用户名: 密码: 验证码:
基于对称性的二维声子晶体带隙特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声子晶体(phononic crystal)是一种具有周期性结构并具有声/弹性波带隙的人工新型声学功能材料。由于其奇特的带隙、局域、负折射特征和在振动隔离、噪音控制、声学波导器件及声学透镜等方面的潜在应用,近二十年来,声子晶体的研究引起了各国学者的研究兴趣。
     针对声子晶体低频带隙打开的难题,本文基于降低对称性的思想,设计了两种新型晶格结构,利用平面波展开法和有限元法计算二维固/流(气)声子晶体的能带结构、传输谱和压力场分布,打开了低频带隙;基于超声浸水透射技术实验测试了声子晶体的带隙和缺陷态特征。主要工作如下:
     (1)正方晶格钢/水声子晶体的聋带研究
     对正方晶格钢/水声子晶体,沿着第一Brillouin区的两个高对称方向,实验测量的第一带隙与两种方法的数值结果基本吻合;沿着??方向,在高频段,实验测试的声波衰减频段与平面波法计算的能带结构不符,通过计算压力场证明对应的能带为反对称模态,形成聋带(deaf band),实验证实了在正方晶格钢/水声子晶体中存在聋带,揭示了高频段测试结果与计算结果矛盾的原因。
     (2)众所周知,第一Brillouin区高对称点处的能带简并是制约带隙打开的一个重要因素。本文基于降低对称性的思想,在单胞内添加“原子”降低结构的对称性,消除了能带简并,打开了低频带隙。
     ①混合三角-六角晶格声子晶体的带隙特性研究。在三角晶格的单胞内添加两个“原子”形成混合三角-六角晶格结构,降低了结构对称性。用平面波法计算了混合三角-六角晶格钢/空气声子晶体的能带结构,结果表明,改变不同格点的散射体半径能调控带隙的数目、位置及宽度,且不同格点处的散射体半径变化对带隙的影响不同:三角格点处的散射体半径越大越容易打开高频带隙;六角格点处的散射体半径越大越容易打开低频带隙。
     ②混合三角晶格声子晶体的带隙特性研究。对混合三角晶格结构,由于在单胞内添加一个“原子”降低了结构的对称性,因此消除了能带在第一Brillouin区高对称点X处的简并,打开了一条新的位于第一、二能带间的低频带隙;改变添加原子的位置可以调控带隙的位置及宽度。实验测试了混合三角晶格钢/水声子晶体的带隙特性,验证了降低对称性是消除能带简并,打开低频带隙的一种有效方法。测试结果与两种方法计算的结果吻合较好。
     (3)基于椭圆散射体的声子晶体带隙特性研究
     以椭圆散射体取代圆形散射体,对三角晶格钢/空气声子晶体,在相同的晶格常数及填充率下,当散射体由圆柱体改为椭圆柱体时,消除了能带简并,打开了一条新的位于第一、二能带间的低频带隙;并且在一定的填充率范围内打开的第二带隙宽度及位置与圆柱体对应的声子晶体打开的第一带隙的宽度及位置基本一致;散射体截面越接近于圆,越不易打开第一、二能带间的带隙。椭圆截面的旋转角度对第一带隙影响较大。
     根据这种带隙特性,把具有不同晶格常数椭圆截面散射体构成的声子晶体并列,在降低结构尺寸的条件下打开了宽的低频带隙。
     (4)钢/水声子晶体缺陷态的局域特性研究
     基于实验测试和有限元计算研究了多种点、线缺陷的局域特征。在带隙频率范围内,声波在声子晶体中传播时会局域在缺陷处,形成共振腔或波导结构;对直线型线缺陷,声波沿着线缺陷几乎是无损耗地传播,但对点缺陷,局域频率点的透射幅值很小。实验测试的线缺陷的局域频段与计算结果基本吻合;但是对点缺陷,实验测试的局域频率点与计算结果相比有一定的漂移。
     基于单点缺陷和直线型线缺陷的局域特征构造了波导-空腔-波导结构,计算表明,该结构极大地提高了点缺陷的局域效果,透射率接近100%。
     (5)智能声子晶体的带隙特性探讨
     把磁流变弹性体引入声子晶体复合材料,以磁流变弹性体为基体,利用平面波法研究了外加磁场对声子晶体带隙的影响。
Phononic crystal (PC) is a kind of artificial acoustic functional materials with periodic structures which exhibit acoustic or elastic wave band gaps (BGs). For near two decades, the study on PCs has proved to be of great interest due to their novel and unique BGs, localization and negative refraction characteristics, and their potential applications in the vibration isolation, noise control, acoustic filter, waveguide devices acoustic lens, and so on.
     In order to obtain low-frequency BG, two kinds of new lattices are designed based on symmetry reduction. Band structure, transmission spectra and pressure field of two-dimensional solid/fluid (air) PCs are investigated with the plane wave expansion (PWE) method and finite element method (FEM), respectively. BG and localization characteristics are measured based on ultrasonic immersion transmission technology. Main results are as follows:
     (1) Deaf band for square lattice steel/water PCs
     For two-dimensional square lattice steel/water PCs, the measured transmission spectra are in agreement with the numerical results at low-frequency region along the two high symmetry directions in the first Brillouin zone (BZ). While along theгMdirection, the measured transmission spectra are not in accordance with the band structure calculated with the PWE at high-frequency region. The related bands are proved to be anti-symmetry mode, i.e. deaf band through calculating pressure field. Results show that there exists deaf band in square lattice steel/water PCs, and explain the mentioned disagreement.
