用户名: 密码: 验证码:
湖南黄沙坪矿区南部钨钼多金属矿床地质特征、控矿因素及矿床成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖南黄沙坪矿区南部钨钼多金属矿床属于黄沙坪矿区301矿带的一部分,是该区重要的也是极具潜力的重要矿床之一。本文在对区域地质背景、矿区地质特征、成矿地质条件分析的基础上,开展了对该矿床成矿规律、矿床成因等方面的研究。论文主要包括以下内容:
     (1)本区与成矿有关的地层主要为石磴子组不纯碳酸盐岩和测水组砂页岩;出露构造主要为宝岭倒转背斜、近南北向断层F1、F2、F3以及近东西向断层F0;出露岩浆岩主要为石英斑岩、花斑岩、花岗斑岩及花岗岩;矿石类型主要为白钨矿辉钼矿磁铁矿萤石矿石、白钨矿辉钼矿萤石矿石等;矿石结构以粒状结构、交代结构、包含结构、填隙结构等为主,矿石构造以块状—团块状构造、条带状构造、浸染状构造、细脉状或网脉状构造等为主;围岩蚀变以萤石化、硅化、绿泥石化以及碳酸盐化为主。
     (2)矿区内岩体主要以浅部的石英斑岩和隐伏的花岗斑岩、花岗岩、花斑岩为主。矿区所有岩体SiO2平均含量为73.22%,Na2O+K2O平均含量为8.0,K2O/Na2O远大于1,显示出各岩体呈现出富钾的特征,里特曼组合指数在1.9~2.3之间,平均为2.1,表明本区岩体为钙碱性酸性岩。
     (3)探讨了地层、构造、岩浆岩与成矿的关系,认为地层以其有利的岩性、活泼的化学性质、优越的成矿空间以及隔挡屏蔽效应参与了成矿;接触带构造、断裂构造及层间破碎带构造是本区成矿的重要因素,控制了岩浆的侵位及其成矿岩体和矿体的形成和就位;燕山早期的花岗斑岩岩体与该矿床形成密切相关,是本区主要的成矿母岩。
     (4)根据矿物共生组合关系,认为黄沙坪矿区南部钨钼多金属矿床的成矿作用可分为两期四阶段,即矽卡岩期:早矽卡岩阶段(石榴子石、钙铁辉石、透辉石等);晚矽卡岩阶段(磁铁矿、白钨矿、透闪石、绿帘石等)。硫化物期:早硫化物阶段(黄铜矿、黄铁矿、石英、萤石等);晚硫化物阶段(方铅矿、闪锌矿、石英、方解石等)。
     (5)总结了该矿床的成矿规律,认为矿化蚀变水平分带从岩体到围岩为:钨、钼、锡、铋→铁钨钼(锡铋)矿→黄铜矿→(铜锡)锌(铅)矿→铅锌(银)矿→银铅锌矿;垂向分带为:浅部的充填交代型方铅矿—闪锌矿—硫铁矿→中上部的矽卡岩型(铁)闪锌矿—方铅矿—黄铜矿—硫铁矿—毒砂(伴生Ag、Sn)→中部的矽卡岩型磁铁矿—锡—萤石,矽卡岩型白钨矿、辉钼矿—磁铁矿→中深部的矽卡岩型白钨矿—辉钼矿—辉铋矿
     (6)在分析矿床成矿物质来源、控矿因素、成矿地质条件、成矿规律等的基础上,结合矿床地质特征,确立了矿床的综合成矿模式,并认为湖南黄沙坪矿区南部钨钼多金属矿床是与中酸性岩浆热液有关以接触交代作用为主形成的矽卡岩型钨钼多金属矿床。
The W-Mo polymetallic deposit in the south of the Huangshaping mine of Hunan belongs to a part of ore band-301 of the Huangshaping mine. It is one of the important and potential deposits in this mine. According to the survey and research on the regional geological setting, the geological characteristics of the mine, mineralization geological condition, this paper mainly studies the deposit genesis and metallogenic law. The following are main contents:
     (1) The regional strata related to mineralization are mainly the Shidengzi group with impure carbonate and Ceshui group with sandstone and shale. The regional structures are the Baoling inverted anticline, near NS-direction faults of F1, F2, F3, and EW-direction fault of Fo. Igneous rocks exposed are mainly quartz porphyry, granitophyre, granite-porphyry and granite. Ore mineral assemblages are mainly composed of scheelite-molybdenite-magnetite-fluorite, and scheelite-molybdenite-fluorite. The ores have the granular, metasomatic, poikilitic, interstitial textures; and the massive-lump, banded, disseminated, thin veinlet or stockwork structures. Wall rock alteration types are composed of the fluoritization, silicification, chloritization, carbonation.
