用户名: 密码: 验证码:
磁电弹性声带隙材料结构中的弹性波传播与局部化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹性波在周期结构中的传播以及由此而引发的关于声带隙材料(声子晶体)的研究是近年来力学、物理学以及材料科学的热点问题之一。由于声子晶体本身所具有的禁带特性,使得这类结构在隔振、隔音、降噪、声波导与声滤波器等工程技术领域具有广泛的应用前景。以压电材料为代表的智能材料的广泛应用,以及结构中存在随机失谐时而引起的弹性波局部化现象,使得弹性波在智能声带隙材料中的传播及局部化问题的研究具有重要意义。本文系统地研究了弹性波在压电、磁电弹性声带隙材料中的传播以及系统存在随机失谐情况下弹性波的局部化行为。具体完成的主要研究工作如下:
     研究了二维压电声子晶体中散射体形状以及矩形点阵长宽比对带隙结构的影响。根据固体物理学中的平面波展开法,得到了弹性波的带隙结构。提出了以往关于光子晶体以及纯弹性声子晶体中,散射体形状不同时禁带宽度与填充比之间的关系,在压电散射体情况下存在局限性。验证了纯弹性声带隙材料中矩形点阵结构的带隙行为,在压电系统中同样存在。
     发展了用于研究二维压电声带隙材料的平面波展开法,解决了三维压电周期结构中弹性波的传播问题。给出了此类系统中模态耦合情况下的广义特值方程,并在第一Brillouin区内进行求解,从而得到带隙结构。同时,针对简单立方、体心立方以及面心立方三种典型三维点阵结构,系统地研究了其禁带特性。分析了散射体填充率以及压电效应对带隙行为的影响。
     设计和研究了压电/压磁以及磁电弹性声带隙材料的弹性波禁带特性,给出了求解该类问题的分析方法。根据结构的周期性以及Bloch定理,得到了力-电-磁场耦合情况下的弹性动力学广义特征值方程。对比了散射体在不同点阵结构情况下的禁带特性。同时,研究了具有Kagome点阵的磁电弹性声带隙材料中弹性波的禁带性能,分析了压电性与压磁性对带隙结构的影响。
     研究了随机失谐压电声带隙材料中Rayleigh表面波的传播与局部化问题。根据结构表面力场与电场的边界条件,通过迭代求解得到了Rayleigh表面波沿深度方向的衰减系数。给出了结构的传递矩阵以及局部化因子的表达式。分析了结构尺寸与弹性系数随机失谐对Rayleigh表面波传播与局部化行为的影响。同时,研究了含有初应力的压电杆状声带隙材料中弹性波的传播与局部化问题。给出了结构中局部化因子与局部化长度的表达式。分析了结构随机失谐以及初应力对波的传播与局部化特性的影响。
     研究了热效应情况下随机失谐层状三组元声带隙材料中SH波的传播与局部化问题。根据相邻单胞边界处的连续条件,推导了结构中弹性波的传递矩阵,给出了结构中局部化因子的表达式。分析了弹性波入射角、厚度比、材料常数失谐、热效应对波的传播与局部化特性的影响,讨论了含橡胶层声带隙材料的禁带特性。
     研究了二维声带隙材料中存在随机失谐情况时弹性波的传播与局部化问题。以往关于二维声带隙材料缺陷态的研究多局限于点缺陷与线缺陷这样的确定性缺陷问题,带隙结构可以准确地描述这类特性。但对于二维随机缺陷问题,由于问题的复杂性和不确定性,求解确定性缺陷问题的方法已不再适合。所以,需要寻求一种适合研究二维随机缺陷声带隙材料的方法。结合平面波展开法、传递矩阵方法以及矩阵特征值方法,给出了二维声子晶体中局部化因子的表达式。验证了局部化因子同样可以表征二维声带隙材料的带隙结构,并可有效地描述随机失谐声带隙材料中波的传播特性。分析了随机失谐量以及散射体填充率对弹性波局部化行为的影响。与含有随机分布气泡的液体中声波的局部化问题相比,观察到了类似的物理现象,比较了二者的区别。
In recent years, there is a lot of work on the elastic wave propagation in periodic structures which becomes a hot topic on band gap materials (phononic crystals) in mechanics, physics and material science. With the stop band characteristics, these structures can be extensively applied in vibration isolation technology, sound isolation, noise suppression, sound wave-guide and sound filter. Due to the wide use of piezoelectric materials and the random disorder in periodic structures which results in the wave localization, it is important to investigate the elastic wave propagation and localization in intelligent band gap materials. In this thesis, the elastic wave propagation in piezoelectric and magnetoelectroelastic band gap materials and localization in randomly disorder systems are studied systematically. The primary obtained results are as follows:
     The effects of scatterer shapes and lattice constant ratios for rectangular lattice on the band gap structures of the two-dimensional piezoelectric phononic crystals are studied. Based on the plane wave expansion method in solid physics, the band gap structures of elastic waves are derived. The limitation of the relation between the band gap widths and the filling fractions with different scatterer shapes are pointed out for piezoelectric scatterers, which is valid for the photonic crystals and pure elastic systems. The influences of the lattice constant ratio for rectangular lattices on the band gap characteristics in the pure phononic crystals are also exist in the piezoelectric periodic structures with rectangular lattices.