     (2) As well known, bands degeneracy at high symmetry points in the first BZ plays an important role in limiting band gap open. By reducing the symmetry of lattice through introducing an additional“atom(s)”in a unit cell, bands degeneracy is lifted, and an absolute BG is obtained at low-frequency region.
     ①BG characteristic for hybrid triangular-graphite lattice PCs. By reducing symmetry of structure, hybrid triangular-graphite lattice is considered by placing two additional“atom(s)”averagely at the diagonal of a unit cell of triangular lattice. Band structures for steel/air PCs are computed with the PWE method. Numerical results show that the location and width of stop band can be tuned by varying radii of rods at different positions. Complete BG between high-frequency bands opens easily for large radius of triangular lattice positions. In contrast, there appears wide BG between low-frequency bands easily for large radius of graphite lattice positions.
     ②BG characteristic for hybrid triangular lattice PCs. For hybrid triangular lattice PCs, due to symmetry reduction breaking bands degeneracy at high symmetry point in the first BZ, a novel low-frequency complete BG occurs between the first and the second bands. The location and width of the BG can be tuned by altering the position of additional“atom”. Measured results show that reducing symmetry is a valid method to lift bands degeneracy and open low-frequency band gap. Experimental results are basically in agreement with numerical results.
     (3) BG characteristic for PCs with elliptical scatters
     Triangular lattice steel/air PCs are investigated by replacing steel cylinders for elliptical rods. At the same lattice constant and filling fraction, a novel low-frequency stop band occurs between the first and the second bands for elliptical scatters. And the width of the second lowest BG for elliptical scatters is as the same as the lowest BG for steel cylinders at appropriate filling fraction. According to these results, we design a tandem structure to open wide low-frequency band gap under decreasing space size.
     (4) Localization characteristic for steel/water PCs defect states
     Localization characteristic of several point and line defects are considered by the FEM and experiment. In the stop band frequency, acoustic wave is localized at these defects, and hence forms a resonantor or waveguide. Acoustic wave propagate along the line defect almost losslessly, but for a single point defect, the calculated transmission amplitude is very low at localized frequency. Eexperimental results of line defect are in accordance with numerical results, but for point defect, there exists a little shift for localized frequency between experimental and numerical results. Combining the localization characteristics of single point and line defects, a waveguide–cavity-waveguide structure is designed. Computed transmission spectra show that the transmission ratio of this structure is nearly to 100%, which improves the localization effect of single point defect mostly.
     (5) Discusses on intelligent PCs
     Magnetorheological elastomer (MRE) is introduced in PCs field. For solid/MRE PCs, tunable BG dependence on external magnet field is considered with the PWE method.
引文
1黄昆,韩汝琦著.固体物理学.高等教育出版社,1988
    2 L. Brillouin. Wave propagation in periodic structures. New York, John Wiley, 1946
    3 E. Yablonovitch. Inhibited spontaneous emission in solid state physics and electronics. Physical Review Letters, 1987, 58: 2059-2062
    4 S. John. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58: 2486-2489
    5 Z. Zhang and S. Satpathy. Electromagnetice wave propagation in periodic structure: Bloch wave solution of Maxwell’s equations. Physical Review Letters, 1990, 65: 2650-2653
    6 K. M. Ho, C. T. Chan and C. M. Soukoulis. Existence of a photonic gap in periodic dielectric structure. Physical Review Letters, 1990, 65: 3152-3155
    7 E. Yablonovitch, T. J. Gmitter and K. M. Leung. Photonic band structure: The face-centered -cubic case employing nonspherical atoms. Physical Review Letters, 1991, 67: 2295-2298
    8 C. Sibilia, T. M. Benson, M. Marciniak and T. Szoplik. Photonic crystals: Physics and Technology. Springer, 2008
    9 J. D. Joannopoulos, S. G. Jonson, J. N. Winn and R. D. Meade. Photonic crystals: Molding the flow of light. (Second edition) Princeton University Press, 2008
