stress accelerated life test ofwhite OLED under Weibull distribution case [J], Electron Devices,2012,59(3):715-720.
    【68】.黎永涛,宋小峰,陈建龙,姚日晖,文尚胜,有机电致发光器件的封装热特性研究[J].光子学报,2011,40(11):1630-1635.
    【69】.黄大勇,牛萍娟,李晓云,有机电致发光器件封装技术的研究进展[J].微电子学,2010,40(6):875-879.
    【70】.高淑雅,孔祥朝,张方辉,吕磊,有机电致发光器件薄膜封装研究进展[J].液晶与显示,2012,27(2):198-203.
    【1】. M. Heck, and J. J. Brown. OLED excitement [J], Inf. Display,2004,20(6):12-17.
    【2】. J. Y. Lee, and J. H. Kwon. Performance improvement of active matrix light emittingdiodes [J], Proc. Int. Display Manu. Conf. Taipei,2005,329-330.
    【3】. S. J. Yeh, M. F. Wu, C. T. Chen, Y. H. Song, Y. Chi, et al. New dopant and hostmaterials for blue-light-emitting phosphorescent organic electroluminescent devices.Adv. Mater.,2005,17(3):285-289.
    【4】. J. Shi, and C. W. Tang. Anthracene derivatives for stable blue-emitting organicelectroluminescence devices [J], Appl. Phys. Lett.,2002,80(17):3201-3203.
    【5】. K. Suzuki, A. Seno, H. Tanabe, and K. Ueno. New host materials for blue emitters [J],Syn. Met.,2004,143:89-96.
    【6】. S.-W. Wen, M.-T. Lee, C. H. Chen. Recent development of blue fluorescent OLEDmaterials and devices [J], Journal of Display Technology,2005,1(1):90-99.
    【7】.陈金鑫,黄孝文. OLED有机电致发光材料与器件[M].北京,清华大学出版社:2007.6.
    【8】. C. W. Tang, S. A. Vanslyke, Organic Electroluminescent Diodes [J], Appl. Phys. Lett.,1987,51(12):913-915.
    【9】. Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest,Management of singlet and triplet excitons for efficient white organic light-emittingdevices [J], Nature,2006,440:908-912.
    【10】. R. H. Young, C. W. Tang, A. P. Marcheti, Current-induced fluorescence quenching inorganic light-emitting diodes [J], Appl. Phys. Lett.,2002,80(5):874-876.
    【11】. C. Chih-Chin, C. Chih-Long, L. Shun-Wei, Y. Han, C. Chin-Ti, C. Chao-Tsen,Achieving high-efficiency non-doped blue organic light-emitting diodes:charge-balance control of bipolar blue fluorescent materials with reduced hole-mobility[J], Journal of Materials Chemistry,2009,19:5561-5571.
    【12】. Y. Wei, C.-T. Chen, Doubly ortho-linked cis-4,4'-bis(diarylamino)stilbene/fluorenehybrids as efficient nondoped, sky-blue fluorescent materials for optoelectronicapplications [J], Journal of the American Chemical Society,2007,129:7478-+.
    【13】. N. Karl, Charge carrier transport in organic seminconductors [J], Synthetic Metals,2003,133-134:649-657.
    【14】. R. S. Deshpande, V. Bulovic, S. R. Forrest. White-light-emitting organicelectroluminescent devices based on interlayer sequential energy transfer [J], Appl.Phys. Lett.,1999,75(7):888-890.
    【15】. S. J. Su, E. Gonmori, H. Sasabe, and J. Kido, Highly efficient organic blue-andwhite-light-emitting devices having a carrier-and exciton-confining structure forreduced efficiency roll-off [J], Adv. Mater.2008,20:4189-4194.
    【16】. N. G. Giebink, Y. Sun, S. R. Forrest, Transient analysis of triplet exciton dynamics inamorphous organic semiconductor thin films [J], Organic Electronics,2006,7(5):375-386.
    【17】. A. L. Burin, and M. A. Ratner, Exciton migration and cathode quenching in organiclight emitting diodes [J], J. Phys. Chem.(A),2000,104(20):4704-4710.