     The plane wave expansion method for the two-dimensional piezoelectric acoustic band gap materials is developed and used to investigate the wave propagation in three-dimensional piezoelectric periodic structures. The generalized eigenvalue equation is presented for this case with coupling modes and the band gap structures can be obtained in the first Brillouin zone. At the mean time, the stop band characteristics are studied systematically by considering three typical kinds of lattices (i.e. sc, bcc and fcc). The effects of the filling fraction and piezoelectricity on the band gap properties are analyzed.
     The piezoelectric/piezomagnetic and magnetoelectroelastic band gap materials are designed and studied and the analytical method for this problem is presented. Based on the periodicity and the Bloch theory, the generalized eigenvalue equation of elastic dynamics is provided by considering the mechanical-electro-magneto coupling into account. The stop band characteristics for different lattices are compared. Simultaneously, the band gap characteristics of magnetoelectroelastic band gap materials with Kagome lattices are investigated and the effects of the piezoelectricity and piezomagneticity on the band gap structures are analyzed.
     The propagation and localization characteristics of Rayleigh surface waves in randomly disordered piezoelectric band gap materials are studied. With the surface boundary condition of the mechanical and electrical fields, the decaying rate of Rayleigh surface waves along the depth direction can be iteratively obtained. The expressions of the transfer matrix and the localization factor are presented. The effects of the random disorder of the structural length and the material constant on the localization behaviors of Rayleigh surface waves are analyzed. Simultaneously, the propagation and localization of elastic waves in randomly disordered piezoelectric rod band gap materials with initial stress are studied. The expressions of the localization factor and the localization length are presented. The effects of the random disorder and initial stress on the wave propagation and localization characteristics are analyzed.
     The SH waves propagation and localization in randomly disordered layered three-component band gap materials with thermal effects are studied. According to the continuous condition between the consecutive unit cells, the transfer matrix is derived and the expression of the localization factor is presented. The influences of the elastic wave incident angel, thickness ratio, material constant and thermal effects on wave propagation and localization characeristics are analyzed. The stop band characteristics of band gap materials with rubber are discussed.
     The elastic wave propagation and localization behaviors in two-dimensional band gap materials with random disorder are studied. The studies on the two-dimensional band gap materials with defects are mainly focoused on the point and linear defects which can be considered as the determined ones. The stop band characteristics can be described by the band gap structures. However, this method will not be suitable when these defects become random. Based on the plane wave expansion, transfer matrix and matrix eigenvalue methods, the localization factor is presented for two-dimensional phononic crystals. The localization factor is also an effective way to describe the band gap structures of two-dimensional band gap materials. The randomness and filling fraction on the elastic wave localization behaviors are analyzed. Compared with the case of the acoustic wave localization in liquid media with random bubble, similar phenomena can also be observed for this system and the difference between them is illustrated.
引文
1黄昆,韩汝琦.固体物理学.高等教育出版社, 1988
    2谢希德,陆栋.固体能带理论.复旦大学出版社, 1998
    3冯端,金国钧.凝聚态物理学(上卷).高等教育出版社, 2003
    4 E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters. 1987, 58: 2059~2062
    5 S. John. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters. 1987, 58: 2486~2489
    6 O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, I. Kim. Two-Dimensional Photonic Band-Gap Defect Mode Laser. Sience. 1999, 284: 1819~1821
    7 R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S. Russell, P.J. Roberts, D.C. Allan. Single-Mode Photonic Band Gap Guidance of Light in Air. Science. 1999, 285: 1537~1539
    8 M. Sigalas, E.N. Economou. Band Structure of Elastic Waves in Two Dimensional Systems. Solid State Communications. 1993, 86: 141~143