    10 J. B. Pendry, D. Schurig and D. R. Smith. Controlling electromagnetic fields. Science, 2006, 312: 1780-1782
    11 D. Schurig, J. Mock and J. B. Pendry et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314: 977-980
    12 C. Y. Luo, S. G. Johnson, J. D. Joannopoulos and J. B. Pendry. Subwavelength imaging in photonic crystals. Physical Review B, 2003, 68, 045115: 1-15
    13温熙森等著.光子/声子晶体理论与技术.科学出版社,2006.6
    14陈焕阳.各向异性材料中的波:隐身衣、旋转衣和声子晶体.上海交通大学博士学位论文,2008.6
    15 A. Sukhovich. Wave phenomena in phononic crystals. [D] University of Manitoba, Canada,2007
    16闫志忠.基于小波理论的二维声子晶体带隙结构分析.北京交通大学博士学位论文,2007.10
    17 A. Khelif. A. Choujaa and V. Laude et al. Guiding and filtering acoustic waves in a two-dimensional phononic crystal. IEEE Ultrasonics Symposium, 2004, 1: 654-657
    18 M. M. Sigalas and E. N. Economou. Elastic and acoustic wave band structure. Journal of Sound and Vibration, 1992, 158: 377-382
    19 M. S. Kushwaha, P. Halevi and L. Dobrzynski et al. Acoustic band structure of periodic elastic composites. Physical Review Letters, 1993, 71: 2022-2025
    20 R. Martinez-Sala, J. Sancho and J. V. Sanchez et al. Sound-attenuation by sculpture. Nature, 1995, 378: 241-241
    21 J. O. Vasseur, P. A. Deymier and A. Khelif et al. Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range:A theoretical and experimental study. Physical Review E, 2002, 65, 056608: 1-6
    22 Z. Z. Yan and Y. S. Wang. Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals. Physical Review B, 2006, 74, 224303: 1-9
    23 J. O. Vasseur, Y. Pennec and P. A. Deymier et al. Waveguiding in two-dimensional piezoelectric phononic crystal plates. Journal of Applied Physics, 2007, 101, 114904: 1-6
    24 Sz-Chen. S. Lin and T. J. Huang. Acoustic mirage in two-dimensional gradient-index phononic crystals. Journal of Applied Physics, 2009, 106, 053529: 1-5
    25 M. Farhat, S. Guenneau, S. Enoch and A. Movchan. All-angle-negative-refraction and ultra-refraction for liquid surface waves in 2D phononic crystals. Journal of Computational and Applied Mathematics, 2010, 234: 2011-2019
    26 T. Miyashita. Sonic crystals and sonic wave-guides. Measurement Science and Technology, 2005, 16: R47-R63
    27 M. H. Lu, L. Feng and Y. Y. Chen. Phononic crystals and acoustic metamaterials. Materials Today, 2009, 12, 12: R34-R42
    28 W. Steurer and D. Sutter-Widmer. Photonic and phononic quasicrystals. Journal of Physics D: Applied Physics, 2007, 40: R229-R247
    29 R. H. OlssonⅢandⅠEI-Kady. Microfabricated phononic crystal devices and applications. Measurement Science and Technology, 2009, 20, 012002: 1-13
    30 C. Yilmaz, G. M. Hulbert and N. Kikuchi. Phononic band gaps induced by inertial amplification in periodic media. Physical Review B, 2007, 76, 054309: 1-9
    31 J. Gao, J. C. Cheng and B. W. Li. Propagation of Lamb waves in one-dimensional quasiperiodic composite thin plates: a split of phonon band gap. Applied Physics Letters, 2007, 90, 111908: 1-3
    32 A. L. Chen, Y. S. Wang and Y. F. Guo et al. Band structures of Fibonacci phononic quasicrystals. Solid State Communications, 2008, 145: 103-108
    33 X. D. Zhang. Universal non-near-field focus of acoustic waves through high-symmetry quasicrystals. Physical Review B, 2007, 75, 024209: 1-4
    34 P. G. Luan and Zhen Ye. Acoustic wave propagation in a one-dimensional layered system. Physical Review B, 2001, 63, 066611: 1-8
    35 Z. Ye and P. G. Luan. Acoustic energy confinement in randomly layered structures. Journal of Applied Physics, 2002, 91: 4761-4767
    36 L. S. Chen, C. H. Kuo and Z. Ye. Acoustic imaging and collimation by slabs of sonic crystals made from arrays of rigid cylinders in air. Applied Physics Letters, 2004, 85, 6: 1072-1074
    37 J. J. Shi, S. C. C. Lin and T. Huang. Wide-band acoustic collimating by phononic crystal composites. Applied Physics Letters, 2008, 92, 111901: 1-3
    38 Z. J. He, Y. F. Heng and Z. Y. Liu et al. Acoustic collimating beams by negative refraction in two-dimensional phononic crystal. Journal of Applied Physics, 2009, 105, 116105: 1-3
    39 Y-C Chuang and T. J. Suleski. Complex rhombus lattice photonic crystals for broadband all-angle self-collimation. Journal of Optics, 2010, 12, 035102: 1-6
    40 B. Morvan, A. Tinel an A. C. H. Hennion. Experimental demonstration of the negative refraction of a transverse elastic wave in a two-dimensional solid phononic crystal. Applied Physics Letters, 2010, 96, 101905: 1-3