    【18】. J. Li, P. Chen, Y. Duan, et al. Highly efficient and high color rendering index whiteorganic light-emitting devices using bis(2-(2-fluorphentl)-1,3-benzothiozolato-N,C2’)iridium (acetylacetonate) as yellow emitter [J], Semincond. Sci. Technol.2007,22:798-801.
    【19】. S. C. Tse, S. K. So, M. Y. Yeung, C. F. Lo, S. W. Wen, and C. H. Chen, Experimentaland theoretical demonstration on the transport properties of fused ring host materialsfor organic light-emitting diodes [J], J. J. Appl. Phys.,2006,45(1):555-557.
    【20】. S. Liu, B. Li, L. Zhang, et al. Enhanced efficiency and reduced roll-off in nondopedphosphorescent organic light-emitting devices with triplet multiple quantum wellstructures [J], Appl. Phys. Lett.,2010,97(8):083304-083304-3.
    【21】. C. H. Chen, H. F. Meng, Recombination distribution and color tuning of multilayerorganic light-emitting diode [J],2005,86(20):201102-201102-3.
    【22】. Y. Sun, S. R. Forrest, High-efficiency white organic light emitting devices with threeseparate phosphorescent emission layers [J], Appl. Phys. Lett.,2007,91(26):263503-263503-3.
    【23】. Q. Qi, X. Wu, Y. Hua, et al. Enhancement of performance for blue organic lightemitting devices based on double emission layers [J], Organic Electronics,2010,11(3):503-507.
    【24】. J. Shi, C. W. Tang, Anthracene derivatives for stable blue-emitting organicelectroluminescence devices [J], Appl. Phys. Lett.,2002,80(17):3201-3203.
    【25】. Y. C. Tsai, J. H. Jou, Long-lifetime, high-efficiency white organic light-emitting diodeswith mixed host composing double emission layers [J], Appl. Phys. Lett.,2006,89(24):243521–243521-3.
    【26】. X. Ren, J. Li, R. J. Holmes, P. I. Djurovich, et al. Ultrahigh energy gap hosts in deepblue organic electrophosphorescent devices [J], Chem. Mater.,2004,16(23):4743-4747.
    【27】. C. H. Liao, M. T. Lee, C. H. Tsai, C. H. Chen, Highly efficient blue organiclight-emitting devices incorporating a composite hole transport layer [J], Appl. Phys.Lett.,2005,86(20):203507–203507-3.
    【28】. S. M. Park, K. Ebihara, T. Ikegami, B. J. Lee, K. B. Lim, P. K. Shin, Enhancedperformance of the OLED with plasma treated ITO and plasma polymerized thiophenebuffer layer [J], Current Applied Physics,2007,7(5):474-479.
    【29】. L. S. Hung, and C. H. Chen, Recent progress of molecular organic electroluminescentmaterials and devices [J], Mater. Sci.&Eng.: R.,2002,39(5-6):143-222.
    【30】. C. Li, M. Ichikawa, B. Wei, Y. Taniguchi, H. Kimura, K. Kawaguchi and K. Sakurai, Ahighly color-stability white organic light-emitting diode by color conversion withinhole injection layer [J], Opt. Express,2007,15(2):608-615.
    【31】. S. Tokito, T. Iijima, Y, Suzuri, et al. Confinement of triplet energy on phosphorescentmolecules for highly-efficient organic blue-light-emitting devices [J], Appl. Phys. Lett.,2003,83(3):569–571.
    【32】. T. Arakane, M. Funahashi, H. Kuma, K. Fukuoka, K. Ikada, H. Yamamoto, F.Moriwaki and C. Hosokawa, Fluorescent RGB OLEDs with High Performance [J],Proceedings of the Society for Information Display, San Francisco, California,2006,37(1):37-40.
    【33】. B. D. Ding, W. Q. Zhu, X. Y. Jiang and Z. L. Zhang, Pure blue emission from undopedorganic light emitting diode based on anthracene derivative [J], Current Appl. Phys.,2008,8(5):523-526.
    【34】. Y. H. Ho, T. C. Lin, C. F. Wu and J. H. Lee, High-efficiency and long-lifetimefluorescent blue organic-emitting device [J], Proc. SPIE,2006,6333:633303.