    9 M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani. Acoustic Band Structure of Periodic Elastic Composites. Physical Review Letters. 1993, 71: 2022~2025
    10陈源,黄其柏,师汉民.基于振动与噪声控制的声子晶体研究进展.噪声与振动控制. 2005, 5: 1~3
    11华佳,张舒,程建春.嵌入单元对周期结构声禁带形成的机理研究.自然科学进展. 2005, 15: 243~247
    12黄飞,何锃.椭圆柱体二维液态声子晶体声波禁带的研究.动力学与控制学报. 2005, 3: 86~92
    13卢天健,何德坪,陈长青,赵长颖,方岱宁,王晓林.超轻多孔金属材料的多功能特性及应用.力学进展. 2006, 36: 517~535
    14刘有延,侯志林,姚源卫,旷卫民,傅秀军.本征模式匹配理论在经典波传播中的应用.华南理工大学学报. 2007, 35: 214~220
    15鲍亦兴,陈运泰,陈云敏,苏先樾,陈晓非,陈伟球.多领域学者共探固体中的机械波.国际学术动态. 2007, 3: 33~42
    16范华林,金丰年,方岱宁.格栅结构力学性能研究进展.力学进展. 2008,38:35~52
    17郑玲,李以农, A. Baz.一维声子晶体的振动特性与实验研究.振动工程学报. 2007, 20: 417~421
    18 F.G. Wu, Z.Y. Liu, Y.Y. Liu. Acoustic Band Gaps in 2D Liquid Phononic Crystals of Rectangular Structure. Journal of Physics D: Applied Physics. 2002, 35:162~165
    19黄文虎,王心清,张景绘,郑钢铁.航天柔性结构振动控制的若干新进展.力学进展. 1997, 27: 5~18
    20胡元太,李国清,蒋树农,胡洪平,杨嘉实.具有刚性双边裂纹的压电介质中的电荷相互作用分析.应用数学和力学. 2005, 26; 911~920
    21 J.S. Yang, J. Wang. Dynamic Anti-Plane Problems of Piezoceramics and Applications in Ultrasonics—A Review. Acta Mechanica Solida Sinica. 2008, 21: 207~220
    22曹小杉,金峰,王子昆,卢天健.功能梯度压电层状结构中的B-G波.中国科学G辑. 2009, 39: 17~27
    23 G. Liu, C.W. Nan, J. Sun. Coupling Interaction in Nanostructured Piezoelectric/ Magnetostrictive Multiferroic Complex Films. Acta Materialia. 2006, 54: 917~925
    24 B.L. Wang, Y.W. Mai. Applicability of the Crack-Face Electromagnetic Boundary Conditions for Fracture of Magnetoelectroelastic Materials. International Journal of Solids and Structures. 2007, 44: 387~398
    25 Z.G. Zhou, P.W. Zhang, L.Z. Wu. The Closed Form Solution of a Mode-I Crack in the Piezoelectric/Piezomagnetic Materials. International Journal of Solids and Structures. 2007, 44: 419~435
    26 J. Zhao, R.C. Yin, T. Fan, M.H. Lu, Y.F. Chen, Y.Y. Zhu, S.N. Zhu, N.B. Ming. Coupled Phonon Polaritons in a Piezoelectric-Piezomagnetic Superlattice. Physical Review B. 2008, 77: 075126
    27 P.W. Anderson. Absence of Diffusion in Certain Random Lattices. Physical Review. 1958, 109: 1492~1505
    28李凤明,汪越胜,黄文虎,胡超.失谐周期结构中振动局部化问题的研究进展.力学进展. 2005, 35: 498~512
    29 M.M. Sigalas, E.N. Economou. Elastic and Acoustic Wave Band Structure. Journal of Sound and Vibration. 1992, 158: 377~382
    30温熙森等.光子/声子晶体理论与技术.科学出版社, 2006
    31 G. Grosso, G.P. Parravicini. Solid State Physics. Academic Press. 2000
    32 Z.Y. Liu, X.X. Zhang, Y.W. Mao, Y.Y. Zhu, Z.Y. Yang, C.T. Chan, P. Sheng. Locally Resonant Sonic Materials. Science. 2000, 289: 1734~1736
    33温维佳,沈平.局域共振的光子、声子功能材料.物理. 2004, 33: 106~110
    34 M.M. Sigalas, E.N. Economou. Elastic Waves in Plates with Periodically Placed Inclusions. Journal of Applied Physics. 1994, 75: 2845~2850
    35 M.S. Kushwaha, P. Halevi. Giant Acoustic Stop Bands in Two-Dimensional Periodic Arrays of Liquid Cylinders. Applied Physics Letters. 1996, 69: 31~33
    36 Y.J. Cao, Z.L. Hou, Y.Y. Liu. Finite Difference Time Domain Method for Band-Structure Calculations of Two-Dimensional Phononic Crystals. Solid State Communications. 2004, 132: 539~543
    37 J.H. Sun, T.T. Wu. Propagation of Acoustic Waves in Phononic-Crystal Plates and Waveguides Using a Finite-Difference Time-Domain Method. Physical Review B. 2007, 76: 104304
    38 C. Cetinkaya, A.F. Vakakis. Transient Axisymmetric Stress Wave Propagation in Weakly Coupled Layered Structures. Journal of Sound and Vibration. 1996, 194: 389~416
    39 I.E. Psarobas, N. Stefanou, A. Modinos. Scattering of Elastic Waves by Periodic Arrays of Spherical Bodies. Physical Review B. 2000, 62: 278~291
    40 H.Y. Chen, X.D. Luo, H.R. Ma. Scattering of Elastic Waves by Elastic Spheres in a NaCl-Type Phononic Crystal. Physical Review B. 2007, 75: 024306
    41温激鸿,王刚,刘耀宗,郁殿龙.基于集中质量法的一维声子晶体弹性波带隙计算.物理学报. 2004, 53: 3384~3388
    42 G. Wang, J. H. Wen, X.S. Wen. Quasi-One-Dimensional Phononic Crystals Studied Using the Improved Lumped-Mass Method: Application to Locally Resonant Beams with Flexural Wave Band Gap. Physical Review B. 2005, 71: 104302
    43 Z.Z. Yan, Y.S. Wang. Wavelet-Based Method for Calculating Elastic Band Gaps of Two-Dimensional Phononic Crystals. Physical Review B. 2006, 74: 224303
    44 Z.Z. Yan, Y.S. Wang. Calculation of Band Structures for Surface Waves in Two-Dimensional Phononic Crystals with a Wavelet-Based Method. Physical Review B. 2008, 78, 094306
    45 Y. Liu, L.T. Gao. Explicit Dynamic Finite Element Method for Band-Structure Calculations of 2D Phononic Crystals. Solid State Communications. 2007, 144:89~93