    41 J. V. Sanchez, D. Caballero and R. Martinez-Sala et al. Sound attenuation by a two-dimensional array of rigid cylinders. Physical Review Letters, 1998, 80: 5325-5328
    42 L. Dhar and J. A.Rogers. High frequency one-dimensional photonic crystal characterized with a picosecond transient grating photo-acoustic technique. Applied Physics Letters, 2000, 77: 1402-1404
    43 T. Gorshnny, C. K. Ullal, M. Maldovan, G. Fytas and E. L. Thomas. Hypersonic phononic crystals. Physical Review Letters, 2005, 94, 115501: 1-5
    44 M. Maldovan and E .L. Thomas. Simultaneous localization of photons and phonons in two-dimensional periodic structures. Applied Physics Letters, 2006, 88, 251907: 1-3
    45 M. Maldovan and E .L. Thomas. Simultaneous complete elastic and electromagnetic band gaps in periodic structures. Applied Physics B, 2006, 83: 595-600
    46 G. Anetsberger, R. Riviere and A. Schliesser et al. Ultralow-dissipation optomechanical resonators on a chip. Nature Photonics, 2008, 2: 627-633
    47 I. Favero and K. Karrai. Optomechanics of deformable optical cavities. Nature Photonics, 2009, 3: 201-205
    48 M. Eichenfield, J. Chan and R. Camacho et al. Optomechanical crystals. Nature Letters, 2009, 461: 78-82
    49 N. Papanikolaou, I. E. Psarobas and N. Stefanou. Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals. Applied Physics Letters, 2010, 96, 231917: 1-3
    50 J. O. Vasseur, P. A. Deymier and B. Djafari et al. Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates. Physical Review B, 2008, 77, 085415: 1-15
    51 V. Laude, Y. Achaoui and A. Khelif et al. Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 2009, 80, 092301: 1-4
    52 V. R. Garcia, J. V. S. Perez and L. M. G. Raffi. Evanescent modes in sonic crystal: Complex dispersion relation and supercell approximation. Journal of Applied Physics, 2010, 108, 044907: 1-6
    53 X. D. Jing, P. Sheng and M. Y. Zhou. Theory of acoustic excitations in colloidal suspensions.Physical Review Letters, 1991, 66: 1240-1244
    54 Z. Y. Liu, X. X. Zhang and P. Sheng et al. Locally resonant sonic materials. Science 2000, 289:1734-1736
    55 K. M. Ho, C. K. Cheng and P. Sheng et al. Broadband locally resonant sonic shields. Applied Physics Letters, 2003, 83, 26: 5566-5568
    56 S. X. Yang, J. H. Page and Z.Y. Liu et al. Ultrasound tunneling through 3D phononic crystals. Physical Review Letters, 2002, 88, 104301: 1-4
    57 S. X. Yang, J. H. Page and Z. Y. Liu et al. Focusing of sound in a 3D phononic crystal. Physical Review letters, 2004, 93, 024301: 1-4
    58 J. Li and C. T. Chan. Double-negative acoustic metamaterial. Physical Review E, 2004, 70, 055602(R): 1-4
    59 X. H. Hu, C. T. Chan and J. Zi. Two-dimensional sonic crystals with Helmholtz resonators. Physical Review E, 2005, 71, 055601(R): 1-4
    60 Y. Lai. The study of band gap engineering for phononic crystals and gap structures in phononic quasicrystals. [D] The Hong Kong University of Science and Technology, 2005
    61 H. Y. Chen and C. T. Chan. Acoustic cloaking and transformation acoustics. Journal of Physics D: Applied Physics, 2010, 43, 113001: 1-15
    62 Y. Q. Lu, Y. Y. Zhu and Y. F. Chen et al. Optical properties of an ionic-type phononic crystal. Science, 1999, 284: 1822-1824
    63 L. Feng, X. P. Liu and N. B. Ming et al. Acoustic back-wave negative refractions in the second band of a sonic crystal. Physical Review Letters, 2006, 96, 014301: 1-4
    64 M. H. Lu, C. Zhang and N. B. Ming et al. Negative birefraction of acoustic waves in a sonic crystal. Nature Materials,2007, 1-5
    65 L. Feng, X. P. Liu and M. H. Lu et al. Refraction control of acoustic waves in a square-rod-constructed tunable sonic crystal. Physical Review B, 2006, 73, 193101: 1-4
    66 Y. Cheng, J. Y. Xu and X. J. Liu. Tunable sound directional beaming assisted by acoustic surface wave. Applied Physics Letters, 2010, 96, 071910: 1-3
    67 B. Liang, Bo Yuan and J. C. Cheng. Acoustic diode: rectification of acoustic energy flux in one-dimensional systems. Physical Review Letters, 2009, 103, 104301: 1-4
    68 B. Liang, X. S. Guo and J. C. Cheng et al. An acoustic rectifier. Nature Materials, 2010, 9: 989-992 B. W. Li. Now you hear, now you don’t. Nature Materials, News & Views, 2010, 9: 962-963
    69 K. Deng, Y. Q. Ding and Z. Y. Liu et al. Graded negative index lens with designable focal length by phononic crystal. Journal of Physics D: Applied Physics, 2009, 42, 185505: 1-4