    【35】. T. C. Lin, C. H. Hsiao and J. H. Lee, Study of the recombination zone of the NPB/Alqmixed layer organic light-emitting device [J], Proc. SPIE,2005,(5937):59371Q-1-7.
    【1】. P. Mandlik, J. Gartside, L. Han, et al. A single-layer permeation barrier for organiclight-emitting displays [J], Appl. Phys. Lett.,2008,92(10):103309-1-3.
    【2】. I. S. Park, S. R. Park, D. Y. Shin, J. S. Oh, W. J. Song, J. H. Yoon, Modeling andsimulation of electronic and excitonic emission properties in organic host-guestsystems [J], Organic Electronics,2010,11(2):218-226.
    【3】. M. A. Baldo, and S. R. Forrest, Transient analysis of organic electrophosphorescence:Ⅰ. Transient analysis of triplet energy transfer [J], Phys. Rev. B.2000,62(16):10958-10966.
    【4】. M. A. Baldo, C. Adachi, and S. R. Forrest, Transient analysis of organicelectrophosphorescence: II. Transient analysis of triplet-triplet annihilation [J], Phys.Rev. B.2000,62(16):10967-10977.
    【5】. W. Stampor, J. Kalinowski, P. Di Marco, and V. Fattori, Electric field effect onluminescence efficiency in8-hydroxyquinoline aluminum thin films [J], Appl. Phys.Lett.,1997,70(15):1935-1937.
    【6】. J. Kalinowski, W. Stampor, J. Mezyk, M. Cocchi, D. Virgili, V. Fattori, and P. DiMarco, Quenching effects in organic electrophosphorescence [J], Phys. Rev. B.2002,66(23):235321-235335.
    【7】. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organiclight-emitting diodes from delayed fluorescence [J], Nature,2012,492:234-238.
    【8】. G. Schwartz, S. Reineke, K. Walzer, K. Leo, Reduced efficiency roll-off inhigh-efficiency hybrid white organic light-emitting diodes [J], Appl. Phys. Lett.,2008,92(5):053311-1-3.
    【9】. J. W. Kang, S. H. Lee, H. D. Park, W. I. Jeong, et al. Low roll-off of efficiency at highcurrent density in phosphorescent organic light emitting diodese [J], Appl. Phys. Lett.,2007,90(22):223508-1-3.
    【10】. S. J. Su, E. Gonmori, H. Sasabe, and J. Kido, Highly efficiency organic blue-andwhite-light-emitting devices having a carrier-and exciton-confining structure forreduced efficiency roll-off [J], Adv. Mater.,2008,20:4189-4194.
    【11】. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Veryhigh-efficiency green organic light-emitting devices based on electrophosphorescence[J], Appl. Phys. Lett.,1999,75(1):4-6.
    【12】. C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen, Y. Y. Chien, Efficient organicblue-light-emitting devices with double confinement on terfluorenes with ambipolarcarrier transport properties [J], Adv. Mater.,2004,16(1):61-65.
    【13】. C. Giebeler, H. Antoniadis, D. D. C. Bradley, et al. Space-charge-limited chargeinjection from indium tin oxide into a starburst amine and its implications for organiclight-emitting diodes [J], Appl. Phys. Lett.,1998,72(19):2448-2450.
    【14】. C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest. Nearly100%internalphosphorescence efficiency in an organic light-emitting device [J],2001,90(10):5048-5051.
    【15】. S. H. Kim, J. Jang, and J. Y. Lee, Relationship between host energy levels and deviceperformances of phosphorescent organic light-emitting diodes with triplet mixed hostemitting structure [J], Appl. Phys. Lett.,2007,91(8):083511-1-3.
    【16】. H. Fukagawa, K. Watanabe, T. Tsuzuki, and S. Tokito, Highly efficient, deep-bluephosphorescent organic light emitting diodes with a double-emitting layer structure [J],Appl. Phys. Lett.,2008,93(13):133312-1-3.
    【17】. J. H. Lee, C. L. Huang, C. H. Hsiao, et al. Blue phosphorescent organic light-emittingdevice with double emitting layer [J], Appl. Phys. Lett.,2009,94(22):223301-1-3.
    【18】. A. A. Shoustikov, Y. You, M. E. Thompson, Electroluminescence color tuning by dyedoping in organic light-emitting diodes [J], Selected Topics in Quantum Electronics,1998,4(1):3-13.