    46 C. Goffaux, J. Sánchez-Dehesa. Two-Dimensioanl Phononic Crystals Studied Using a Variational Method: Application to Lattices of Locally Resonant Materials. Physical Review B. 2003, 67: 144301
    47汪越胜.声带隙功能材料的科学问题及力学思考.《固体力学若干新进展——第一届全国固体力学青年学者研讨会论文集》,冯西桥,陈伟球,孟庆国,詹世革主编.清华大学出版社. 2006,323~341
    48 B.G. Martin. Acoustical Properties of Symmetric Multilayers. Journal of the Acoustical Society of America. 1992, 91: 1469~1473
    49 R. Esquivel-Sirvent, G.H. Cocoletzi. Band Structure for the Propagation of Elastic Waves in Superlattices. Journal of the Acoustical Society of America. 1994, 95: 86~90
    50 D. Richards, D.J. Pines. Passive Reduction of Gear Mesh Vibration Using a Periodic Drive Shaft. Journal of Sound and Vibration. 2003, 264: 317~342
    51 S.V. Sorokin, O.A. Ershova. Plane Wave Propagation and Frequency Band Gaps in Periodic Plates and Cylindrical Shells with and without Heavy Fluid Loading. Journal of Sound and Vibration. 2004, 278: 501~526
    52 M.I. Hussein, G.M. Hulbert, R.A. Scott. Dispersive Elastodynamics of 1D Banded Materials and Structures: Analysis. Journal of Sound and Vibration. 2006, 289: 779~806
    53 D.G. Zhao, W.G. Wang, Z.Y. Liu, J. Shi, W.J. Wen. Peculiar Transmission Property of Acoustic Waves in a One-Dimensional Layered Phononic Crystals. Physica B. 2007, 390: 159~166
    54 J.Y. Yeh, L.W. Chen. Wave Propagations of a Periodic Sandwich Beam by FEM and the Transfer Matrix Method. Composite Structures. 2006, 73: 53~60
    55 Y.S. Wang. Nonlocal Elastic Analogy for Wave Propagation in Periodic Layered Composites. Mechanics Research Communications. 1999, 26: 719~723
    56 W. Chen, J. Fish. A Dispersive Model for Wave Propagation in Periodic Heterogeneous Media Based on Homogenization with Multiple Spatial and Temporal Scales. Journal of Applied Mechanics. 2001, 68: 153~161
    57 G.L. Huang,C.T. Sun. A Higher-Order Continuum Model for Elastic Media with Multiphased Microstructure. Mechanics of Advanced Materials and Structures. 2008, 15: 550~557
    58 G. Wang, X.S. Wen, J.H. Wen, Y.Z. Liu. Quasi-One-Dimensional Periodic Structure with Locally Resonant Band Gap. Journal of Applied Mechanics. 2006, 73: 167~170
    59 D.L. Yu, Y. Z., Liu, G. Wang, L. Cai, J. Qiu. Low Frequency Torsional Vibration Gaps in the Shaft with Locally Resonant Structures. Physics Letters A. 2006, 348: 410~415
    60 D.L. Yu, Y.Z. Liu, H.G. Zhao, G. Wang, J. Qiu. Flexural Vibration Band Gaps in Euler-Bernoulli Beams with Locally Resonant Structures with Two Degrees of Freedom. Physical Review B. 2006, 73: 064301
    61 D.L. Yu, Y.Z. Liu, G. Wang, H.G. Zhao, J. Qiu. Flexural Vibration Band Gaps in Timoshenko Beams with Locally Resonant Structures. Journal of Applied Physics. 2006, 100: 124901
    62 V.I. Alshits, A.L. Shuvalov. Resonance Reflection and Transmission of Shear Elastic Waves in Multilayered Piezoelectric Structures. Journal of Applied Physics. 1995, 77: 2659~2665
    63 A.A. Mesquida, J.A. Otero, R.R. Ramos, F. Comas. Wave Propagation in Layered Piezoelectric Structures. Journal of Applied Physics. 1998, 83: 4652~4659
    64 J.S. Yang, Z.G. Chen, Y.T. Hu, S.N. Jiang, S.H. Guo. Propagation of Thickness-Twist Waves in a Multi-Sectioned Piezoelectric Plate of 6mm Crystals. Archive of Applied Mechanics. 2007, 77: 689~696
    65 Z.L. Hou, F.G. Wu, Y.Y. Liu. Acoustic Wave Propagation in One-Dimensional Fibonacci Binary Composite Systems. Physica B. 2004, 344: 391~397
    66 P.D. Sesion Jr, E.L. Albuquerque, C. Chesman, V.N. Freire. Acoustic Phonon Transmission Spectra in Piezoelectric AlN/GaN Fibonacci Phononic Crystals. The European Physical Journal B. 2007, 58: 379~387
    67 P.D.C. King, T.J. Cox. Acoustic Band Gaps in Periodically and Quasiperiodically Modulated Waveguides. Journal of Applied Physics. 2007, 102: 014902
    68 F.G. Wu, Z.L. Hou, Z.Y. Liu, Y.Y. Liu. Acoustic Band Gaps in Two- Dimensional Rectangular Arrays of Liquid cylinders. Solid State Communications. 2002, 123: 239~242
    69 Z.L. Hou, X.J. Fu, Y.Y. Liu. Acoustic Wave in a Two-Dimensional Composite Medium with Anisotropic Inclusions. Physics Letters A. 2003, 317: 127~134
    70 X.L. Li, F.G. Wu, H.F. Hu, S. Zhong, Y.Y. Liu. Large Acoustic Band Gaps Created By Rotating Square Rods in Two-Dimensional Periodic Composites. Journal of Physics D: Applied Physics. 2003, 36: L15~L17
    71 W.M. Kuang, Z.L. Hou, Y.Y. Liu. The Effects of Shapes and Symmetries of Scatterers on the Phononic Band Gap in 2D Phononic Crystals. Physics Letters A. 2004, 332: 481~490