    70 J. Mei, Z. Y. Liu and C. Y. Qiu. Multiple-scattering theory for out-of-plane propagation of elastic waves in two-dimensional phononic crystals. Journal of Physics: Condensed Matter, 2005, 17: 3735-3757
    71 J. Li, Z. Y. Liu and C. Y. Qiu. Negative refraction imaging of acoustic wave by a two-dimensional three-component phononic crystal. Physical Review B, 2006, 73, 054302: 1-5
    72 M. Z. Ke, Z. Y. Liu and P. Pang et al. Experimental demonstration of directional acoustic radiation based on two-dimensional phononic crystal band edge states. Applied Physics Letters, 2007, 90, 083509: 1-3
    73 J. Mei, C. Y. Qiu, J. Shi and Z. Y. Liu. Enhanced and directional water wave emission by embedded sources. Wave Motion, 2010, 47: 132-138
    74 X. F. Mei, G. Q. Liu and Z. Y. Liu et al. Experimental investigation of shell modes in two-dimensional phononic crystal consisting of hollow cylinders. Journal of Applied Physics, 2010, 107, 064503: 1-4
    75王文刚,刘正猷,赵德刚,柯满竹.声波在一维声子晶体中共振隧穿的研究.物理学报,2006, 55, 9: 4744-4747
    76 X. H. Hu, Y. F. Shen and J. Zi et al. Superlensing effect in liquid surface waves. Physical Review E, 2004, 69, 030201(R): 1-4
    77 H. Zhang, Y. Cen and L. F. Chen et al. Full-angle collimations of two-dimensional photonic crystals with ultrahigh-index background materials. Journal of Optics, 2010, 12, 045103: 1-5
    78 G. Wang, X. S. Wen and J. H. Wen et al. Two-dimensional locally resonant phononic crystals with binary structures. Physical Review Letters, 2004, 93, 154302: 1-4
    79 G. Wang, J. H. Wen and Y. Z. Liu. Lumped-mass method for the study of band structure in two-dimensional phononic crystals. Physical Review B, 2004, 69, 184302: 1-4
    80温激鸿.声子晶体振动带隙及减振特性研究.国防科技大学博士学位论文,2005.4
    81 Z. L. Hou, X. J. Fu and Y. Y. Liu. Singularity of the Bloch theorem in the fluid/solid phononic crystal. Physical Review B, 2006, 73, 024304: 1-5
    82 Y. W. Yao, Z. L. Hou and Y. J. Cao et al. An improved method of eigen-mode matching theory in two-dimensional phononic crystal. Physica B, 2007, 388: 75-81
    83 X. Zhang, F. G. Wu and Z. Y. Liu et al. Transverse wave band gaps and longitudinal wave band gaps in solid phononic crystals. Solid State Communications, 2010, 150: 275-279
    84 Y. Pang, J. X. Liu and Y. S. Wang et al. Wave propagation in piezoelectric/piezomagnetic layered periodic composites. Acta Mechanica Solida Sinica, 2008, 21: 483-490
    85汪越胜,李建宝,张传增.基于通用有限元软件的声子晶体能带结构计算方法.损伤、断裂与微纳米力学学术研讨会,2009年8月,北京, 46-56
    86高斌.流固耦合声子晶体减振隔震及导波性能的数值分析与实验研究.北京交通大学硕士学位论文,2010.7
    87 Y. Z. Wang, F. M. Li and Y. S. Wang et al. Tuning of band gaps for a two-dimensional piezoelectric phononic crystal with a rectangular lattice. Acta Mechanica Sinica, 2009, 25: 65-71
    88 Sz-Chen. S. Lin, B. R. Tittmann and J. H. Sun et al. Acoustic beamwidth compressor using gradient-index phononic crystals. Journal of Physics D: Applied Physics, 2009, 42, 185502: 1-5
    89栾丕纲,陈启昌著.光子晶体—从蝴蝶翅膀到奈米光子学.五南图书出版公司,2008
    90 J. H. Sun and T. T. Wu. Analyses of mode coupling in joined parallel phononic crystal waveguides. Physical Review B, 2005, 71, 174303: 1-8
    91 F. L. Hsiao, A. Khelif and V. Laude et al. Complete band gaps and deaf bands of triangular and honeycomb water-steel phononic crystals. Journal of Applied Physics, 2007, 101, 044903: 1-5
    92 M. L. Wu, L. Y. Wu and. L. W. Chen et al. Elastic wave band gaps of one-dimensional phononic crystals with functionally graded materials. Smart Materials and Structures, 2009, 18, 115013: 1-8
    93 Y. Y. Chen and Z. Ye. Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays. Physical Review E, 2001, 64, 036616: 1-6
    94 C. Goffaux and J. P. Vigneron. Theoretical study of a tunable phononic band gap system. Physical Review B, 2001, 64, 075118: 1-5
    95 A. Khelif, P. A. Deymier and B. Djafari-Rouhani et al. Two-dimensional phononic crystal with tunable narrow pass band: Application to a waveguide with selective frequency. Journal of Applied Physics, 2003, 94, 3: 1308-1311
    96 X. F. Wang, M. S. Kushwaha and P. Vasilopoulos. Tunability of acoustic spectral gaps and transmission in periodically stubbed waveguides. Physical Review B, 2002, 65, 035107: 1-10
    97 R. Min, F. G. Wu and L. H. Zhong et al. Extreme acoustic band gaps obtained under high symmetry in 2D phononic crystals. Journal of Physics D: Applied Physics, 2006, 39: 2272-2276
    98 Y. W. Yao, Z. L. Hou and Y. Y. Liu. The two-dimensional phononic band gaps tuned by the position of the additional rod. Physics Letters A, 2007, 362: 494-499