     (2) The igneous rocks mainly consist of hypabyssal quartz porphyry and concealed granitophyre, granite-porphyry and granite, which average SiO2 content is 73.22%, Na2O+K2O average of 8.0%, the ratio of K2O/Na2O much more than 1 (enriched with K2O), the Rittman index from 1.9 to 2.3(average of 2.1, belong to calc-alkaline-acidite magma).
     (3) The relationships were discussed between mineralization and strata-structure-igneous rock. The strata are helpful to the mineralization because of their favorite lithology, active chemical feather, good mineralization and storage space. The structures are the important control factors for the mineralization, which control the magma intrusion, rockbody and orebody formation and location. The Yanshanian early-phased granite porphyry should be strong related to the mineralization, and is the main resource rock of the mineral matter.
     (4) Abasing on the relationship of mineral paragenetic association, the mineralization of the W-Mo polymetallic deposit in the south of the Huangshaping mine can be divided into three stages and four phases.1) the skarn stage:early phase (garnet, hedenbergite, diopside etc); late phase (magnetite, scheelite, tremolite, epidote etc).2) Sulfide stage:early phase (chalcopyrite, pyrite, quartz, fluorite, etc); late phase (galena, sphalerite, quartz, calcite etc).
     (5) Metallogenic regularity were summarized, the results are that from intrusion to wall rock, the horizontal mineralization alteration banding are: W-Mo-Sn-Bi ore→Fe-W-Mo (Sn-Bi) ore→chalcopyrite→(Cu-Sn) Zn (Pb) ore→Pb-Zn (Ag)→Ag-Pb-Zn ore; vertical banding orders:in the shallow part the filling metasomatic galena-sphalerite-pyrite→in the upper-central part, skarn (Fe) sphalerite-galena-chalcopyrite-pyrite-arsenopyrite (associated Ag, Sn)→in the central part, skarn-type magnetite-tin-fluorite, skarn-type scheelite-molybdenite-magnetite→in the central-deep part, skarn-type scheelite-molybdenite-bismuthinite.
     (6) Based on the analysis of mineral source, ore-controlling factors, mineralization geological conditions, mineralization law and deposit's geological characteristics, this paper has established a comprehensive mineralization models. This W-Mo polymetallic deposit belongs to the skarn-type deposit—ontact metasomatism related to midium acidite magma.
引文
[1]曾昭健.郴州—桂阳地区内生金属矿床成矿系列与矿床模式[J].湖南地质,1993.(1):21~22
    [2]王恢绪.黄沙坪矿田的综合找矿模式及其在隐伏矿床预测中的应用[J].湖南地质,1992.(1):21~22
    [3]黄革非.湘南地区“黄沙坪式”铅锌矿床地质特征及找矿方向[J].湖南地质,1999,18(2、3):84~87
    [4]童潜明,姜胜章,李荣清等.湖南黄沙坪铅锌矿床地质特征及成矿规律研究[J].湖南地质(增刊),1986:1~142.
    [5]申珊.黄沙坪矿田铜矿床矿石物质成份及控矿因素[J].湖南地质,1999,18(2):75~78.
    [6]庄锦良.湘南地区小岩体与成矿关系及隐伏岩体预测[J].湖南地质(增刊4),1988:74~76.
    [7]湖南省国土资源厅湖南省桂阳县黄沙坪铅锌矿资源潜力调查报告[R].2005.
    [8]湖南省地质研究所.黄沙坪铅锌矿床科研成果专辑[J].湖南地质,1986(增刊):69-80.