    72 R. Min, F.G. Wu, L.H. Zhong, H.L. Zhong, S. Zhong, Y.Y. Liu. Extreme Acoustic Band Gaps Obtained under High Symmetry in 2D Phononic Crystals. Journal of Physics D: Applied Physics. 2006, 39: 2272~2276
    73 Y.W. Yao, Z.L. Hou, Y.Y. Liu. The Two-Dimensional Phononic Band Gaps Tuned by the Position of the Additional Rod. Physics Letters A. 2007, 362: 494~499
    74 Z.L. Xu, F.G. Wu, Z.F. Mu, X. Zhang, Y.W. Yao. Larger Acoustic Band Gaps Obtained by Configurations of Rods in Two-Dimensional Phononic Crystals. Journal of Physics D: Applied Physics. 2007, 40: 5584~5587
    75 D.L. Yu, Y.Z. Liu, J. Qiu, H.G. Zhao, Z.M. Liu. Experimental and Theoretical Research on the Vibrational Gaps in Two-Dimensional Three-Component Composite Thin Plates. Chinese Physics Letters. 2005, 22: 1958~1960
    76 J.H. Wen, D.L. Yu, G. Wang, H.G. Zhao, Y.Z. Liu, X.S. Wen. Directional Propagation Characteristics of Flexural Waves in Two-Dimensional Thin-Plate Phononic Crystals. Chinese Physics Letters. 2007, 24: 1305~1308
    77 M. Ruzzene, F. Scarpa, F. Soranna. Wave Beaming Effects in Two- Dimensional Cellular Structures. Smart Materials and Structures. 2003, 12: 363~372
    78 S. Gonella, M. Ruzzene. Analysis of In-Plane Wave Propagation in Hexagonal and Re-Entrant Lattices. Journal of Sound and Vibration. 2008, 312: 125~139
    79 D.L. Yu, Y.Z. Liu, J. Qiu, G. Wang, H.G. Zhao. Complete Flexural Vibration Band Gaps in Membrane-Like Lattice Structures. Physics Letters A. 2006, 357: 154~158
    80 J.H. Wen, D.L. Yu, G. Wang, X.S. Wen. Directional Propagation Characteristics of Flexural Wave in Two-Dimensional Periodic Grid-Like Structures. Journal of Physics D: Applied Physics. 2008, 41: 135505
    81 A. Srikantha Phani, J. Woodhouse, N.A. Fleck. Wave Propagation in Two- Dimensional Periodic Lattices. Journal of the Acoustical Society of America.2006, 119: 1995~2005
    82 M. Wilm, S. Ballandras, V. Laude, T. Pastureaud. A Full 3D Plane-Wave- Expansion Model for 1-3 Piezoelectric Composite Structures. Journal of the Acoustical Society of America. 2002, 112: 943~952
    83 Z.L. Hou, F.G. Wu, Y.Y. Liu. Phononic Crystals Containing Piezoelectric Material. Solid State Communications. 2004, 130: 745~749
    84 A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, V. Laude. Complete Band Gaps in Two-Dimensional Phononic Crystal Slabs. Physical Review E. 2006, 74: 046610
    85 X.Y. Zou, Q. Chen, B. Liang, J.C. Cheng. Control of the Elastic Wave Bandgaps in Two-Dimensional Piezoelectric Periodic Structures. Smart Materials and Structures. 2008, 17: 015008
    86 E.N. Economou, M. Sigalas. Stop Bands for Elastic Waves in Periodic Composite Materials. Journal of the Acoustical Society of America. 1994, 95: 1734~1740
    87 M. Kafesaki, M.M. Sigalas, E.N. Economou. Elastic Wave Band Gaps in 3-D Periodic Polymer Matrix Composites. Solid State Communications. 1995, 96: 285~289
    88 I.E. Psarobas, M.M. Sigalas. Elastic Band Gaps in a Fcc Lattice of Mercury Spheres in Aluminum. Physical Review B. 2002, 66: 052302
    89 M.S. Kushwaha, B. Djafari-Rouhani. Complete Acoustic Stop Bands for Cubic Arrays of Spherical Liquid Balloons. Journal of Applied Physics. 1996, 80: 3191~3195
    90 M.S. Kushwaha, P. Halevi. Stop Bands for Cubic Arrays of Spherical Balloons. Journal of the Acoustical Society of America. 1997, 101: 619~622
    91 T. Suzuki, P.K.L. Yu. Complex Elastic Wave Band Structures in Three- Dimensional Periodic Elastic Media. Journal of the Mechanics and Physics of Solids. 1998, 46: 115~138
    92 X. Zhang, Z.Y. Liu, Y.Y. Liu, F.G. Wu. Elastic Wave Band Gaps for Three-Dimensional Phononic Crystals with Two-Structural Units. Physics Letters A. 2003, 313: 455~460
    93 W.M. Kuang, Z.L. Hou, Y.Y. Liu, H. Li. The Band Gaps of Cubic Phononic Crystals with Different Shapes of Scatterers. Journal of Physics D: Applied Physics. 2006, 39: 2067~2071
    94 P.F. Hsieh, T.T. Wu, J.H. Sun. Three-Dimensional Phononic Band Gap Calculations Using the FDTD Method and a PC Cluster System. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2006, 53: 148~158
    95 Y. Wang, Q.B. Huang, M.G. Zhou, Z.S. Xu. Transfer Matrix Approach of Vibration Isolation Analysis of Periodic Composite Structure. Archive of Applied Mechanics. 2007, 77: 461~471
    96 Y. Tanaka, S-i. Tamura. Surface Acoustic Waves in Two-Dimensional Periodic Elastic Structures. Physical Review B. 1998, 58: 7958~7965