    99钱斯文.带隙原位可调型固/固二维声子晶体研究.国防科技大学硕士学位论文,2004
    100 Z. G. Huang and T. T. Wu. Temperature effect on the bandgaps of surface and bulk acoustic waves in two-dimensional phononic crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52: 365-370
    101 J. Y. Yeh. Control analysis of the tunable phononic crystal with electrorheological material. Physica B, 2007, 400: 137-144
    102 W. P. Yang and L. W. Chen. The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator. Smart Materials and Structure, 2008, 17, 015011: 1-6
    103 J. F. Robillard, O. B. Matar and J. O. Vasseur et al. Tunable magnetoelastic phononic crystals. Applied Physics Letters, 2009, 95, 124104: 1-3
    104 W. Cheng, J. J. Wang and U. Jonas et al. Observation and tuning of hypersonic bandgaps in colloidal crystals. Nature Materials, 2006, 5: 830-836
    105 K. L. Jim, C. W. Leung and S. T. Lau et al. Thermal tuning of phononic bandstructure in ferroelectric ceramic/epoxy. Applied Physics Letters, 2009, 94, 193501: 1-3
    106 B. Merheb, P. A. Deymier and K. Muralidharan et al. Viscoelastic effect on acoustic band gaps in polymer-fluid composites. Modeling and Simulation in Materials Science and Engineering, 2009, 17, 075013: 1-13
    107 Y. P. Zhao and P. J. Wei. The band gap of 1D viscoelastic phononic crystal. Computational Materials Science, 2009, 46: 603-606
    108 D. W. Wright and R. S. C. Cobbold. Acoustic wave transmission in time-varying phononic crystals. Smart Materials and Structures, 2009, 18, 015008: 1-9
    109 Y. Z. Wang, F. M. Li and K. Kishimoto et al. Band gaps of elastic waves in three-dimensional piezoelectric phononic crystals. European Journal of Mechanics A / Solids, 2010, 29: 182-189
    110 Z. Y. Liu, C. T. Chan and P. Sheng. Three-component elastic wave band-gap material. Physical Review B, 2002, 65, 165116: 1-6
    111 M. Hirsekorn. Small-size sonic crystal with strong attenuation bands in the audible frequency range. Applied Physics Letters, 2004, 84: 3364-3366
    112 Z. M. Liu, S. L. Yang and X. Zhao. Ultrawide band gap locally resonant sonic materials. Chinese Physics Letters, 2005, 22, 12: 3107-3110
    113华佳,张舒,程建春.三元周期结构声带隙形成机理.物理学报, 2005,54: 1261-1266
    114 C. Goffaux and J. Sanchez-Dehesa. Two-dimensional phononic crystals studied using a variational method: Application to lattices of locally resonant materials. Physical Review B, 2003, 67, 144301: 1-10
    115 M. S. Kushwaha and B. Djafari-Rouhani. Sonic stop-bands for periodic arrays of metallic rods: honeycomb structure. Journal of Sound and Vibration, 1998, 218, 4: 697-709
    116 R. E. Vines and J. P. Wolfe. Scanning phononic lattices with surface acoustic waves. Physica B, 1999, 263-264: 567-570
    117 T. T. Wu, Z. C. Hsu and Z. G. Huang. Band gaps and the electromechanical coupling coefficient of surface acoustic wave in a two-dimensional piezoelectric phononic crystal. Physical Review B, 2005, 71, 064303: 1-5
    118 F. Y. Cai, Z. J. Zhao and Z. Y. Liu et al. Scholte surface wave in a soft film deposited on rigid plate immersed in water: dispersion relation and collimation effect. Journal of Applied Physics, 2010, 107, 064505: 1-6
    119 X. H. Hu, Y. F. Shen and X. H. Liu et al. Complete band gaps for liquid surface waves propagating over a periodically drilled bottom. Physical Review E, 2003, 68, 066308: 1-5
    120 R. Sainidou, B. Djafari-Rouhani and J. O. Vasseur. Surface acoustic waves in finite slabs of three-dimensional phononic crystals. Physical Review B, 2008, 77, 094304: 1-9
    121 K. Kokkonen, M. Kaivola and V. Laude et al. Scattering of surface acoustic waves by a phononic crystal revealed by heterodyne interferometry. Applied Physics Letters, 2007, 91, 083517: 1-3
    122 V. Laude, M. Wilm and A. Khelif et al. Full band gap for surface acoustic waves in a piezoelectric phononic crystal. Physical Review E, 2005, 71, 036607: 1-7
    123 J. C. Hsu and T. T. Wu. Lamb waves in binary locally resonant phononic plates with two-dimensional lattices. Applied Physics Letters, 2007, 90, 021904: 1-3
    124 B. Beonello, C. Charles and F. Ganot. Lamb waves in plates covered by a two-dimensional phononic film. Applied Physics Letters, 2007, 90, 021909: 1-3
    125 D. Nardi, F. Banfi and F. Parmigiani et al. Pseudosurface acoustic waves in hypersonic surface phononic crystals. Physical Review B, 2009, 80, 104119: 1-8