    【19】. M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, Polysilicon TFT technology foractive matrix OLED displays [J], Electron Devices,2001,48(5):845-851.
    【20】. H. Choukri, A. Fischer, S. Forget, et al. White organic light-emitting diodes with finechromaticity tuning via ultrathin layer position shifting [J], Appl. Phys. Lett.,2006,89(18):183513-1-3.
    【21】. W. Li, J. Yu, T. Wang, Y. Jiang, B. Wei, Electroluminescence of organic light-emittingdiodes with an ultra-thin layer of dopant [J], Mater. Sci.&Eng. B,2008,149:77-81.
    【22】. X. Yang, F. Wu, H. Haverinen, J. Li, C.-H. Cheng, and G. E. Jabbour, Efficient organiclight-emitting devices with platinum-complex emissive layer [J], Appl. Phys. Lett.,2011,98(3):033302-1-3.
    【23】. B. Wei, S. Yamamoto, M. Ichikawa, C. Li, T. Fukuda, and Y. Taniguchi,High-efficiency transparent organic light-emitting diode with one thin layer of nickeloxide on a transparent anode for see-through-display application [J], Semicond. Sci.Technol.,2007,22(7):788-792.
    【24】. R. Agrawal, P. Kumar, S. Ghosh, and A. K. Mahapatro, Thickness dependence of spacecharge limited current and injection limited current in organic molecularsemiconductors [J], Appl. Phys. Lett.,2008,93(7):073311-1-3.
    【25】. M. Matsumura, K. Furukawa, and Y. Jinde, Effect of Al/LiF cathodes on emissionefficiency of organic EL devices [J], Thin Solid Films,1998,331(1-2):96-100.
    【26】. J. Yang and J. Shen, Effect of the hole barrier in bilayer organic light-emitting devices[J], J. Phys. D: Appl. Phys.,2000,33(15):1768-1772.
    【27】. C.-H. Hsiao, Y.-H.Chen, T.-C.Lin, C.-C.Hsiao, and J.-H. Lee, Recombination zone inmixed-host organic light-emitting devices [J], Appl. Phys. Lett.,2006,89(16):163511-163511-3.
    【28】. T. C. Lin, C. H. Hsiao and J. H. Lee, Study of the recombination zone of the NPB/Alqmixed layer organic light-emitting device [J], Proc. SPIE,2005,(5937):59371Q-1-7.
    【29】. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, I. Tsyba, M.Bortz, B. Mui, R. Bau, and M. E. Thompson, Synthesis and characterization ofphosphorescent cyclometalated iridium complexes [J], Inorg. Chem.,2001,40(7),1704-1711.
    【30】. M. Cocchi, J. Kalinowski, L. Murphy, J.A. G. Williams, and V. Fattori, Mixing ofmolecular exciton and excimer phosphorescence to tune color and efficiency of organic
    LEDs [J], Org. Electron.,2010,11(3):388-396.
    【1】. A. R. Duggal, J. J. Shiang, C. M. Heller, et al. Organic light-emitting devices forillumination quality white light [J], Appl. Phys. Lett.,2002,80(19):3470-3472.
    【2】.荆其诚,焦书兰,喻柏林等,色度学[M],第一版,北京:科学出版社,1979年.
    【3】. Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest,Management of singlet and triplet excitons for efficient white organic light-emittingdevices [J], Nature,2006,440:908-912.
    【4】. Q. Wang, J. Q. Ding, D. G. Ma, Y. X. Cheng and L. X. Wang, Highly efficientsingle-emitting-layer white organic light-emitting diodes with reduced efficiencyroll-off [J], Appl. Phys. Lett.,2009,94(10):103503-103503-3.
    【5】. C. Li, M. Ichikawa, B. Wei, Y. Taniguchi, H. Kimura, K. Kawaguchi and K. Sakurai, Ahighly color-stability white organic light-emitting diode by color conversion withinhole injection layer [J], Opt. Exp.,2007,15(2):608-615.
    【6】. S. C. Tse, S. K. So, M. Y. Yeung, C. F. Lo, S. W. Wen, and C. H. Chen, Experimentaland theoretical demonstration on the transport properties of fused ring host materialsfor organic light-emitting diodes [J], J. J. Appl. Phys.,2006,45(1):555-557.