    97 Y. Tanaka, S-i. Tamura. Acoustic Stop Bands of Surface and Bulk Modes in Two-Dimensional Phononic Lattices Consisting of Aluminum and a Polymer. Physical Review B. 1999, 60: 13294~13297
    98 F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. Sánchez-Dehesa, C. López, J. Llinares. Rayleigh-Wave Attenuation by a Semi-Infinite Two- Dimensional Elastic-Band-Gap Crystal. Physical Review B. 1999, 59: 12169~12172
    99 E.V. Tartakovskaya. Surface Waves in Elastic Band-Gap Composites. Physical Review B. 2000, 62: 11225~11229
    100 T.T. Wu, Z.G. Huang, S. Lin. Surface and Bulk Acoustic Waves in Two- Dimensional Phononic Crystal Consisting of Materials with General Anisotropy. Physical Review B. 2004, 69: 094301
    101 T.T. Wu, L.C. Wu, Z.G. Huang. Frequency Band-Gap Measurement of Two-Dimensional Air/Silicon Phononic Crystals Using Layered Slanted Finger Interdigital Transducers. Journal of Applied Physics. 2005, 97: 094916
    102 T.T. Wu. Z.C. Hsu, Z.G. Huang. Band Gaps and the Electromechanical Coupling Coefficient of a Surface Acoustic Wave in a Two-Dimensional Piezoelectric Phononic Crystal. Physical Review B. 2005, 71: 064303
    103 J. C. Hsu, T.T. Wu. Bleustein-Gulyaev-Shimizu Surface Acoustic Waves in Two-Dimensional Piezoelectric Phononic Crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2006, 53: 1169~1176
    104 V. Laude, M. Wilm, S. Benchabane, A. Khelif. Full Band Gap for Surface Acoustic Waves in a Piezoelectric Phononic Crystal. Physical Review E. 2005, 71: 036607
    105 S. Benchabane, A. Khelif, J.Y. Rauch, L. Robert, V. Laude. Evidence forComplete Surface Wave Band Gap in Piezoelectric Phononic Crystal. Physical Review E. 2006, 73: 065601(R)
    106 X.Y. Zhang, T. Jackson, E. Lafond, P. Deymier, J. Vasseur. Evidence of Surface Acoustic Wave Band Gaps in the Phononic Crystals Created on Thin Plates. Applied Physics Letters. 2006, 88: 041911
    107 K. Kokkonen, M. Kaivola, S. Benchabane, A. Khelif, V. Laude. Scattering of Surface Acoustic Waves by a Phononic Crystal Revealed by Heterodyne Interferometry. Applied Physics Letters. 2007, 91: 083517
    108 M.M. Sigalas. Elastic Wave Band Gaps and Defect States in Two-dimensional Composites. Journal of the Acoustical Society of America. 1997, 101: 1256~1261
    109 F.G. Wu, Z.L. Hou, Z.Y. Liu, Y.Y. Liu. Point Defect States in Two- Dimensional Phononic Crystals. Physics Letters A. 2001, 292: 198~202
    110 M. Torres, F.R. Montero de Espinosa. Ultrasonic Band Gaps and Negative Refraction. Ultrasonics. 2004, 42: 787~790
    111 Y. Pennec, B. Djafari-Rouhani, J.O. Vasseur, A. Khelif, P.A. Deymier. Tunable Filtering and Demultiplexing in Phononic Crystals with Hollow Cylinders. Physical Review E. 2004, 69: 046608
    112 H. Chandra, PA. Deymier, J.O. Vasseur. Elastic Wave Propagation along Waveguides in Three-Dimensional Phononic Crystals. Physical Review B. 2004, 70: 054302
    113 Z.G. Huang, T.T. Wu. Analysis of Wave Propagation in Phononic Crystals with Channel Using the Plane-Wave Expansion and Supercell Techniques. IEEE Ultrasonics Symposium. 2005, 5: 77~80
    114 J.H. Sun, T.T. Wu. Analyses of Surface Acoustic Wave Propagation in Phononic Crystal Waveguides Using FDTD Method. IEEE Ultrasonics Symposium. 2005, 5: 73~76
    115 J.H. Sun, T.T. Wu. Guided Surface Acoustic Waves in Phononic Crystal Waveguides. IEEE Ultrasonics Symposium. 2006, 6: 673~676
    116 I.E. Psarobas, N. Stefanou, A. Modinos. Phononic Crystals with Planar Defects. Physical Review B. 2000, 62: 5536~5540
    117 F.G. Wu, H.L. Zhong, S. Zhong, Z.Y. Liu, Y.Y. Liu. Localized States of Acoustic Waves in Three-Dimensional Periodic Composites with Point Defects. The European Physical Journal B. 2003,34: 265~268
    118 A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano. Determining Lyapuov Exponents from a Time Series. Physica D. 1985, 16:285~317
    119 F.M. Li, Y.S. Wang, C. Hu, W.H. Huang. Localization of Elastic Waves in Randomly Disordered Multi-Coupled Multi-Span Beams. Waves in Random Media. 2004, 14: 217~227
    120 F.M. Li, Y.S. Wang, C. Hu, W.H. Huang. Localization of Elastic Waves in Periodic Rib-Stiffened Rectangular Plates under Axial Compressive Load. Journal of Sound and Vibration. 2005, 281: 261~273
    121 F.M. Li, Y.S. Wang. Wave Localization in Randomly Disordered Multi- Coupled Multi-Span Beams on Elastic Foundations. Waves in Random and Complex Media. 2006, 16: 261~279
    122 F.M. Li, Y.S. Wang, A.L. Chen. Wave Localization in Randomly Disordered Periodic Piezoelectric Rods. Acta Mechanica Solida Sinica 2006, 19: 50~57