    [9]何厚强,王静纯,江元城.湖南黄沙坪铅锌矿区南部铁钨钼铋(锡)多金属矿床成矿地质特征初析[J].矿产勘查,2010,1(4):323~333.
    [10]钟正春.黄沙坪矿区岩浆岩及其控矿特征[J].矿产与地质,1996,10(6):400~405.
    [11]姚军明,华仁民,林锦富.2005.湘东南黄沙坪花岗岩LA-ICPMS锆石U-Pb定年及岩石地球化学特征[J].岩石学报,21(3):688~696.
    [12]谷俐.黄沙坪铅锌多金属矿床的成因分析[J].湖南地质,1997,16(4):232~238.
    [13]蒋喜桥,周涛.湖南省桂阳县黄沙坪铅锌多金属矿床的综合模型[J].山西建筑,2008,34(2):117~118.
    [14]刘旭,刘悟辉,息朝庄等.湖南黄沙坪铅锌矿多金属矿区岩浆岩地球化学特征[J].地质找矿论丛,2009,24(3):198~204.
    [15]Raith J, Stein H. Re-Os dating and sulfur isotope composition of molybdenite from tungsten deposits in western amaqualand, South Africa:implications for ore genesis and the timing of metamorphism. Miner Deposita,2000,35:741-753.
    [16]Zhang L C, Xiao W J, Qin K Z, et al. Re-Os isotopic dating of molybdenite and pyrite in the Baishan Mo-Re deposit, eastern Tianshan, NW China, and its geological significance. Miner Depos,2005,39:960-969.
    [17]Mao J W, Zhang Z C, Zhang Z H, et al. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance. Geochim CosmochimActa,1999,63(11-12):1815-1818.
    [18]马丽艳,路远发,屈文俊等.湖南黄沙坪铅锌多金属矿床的Re-Os同位素等时线年龄及其地质意义.矿床地质[J].矿床地质,2007,26(4):425~431.
    [19]姚军明,华仁民,屈文俊等.湘南黄沙坪铅锌钨钼多金属矿床辉钼矿的Re-Os同位素定年及其意义[J].地球科学,2007,37(4):471~477.
    [20]Yuan S D, Peng J T, Shen N P, Hu R Z and Dai T M.40Ar-39Arisotopic dating of the Xianghualing Sn-polymetallic orefield insouthern Hunan and its geological implications [J]. Acta Geologica Sinia,2007,18(2):278-286.
    [21]Peng J T, Zhou M F, Hu R Z, Shen N P, Yuan S D, Bi X W, Du A Dand Qu W J. Precise molybdenite Re-Os and mica Ar2Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China [J]. Mineralium Deposita,2006, 41:661~669.
    [22]李红艳,毛景文,孙亚莉等.1996.柿竹园钨多金属矿床的Re-Os同位素等时线年龄研究[J].地质论评,42(3):261-267.
    [23]毛景文,谢桂青,李晓峰等.2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J].地学前缘,11(2):45-56.
    [24]陈小文,伍建柏,息朝庄.湖南黄沙坪铅锌多金属矿床地质特征及成因探讨[J].国土资源导刊,2008,4:45~48.
    [25]刘悟辉,刘忠法,郑明泓等.湖南黄沙坪铅锌多金属矿床同位素地球化学特征.[J].矿物学报,2009,z(1):320~321.
    [26]曾志雄.黄沙坪矿田铜矿床地质特这及成因分析[J].湖南有色金属,2001,17(3):8~9.
    [27]息朝庄,戴塔根,刘悟辉.湖南黄沙坪铅锌多金属矿床铅、硫同位素地球化学特征[J].地球学报,2009,30(1):89~94.
    [28]韦德贵,贺灵,庞保成等.湖南桂阳县黄沙坪铅锌矿区岩石节理特征及其地质意义[J].矿产与地质,2007,21(5):555~559.
    [29]池国祥,赖健清.流体包裹体在矿床研究中的作用.矿床地质,2009,28(6):850-855.
    [30]何知礼,杜加峰.流体包裹体研究的某些进展与发展趋势.1996,3(3-4):306-312.
    [31]刘悟辉,汪礼明,徐文忻等.黄沙坪铅锌银多金属矿床同位素地球化学特征[J].地球学报,2005,26(增刊):160~163.