    【7】. S. Liu, B. Li, L. Zhang, et al. Enhanced efficiency and reduced roll-off in nondopedphosphorescent organic light-emitting devices with triplet multiple quantum wellstructures [J], Appl. Phys. Lett.,2010,97(8):083304-083304-3.
    【8】. C. H. Chen, H. F. Meng, Recombination distribution and color tuning of multilayerorganic light-emitting diode [J], Appl. Phys. Lett.,2005,86(20):201102-201102-3.
    【9】. R. R. Lunt, N. C. Giebink, A. A. Belak, J. B. Benziger and S. R. Forrest, Excitondiffusion lengths of organic semiconductor thin film measured by spectrally resolvedphotoluminescence quenching [J], J. Appl. Phys.,2009,105(5):053711-053711-7.
    【10】. J. Li, P. Chen, Y, Duan, F. F. Zhao, C. N. Li, W. F. Xie, S. Y. Liu, L. Y. Zhang and B. Li,Highly efficient and high colour rendering index white organic light-emitting devicesusing bis(2-(2-fluorphenyl)-1,3-benzothiozolato-N,C2’) iridium (acetylacetonate) asyellow emitter [J], Semi. Sci.&Tech.,2007,22(7):798-801.
    【11】. C. H. Jeong, J. T. Lim, M. S. Kim, J. H. Lee, J. W. Bae, and G. Y. Yeom,Four-wavelength white organic light-emitting diodes using4,4’-bis[carbazoyl-(9)]-stilbene as a deep blue emissive layer [J], Organic Electronics,2007,8(6):683-689.
    【12】. H. Kanno, K. Ishikawa, Y. Nishio, A. Endo, C. Adachi and K. Shibata, Highlyefficiency and stable red phosphorescent organic light-emitting device usingbis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material [J], Appl. Phys. Lett.,2007,90(12):123509-123509-3.
    【13】. L. Long, M. Y. Zhang, S. H. Xu, X. H. Zhou, X. C. Gao, Y. Z. Shang and B. Wei,Cyclic arylamines functioning as advanced hole-transporting and emitting materials [J],Syn. Met.,2012,162(5-6):448-452.
    【14】. M. Eckle and G. Decher, Tuning the performance of layer–by-layer assembled organiclight emitting diodes by controlling the position of isolating clay barrier sheets [J],Nano Lett.,2001,1(1):45-49.
    【15】. G. G. Qin, A. G. Xu, G. L. Ma, G. Z. Ran, Y. P. Qiao, B. R. Zhang, W. X. Chen and S. K.Wu, A top-emission organic light-emitting diode with a silicon anode and an Sm/Aucathode [J], Appl. Phys. Lett.,2004,85(22):5406-5408.
    【16】. Y.-S. Park, J.-W. Kang, D.-M. Kang, J.-W. Park, Y.-H. Kim, S.-K. Kwon and J.-J. Kim,Efficient, color stable white organic light-emitting diode based on high energy levelyellowish-green dopants [J], Adv. Mater.,2008,20(10):1957-1961.
    【17】. Y. Zhang, J. N. Yu, S. C. Sun, B. Wei, J. H. Zhang and J. Cao, Dependence of transientcurrent and capacitance of organic light-emitting diodes on pulsed bias conditions [J],Adv. Mater. Res.,2001,216:368-372.
    【18】. S. J. Su, E. Gonmori, H. Sasabe, and J. Kido, Highly efficiency organic blue-andwhite-light-emitting devices having a carrier-and exciton-confining structure forreduced efficiency roll-off [J], Adv. Mater.,2008,20:4189-4194.
    【19】. J.-H. Jou, H.-C. Wang, S.-M. Shen, S.-H. Peng, M.-H. Wu, S.-H. Chen and P.-H. Wu,Highly efficient color-temperature tunable organic light-emitting diodes [J], J. Mater.Chem.,2012,22:8117-8120.
    【20】. T. Kozaki, S. Koga, N. Toda, H. Noguchi and A. Yasukouchi, Effect of shortwavelength control in polychromatic light sources on nocturnal melatonin secretion [J],Neurosci. Lett.,2008,439(3):256–259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700