    123 F.M. Li, Y.S. Wang. Study on Wave Localization in Disordered Periodic Layered Piezoelectric Composite Structures. International Journal of Solids and Structures. 2005, 42: 6457~6474
    124 F.M. Li, Y.S. Wang. Study on Localization of Plane Elastic Waves in Disordered Periodic 2-2 Piezoelectric Composite Structures. Journal of Sound and Vibration. 2006, 296: 554~566
    125 F.M. Li, M.Q. Xu, Y.S. Wang. Frequency-Dependent Localization Length of SH-Wave in Randomly Disordered Piezoelectric Phononic Crystals. Solid State Communication. 2007, 141: 296~301
    126 A.L. Chen, F.M. Li, Y.S. Wang. Localization of Flexural Waves in a Disordered Periodic Piezoelectric Beam. Journal of Sound and Vibration. 2007, 304: 863~874
    127 A.L. Chen, Y.S. Wang. Study on Band Gaps of Elastic Waves Propagating in One-Dimensional Disordered Phononic Crystals. Physica B. 2007, 392: 369~378
    128 A.L. Chen, Y.S. Wang, Y.F. Guo, Z.D. Wang. Band Structures of Fibonacci Phononic Quasicrystals. Solid State Communications. 2008, 145: 103~108
    129 M.A. Kaliteevski, J. Manzanares Martinez, D. Cassagne, J.P. Albert. Disordered-Induced Modification of the Transmission of Light in a Two- Dimensional Photonic Crystal. Physical Review B. 2002, 66: 113101
    130 K.C. Kwan, X.D. Zhang, Z.Q. Zhang, C.T. Chan. Effects Due to Disorder onPhotonic Crystal-Based Waveguides. Applied Physics Letters. 2003, 82: 4414~4416
    131 Z.D. Yuan, J.C. Cheng. Elastic Wave Propagation in Two-Dimensional Ordered and Weakly Disordered Phononic Crystals. Chinese Physics Letters. 2005, 22: 889~891
    132 X.C. Li, Z.Y. Liu, H.Y. Liang, Q.W. Xiao. Band Gap and Waveguide States in Two-Dimensional Disordered Phononic Crystals. Chinese Physics Letters. 2006, 23: 1830~1833
    133 S. Biwa, S. Yamamoto, F. Kobayashi, N. Ohno. Computational Multiple Scattering Analysis for Shear Wave Propagation in Unidirectional Composites. International Journal of Solids and Structures. 2004, 41: 435~457
    134 P.R. Villeneuve, M. Piché. 1992. Photonic Band Gaps in Two-Dimensional Square and Hexagonal Lattices. Physical Review B. 1992, 46: 4969~4972
    135 P.R. Villeneuve, M. Piché. Photonic Band Gaps in Two-Dimensional Square Lattices: Square and Circular Rods. Physical Review B. 1992, 46: 4973~4975
    136 F.L. Hsiao. A. Khelif, H. Moubchir, A. Choujaa, C.C. Chen, V. Laude. Complete Band Gaps and Deaf Bands of Triangular and Honeycomb Water-Steel Phononic Crystals. Journal of Applied Physics. 2007, 101: 044903
    137 R.Z. Wang, X.H. Wang, B.Y. Gu, G.Z. Yang. Effects of Shapes and Orientations of Scatters and Lattice Symmetries on the Photonic Band Gap in Two-Dimensional Photonic Crystals. Journal of Applied Physics. 2001, 90: 4307~4313
    138 N. Susa. Large Absolute and Polarization-Independent Photonic Band Gaps for Various Lattice Structures and Rod Shapes. Journal of Applied Physics. 2002, 91: 3501~3510
    139 L.H. Zhong, F.G. Wu, X. Zhang, H.L. Zhong, S. Zhong. Effects of Orientation and Symmetry of Rods on the Complete Acoustic Band Gap in Two- Dimensional Periodic Solid/Gas Systems. Physics Letters A. 2005, 339: 164~170
    140 S.X. Yang, J.H. Page, Z.Y. Liu, M.L. Cowan, C.T. Chan, P. Sheng. Focusing of Sound in a 3D Phononic Crystal. Physical Review Letters. 2004, 93: 024301
    141 L. Brillouin. Wave Propagation in Periodic Structures. Dover, New York, 1953
    142 M.S. Kushwaha,P. Halevi,G. Martínez, L. Dobrzynski, B. Djafari-Rouhani. Theory of Acoustic Band Structure of Periodic Elastic Composites. PhysicalReview B. 1994, 49:2313~2322
    143 W. Jones, N.H. March. Theoretical Solid State Physics: Vol. 1. John Wiley & Sons, Inc. 1973
    144 C. Kittel. Introduction to Solid State Physics: Sixth Edition. John Wiley & Sons, Inc, 1986
    145 J.L. Rose. Ultrasonic waves in solid media. Cambridge University Press, 1999
    146 B.A. Auld. Acoustic Fields and Waves in Solids, vol. I. John Wiley & Sons, Inc, 1973
    147 F. Ramirez, P.R. Heyliger, E.N. Pan. Free Vibration Response of Two- Dimensional Magneto-Electro-Elastic Laminated Plates. Journal of Sound and Vibration. 2006, 292: 626~644
    148 R. Shane Fazzio. A Derivation of the Christoffel Equation with Damping. Ultrasonics. 2006, 45: 196~207
    149 A.R. Annigeri, N. Ganesan, S. Swarnamani. Free Vibrations of Clamped-Clamped Magneto-Electro-Elastic Cylindrical Shells. Journal of Sound and Vibration. 2006, 292: 300~314