    [32]程伟基,陈江峰.热液体系中硫同位素的瑞利分馏[J].中国科技大学学报,1980,10(3):196~200.
    [33]Ohmoto H, Rye Ro. Isotope of sulfur and carbon in geochemistry of hydrothermal ore depoites [M]. NewYork:John Wiley and Sons,1979:509~561.
    [34]Ohmoto H, Goldhaber. Sulfur and carbon isotopes in geochemistry of hydrothermal ore depoites [M]. New York:John Wiley and Sons,1997:517~611.
    [35]周涛,刘悟辉,徐文妍等.黄沙坪铅锌多金属矿床物理化学环境研究[J].矿物学报,2007(增刊):213~214.
    [36]许以明,龚述清,江元成等.湖南黄沙坪铅锌矿深边部找矿前景分析[J].地质与勘探,2007,43(1):38~43.
    [37]陈毓川.华南与燕山早期花岗岩有关的稀土、稀有、有色金属成矿系列[J].矿床地质,1983,2(2):15~22.
    [38]龚述清.黄沙坪铅锌矿深部铅锌资源潜力探讨[J].矿业研究与开发,2007,27(4):83~86.
    [39]王育民.湖南铅锌矿地质[M].北京:地质出版社.1988:1~418.
    [40]陈毓川,朱裕生.中国矿床成矿模式[M].北京:地质出版社.1993:1~367.
    [41]费新强,庞保成,杨晓飞等.湖南黄沙坪铅锌矿床地质特征及矿床成因[C].华南青年地学学术研讨会论文集.2006,31~34.
    [42]邓圣富.黄沙坪矿床矿物组合分带规律研究[J].矿产与地质,1997,11(61):314~317.
    [43]李石锦.湖南黄沙坪铅锌矿多金属矿床构造控矿特征及成矿浅析[J].大地构造与成矿学,1997,21(4):339-346.
    [44]黄始琪,黄德志,向文渊.黄沙坪铅锌多金属矿成因类型初探[C].中国地质学会矿山地质专业委员会资源节约型矿山高层论坛会议文集.2006.
    [45]湖南黄沙坪铅锌矿.湖南省桂阳县黄沙坪铅锌矿资源潜力调查报告[R].2005.
    [46]湖南省地质矿产局湘南地质队.湖南省桂阳县坪宝地区铅锌银矿大比例尺成矿预测报告[R].1992.
    [47]湖南省地质矿产局湘南地质队.湖南省郴桂地区铅锌金银中比例尺成矿预测报告[R].1990.
    [48]雷泽恒,陈富文,陈郑辉等.黄沙坪铅锌多金属矿成岩成矿年龄测定及地质意义[J].地球学报,2010,31(4):532~540.
    [49]童潜明.郴桂地区钨锡铅锌金银矿床成矿规律[M].地质出版社,1995:1~98.
    [50]李洪昌.南岭地区铅锌矿成矿规律[M].湖南科技出版社,1985:1~349.
    [51]林风高,丁俊华等.黄沙坪铅锌多金属矿床中岩浆作用与成矿的关系[R].1992.
    [52]湖南省地质矿产局湘南地质队.湘南地区地质矿产基本特征[R].1989.
    [53]龚述清.湖南省桂阳县黄沙坪铅锌矿成矿规律及深部找矿远景研究[R].2011
    [54]黄沙坪铅锌矿、湘南地质勘察院.湖南省桂阳县黄沙坪铅锌矿接替资源勘查(详查)地质报告[R].2010.
    [55]庄锦良.湘南地区锡铅锌隐伏矿床预测研究[M].地质出版社,1993:1~126.
    [56]毛景文.超大型钨多金属矿床成矿特殊性—以湖南柿竹园矿床为例[J].地质科学, 1997,32(3):351~363.
    [57]北京矿产地质研究所,黄沙坪铅锌矿.湖南黄沙坪铅锌矿区南部铁钨钼铋(锡)多金属矿床成矿规律和找矿方向初步研究[R].2003.
    [58]湘南地质勘察院.湖南省桂阳县黄沙坪铅锌矿接替资源找矿研究报告[R].2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700