    126 S. Y. Ren and Y. C. Chang. Surface state/modes in one-dimensional semi-infinite crystals. Annals of Physics, 2010, 325: 937-947
    127 J. H. Sun and T. T. Wu. Analyses of surface acoustic wave propagation in phononic crystal waveguides using FDTD method. 2005 IEEE Ultrasonics Symposium, 5: 73-76
    128 M. M. Sigalas. Elastic wave band gaps and defect states in two-dimensional composites. Journal of the Acoustical Society of America, 1997, 101: 1256-1261
    129 M. Kafesaki, M. M. Sigalas and N. Garcia. Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials. Physical Review Letters, 2000, 85: 4044-4047
    130 A. Khelif, A. Choujaa and V, Laude et al. Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal. Physical Review B, 2003, 68, 214301: 1-4
    131 A. Khelif, A. Choujaa and V, Laude et al. Guiding and bending of acoustic waves in highly confined phononic crystal waveguides. Applied Physics Letters, 2004, 84: 4400-4402
    132 A. Khelif, S. Mohammadi and A. A. Eftekhar et al. Acoustic confinement and waveguiding with a line-defect structure in phononic crystal slabs. Journal of Applied Physics, 2010, 108, 084515: 1-5
    133 M. Torres, F. R. Montero de Espinosa and D. Garcia-Pablos et al. Sonic band gaps in finite elastic media: surface states and localization phenomena in linear and point defects. Physical Review letters, 1999, 82: 3054-3057
    134 M. Torres and F. R. Montero de Espinosa. Ultrasonic band gaps and negative refraction. Ultrasonics, 2004, 42: 787-790
    135 F. G. Wu, Z. Y. Liu and Y. Y. Liu. Splitting and tunning characteristics of the point defect modes in two-dimensional phononic crystals. Physical Review E, 2004, 69, 066609: 1-4
    136赵言诚,二维声子晶体结构设计及其特性研究.哈尔滨工程大学博士学位论文,2006.8
    137 F. G. Wu, H. L. Zhong and S. Zhong et al. Localized states of acoustic waves in three-dimensional periodic composites with point defects. The European Physical Journal B, 2003, 34: 265-268
    138 H. Chandra, P. A. Deymier and J. O. Vasseur. Elastic wave propagation along waveguides in three-dimensional phononic crystals. Physical Review B, 2004, 70, 054302: 1-6
    139 I. E. Psarobas, N. Stefanou and A. Modinos. Phononic crystals with planar defect. Applied Physics Letters, 2000, 62: 5536-5540
    140 J. H. Sun and T. T. Wu. Analyses of mode coupling in joined parallel phononic crystal waveguides. Physical Review B, 2005, 71, 174303: 1-8
    141 F. C. Hsu, C. I. Lee and J. C. Hsu et al. Acoustic band gaps in phononic crystal strip waveguides. Applied Physics Letters, 2010, 96, 051902: 1-3
    142伍茂仁.以保角映射法为基础之等效波导理论:理想光波导之设计与分析.国立中央大学博士学位论文,2001.4
    143 Ngoc Hai Vu. In-Kag Hwang and Yong-Hee Lee, Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method. Optics Letters, 2008, 33: 119-121
    144 A. Bazan, M. Torres and F. R. Montero de Espinosa et al. Conformal mapping of ultrasonic crystals: Confining ultrasound and cochlearlike waveguiding. Applied Physics Letters, 2007, 90, 094101: 1-3
    145 C. Y. Qiu, Z. Y. Liu and J. Shi et al. Directional acoustic source based on the resonant cavity of two-dimensional phononic crystals. Applied Physics Letters, 2005, 86, 224105: 1-3
    146 J. Mei, C. Y. Qiu and Z. Y. Liu et al. Highly directional liquid surface wave source based on resonant cavity. Physics Letters A, 2009, 373: 2948-2952
    147 T. T. Wu, C. H. Hsu and J. H. Sun. Design of a highly magnified directional acoustic source based on the resonant cavity of two-dimensional phononic crystals. Applied Physics Letters, 2006, 89, 171912: 1-3
    148 V. G. Veselago. The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Soviet Physics USPEKI, 1968, 10: 509-514
    149 R. A. Shelby, D. R. Smith and S. Schultz. Experimental verification of a negative index of refraction. Science, 2001, 292: 77-79
    150 Ulf Leonhardt. Optical conformal mapping. Science, 2006, 312: 1777-1780
    151 O. Vanbesien, N. Fabre and X. Melique et al. Photonic crystal based cloaking device at optical wavelength. Applied Optics, 2008, 47, 10: 1358-1362
    152 F. Cervera, L. Sanchis and J. V. Sanchez-Perez et al. Refractive acoustic devices for airborne sound. Physical Review Letters, 2002, 88, 023902: 1-4
    153 M. Z. Ke, Z. Y. Liu and C. Y. Qiu et al. Negatice-refraction imaging with two-dimensional phononic crystals. Physical Review B, 2005, 72, 064306: 1-5
    154 S. S. Peng, X. F. Mei and Z. Y. Liu et al. Experimental investigation of negative refraction and imaging of 8-fold-symmetry phononic quasicrystals. Solid State Communications, 2009, 149: 667-669