    150 A. Daga, N. Ganesan, K. Shankar. Comparative Studies of the Transient Response for PECP, MSCP, Barium Titanate, Magneto-Electro-Elastic Finite Cylindrical Shell under Constant Internal Pressure Using Finite Element Method. Finite Elements in Analysis and Design. 2008, 44: 89~104
    151 H.Y. Zhang, Y.P. Shen, G.S. Yin. Lateral Resonances in Initial Stressed 1-3 Piezocomposites. Applied Mathematics and Mechanics, 2007, 28: 873~881
    152 C.H. Hodges. Confinement of Vibration by Structural Irregularity. Journal of Sound and Vibration. 1982, 82: 411~424
    153 C.H. Hodges, J. Woodhouse. Vibrations Isolation from Irregularity in Nearly Periodic Structures: Theory and Measurement. Journal of the Acoustical Society of America. 1983, 74: 894-905
    154 H. Liu, Z.B. Kuang, Z.M. Cai. Propagation of Bleustein–Gulyaev Waves in a Pretressed Layered Piezoelectric Structure. Ultrasonics. 2003, 41: 397~405
    155 J. Su, Z.B. Kuang, H. Liu. Love Wave in ZnO/SiO2/Si Structure with Initial Stresses. Journal of Sound and Vibration. 2005, 286: 981~999
    156 J.N. Sharma, V. Walia. Effect of Rotation on Rayleigh Waves in Piezothermoelastic Half Sspace. Internal Journal of Solids and Structures. 2007, 44: 1060~1072
    157 H. Liu, T.J. Wang, Z.K. Wang, Z.B. Kuang. Effect of a Biasing Electric Field on the Propagation of Antisymmetric Lamb Waves in Piezoelectric Plates. Internal Journal of Solids and Structures. 2002, 39: 1777~1790
    158 G.M. Odegard. Constitutive Modeling of Piezoelectric Polymer Composites. Acta Materialia. 2004, 52: 5315~5330
    159 F.L. Shang, Z.K. Wang, Z.H. Li. An Exact Analysis of Thermal Buckling of Piezoelectric Laminated Plates. Acta Mechanica Solida Sinica. 1997, 10: 95~107
    160 M.A. Fahmy, T.M. EI-Shahat. The Effect of Initial Stress and Inhomogeneity on the Thermoelastic Stresses in a Rotating Anisotropic Solid. Archive of Applied Mechanics. 2008, 78: 431~442
    161 J. Du, X. Jin, J. Wang. Love Wave Propagation in Layered Magneto-Electro- Eelastic Structures with Initial Stress. Acta Mechanica. 2007, 192: 169~189
    162 J.A. Scales, E.S. Van Vleck. Lyapunov Exponents and Localization in Randomly Layered Media. Journal of Computational Physics. 1997, 133: 27~42
    163 D.S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini. Localization of Light in a Disordered Medium. Nature. 1997, 390: 671~673
    164 J. Billy, V. Josse, Z.C. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect. Direct Observation of Anderson Localization of Matter Waves in a Controlled Disorder. Nature. 2008, 453: 891~894
    165 Z. V. Vardeny, M. Raikh. Photonics-Light Localized on the Lattice. Nature. 2007, 446: 37~38
    166 T. Schwartz, G. Bartal, S. Fishman, M. Segev. Transport and Anderson Localization in Disordered Two-Dimensional Photonic Lattices. Nature. 2007, 446: 52~55
    167 D. García-Pablos, M. Sigalas. F.R. Montero de Espinosa. M. Torres. M. Kafesaki, N. García. Theory and Experiments on Elastic Band Gaps. Physical Review Letters. 2000, 84: 4349~4352
    168 A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, V. Laude. Trapping and Guiding of Acoustic Waves by Defect Modes in a Full-Band-Gap Ultrasonic Crystal. Physical Review B. 2003, 68: 214301
    169 S. Li, T.F. George, L.S. Chen, X. Sun, C.H. Kuo. Disorder Effect on the Focus Image of Sonic Crystals in Air. Physical Review E. 2006, 73: 056615
    170 Z.L. Hou, X.J. Fu, Y.Y. Liu, Calculational Method to Study the Transmission Properties of Phononic Crystals. Physical Review B. 2004, 70: 014304
    171 Z.Y. Li, K.M. Ho. Application of Structural Symmetries in the Plane-Wave- Based Transfer-Matrix Method for Three-Dimensional Photonic Crystal Waveguides. Physical Review B. 2003, 68: 245117
    172 L.F. Li. Reformulation of the Fourier Modal Method for Surface-Relief Gratings Made with Anisotropic. Journal of Modern Optics. 1998, 45: 1313~1334
    173 Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg. Anderson Localization and Nonlinearity in One-Dimensional Disordered Photonic Lattices. Physical Review Letters. 2008, 100: 013906
    174 Y. Akahane, T. Asano, B.S. Song, S. Noda, S. High-Q Photonic Nanocavity in a Two-Dimensional Photonic Crystal. Nature. 2003, 425: 944~947
    175 Z. Ye, A. Alvarez. Acoustic Localization in Bubbly Liquid Media. Physical Review Letters. 1998, 80: 3503~3506
    176 E. Hoskinson, Z. Ye. Phase Transition in Acoustic Propagation in 2D Random Liquid Media. Physical Review Letters. 1999, 83: 2734~2737

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700