    155卢明辉,冯亮,陈延峰等.声子晶体中第二能带的回波负折射.前沿进展,2006,5,11:969-974
    156 I. Perez-Arjona, V. J. Sanchez-Morcillo and J. Redondo et al. Theoretical prediction of the nondiffractive propagation of sonic waves through periodic acoustic media. Physical Review B, 2007, 75, 014304: 1-7
    157 V. Espinosa, V. J. Sanchez-Morcillo and K. Staliunas et al. Subdiffractive propagation of ultrasound in sonic crystals. Physical Review B, 2007, 76, 140302(R): 1-4
    158 M. S. Kushwaha, P. Halevi and G. Martinez et al. Theory of acoustic band structure of periodic elastic composites. Physical Review B, 1994, 49: 2313-2322
    159 J. O. Vasseur, B. Djafari-Rouhani and P. Halevi et al. Complete acoustic band gaps in periodic fibre reinforced composite materials: the carbon/epoxy composite and some metallic systems. Journal of Physics: Condensed Matter, 1994, 6: 8759-8770
    160 B. Manzanares-Martinez and F. Ramos-Mendieta. Surface elastic waves in solid composites of two-dimensional periodicity. Physical Review B, 2003, 68, 134303: 1-8
    161 M. Kafesaki and E. N. Economou. Multiple-scattering theory for three-dimensional periodic acoustic composites. Physical Review B, 1999, 60, 11993: 1-9
    162 Y. Tanska, Y. Tomoyasu and S. Tamura. Band structure of acoustic waves in phononic lattices: two-dimensional composites with large acoustic mismatch. Physical Review B, 2000, 62: 7387-7392
    163 D. Garcia-Pablos, M. Sigalas and M. Torres et al. Theory and experiments on elastic band gaps. Physical Review Letters, 2000, 84: 4349-4352
    164 Z. L. Hou, X. J. Fu and Y. Y. Liu. Calculational method to study the transmission properties of phononic crystals. Physical Review B, 2004, 70, 014304: 1-7
    165王瑛,汪银辉,王敏芳.负折射材料及其军事应用.光电子技术,2010,30,1:1-6
    166 W. M. Robertson, G. Arjavalingam and J. D. Joannopoulos et al. Measurement of photonic band structure in a two-dimensional periodic dielectric array. Physical Review Letters, 1992, 68, 13: 2023-2027
    167 P. Langlet, A. Christine and H. Hennion et al. Analysis of the propagation of plane acoustic waves in passive periodic materials using the finite element method. Journal of Acoustic Society America, 1995, 98, 5: 2792-2800
    168 M. S. Kushwaha. Stop-bands for periodic metallic rods: Sculptures that can filter the noise. Applied Physics Letters, 1997, 70, 24: 3218-3220
    169徐婉棠,喀兴林著.群论及其在固体物理中的应用.高等教育出版社,1999年
    170 K. Sakoda. Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices. Physical Review B, 1995, 52: 7982-7986
    171 G. Alagappan, X. W. Sun and H. D. Sun. Symmetries of the eigenstates in an anisotropic photonic crystal. Physical Review B, 2008, 77, 195117: 1-17
    172 A. N. Darinskii, E. L. Clezio and G. Feuillard. Acoustic wave degeneracies in two-dimensional phononic crystals. Wave Motion, 2008, 45: 970-980
    173 Z. Y. Li, B. Y. Gu and G. Z. Yang. Large absolute band gap in 2D anisotropic photoniccrystals. Physical Review B, 1998, 81: 2574-2577
    174 D. Caballero, J. Sanchez-Dehesa and C. Rubio et al. Large two-dimensional sonic band gaps. Physical Review E, 1999, 60: R6316-6319
    175 X. H. Wang, B. Y. Gu, Z. Y. Li and G. Z. Yang. Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices. Physical Review B,1999, 60: 11417-11421
    176 M. Qiu and S. L. He. Large complete band gap in two-dimensional photonic crystals with elliptic air holes. Physical Review B, 1999, 60: 10610-10612
    177 L. J. Martinez, A. Garcia-Martin and P. A. Postigo. Photonic band gaps in a two-dimensional hybrid triangular-graphite lattice, Optics Express, 2004, 12: 5684-5689
    178 M. S. Kushwaha and P. Halevi. Ultrawidedband filter for noise control. Japanese Journal of Applied Physics, 1997, 36: 1043-1044
    179王银玲.聚合物基金属复合材料及其应用的研究.中国科技大学博士学位论文,2006
    180 L. C. Davis, Model of magnetorheological elastormers. Journal of Applied Physics, 1999, 85: 3348-3351
    181 M. R. Jolly, J. D. Carlson and B. C. Munoz et al. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. Journal of Intelligent material systems and structures, 1996, 7: 613-621
    182方生,龚兴龙,张先舟,张培强.磁流变弹性体力学性能的测试与分析.中国科学技术大学学报,2004, 34, 4: 456-463
    183 X. L. Gong, L. Chen and J. F. Li. Study of utilizable magnetorheological elastomers. Proceedings of the 10th International Conference on Electrorheological Fluids and Magnetorheological Suspensions, University of Nevada, 2006: 202-209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700