用户名: 密码: 验证码:
弱耦合星载天线结构动力学分析及振动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,通信、空间科学、对地观测特别是军事侦察技术的高速发展,对星载天线结构的尺寸和性能要求越来越高,从美国已经成功研发的五代电子侦察卫星主天线来看,星载天线的口径从最初的9米发展到了目前的150米。由于太阳风、宇宙碎片及发动机等外来因素会给天线结构带来冲击,因此,为提高星载天线的精度、使用寿命,对其进行动力学研究及振动控制十分必要。
     星载天线普遍属于弱耦合循环周期结构,其动力学特性非常复杂,且随着口径的增大,天线结构的振动特性及振动主动控制的研究就更加成为一个难题。在众多难题中,考虑失谐的弱耦合星载天线结构的动力学特性及振动控制研究最为困难(失谐即生产及安装等过程中导致的天线各子结构存在的微小差异)。已有研究表明,微小失谐会对弱耦合周期结构的动力学特性产生较大的影响,使结构振动特性变得更为复杂,即出现振动模态局部化现象。这一现象已经由美国学者,与一直径为5.75米的天线的振动试验中得到验证,同时发现:尺寸愈大,这种现象出现的几率及严重程度愈大。
     振动模态局部化对弱耦合星载天线结构产生的不利影响主要有以下几方面:1)对弱耦合星载天线结构的使用寿命、精度等带来严重影响;2)使相关的振动控制系统失效;3)影响传感器的测量,导致测不到期望值;4)在外激励下,使结构某些部件的响应幅值过大,而导致结构相应部件的疲劳破坏,进而引起整个系统的破坏。因而对其进行动力学分析及振动控制时必须考虑失谐的影响,这对保证天线结构的正常工作、发展空间通信、观测及军事侦察等方面都具有重要的意义。
     本文在充分考虑结构失谐——这一严重影响弱耦合周期结构动力学特性因素的前提下,以弱耦合星载天线结构为研究对象,对其复杂的动力学特性及振动主动控制问题进行了系统的研究,主要研究内容及成果如下:
     对失谐弱耦合星载天线结构进行了理论建模和有限元建模,研究了天线结构失谐前后的振动特性,结果表明弱耦合星载天线结构的动力学特性对失谐极为敏感,微小失谐会导致结构振动明显的局部化;采用传递矩阵法,对循环周期结构振动的Lyapunov指数进行了分析,解释了振动模态局部化现象产生的机理。
     基于失谐星载天线结构理论模型,研究了结构参数失谐对循环周期结构动力学特性的影响,分析并得到了结构参数变化对弱耦合结构振动模态的影响规律;对各结构参数的变化及失谐情况的振动局部化因子进行了分析,得到了天线质量、肋刚度和肋间夹角的失谐对天线结构振动特性的影响与变化规律,以及天线膜刚度值的大小对天线结构动力学特性的影响规律,从振动的传播方面解释了振动模态局部化产生及变化的原因。
     在充分考虑结构失谐的前提下,针对压电智能弱耦合星载天线结构的有限元模型,研究了结构振动的主动控制问题,发现失谐对结构为弱耦合情况时的影响较大,对非弱耦合情况影响较小;分别采用多种控制算法,对失谐结构的振动进行控制系统设计,分析了在弱耦合星载天线结构存在失谐时的振动控制方面,各种控制方法的优缺点,得到了适合解决失谐天线结构振动控制问题的方法。
     针对弱耦合星载天线结构振动控制中的作动器位置优化设计问题进行了研究。以系统能量为目标,提出了一种改进的粒子群优化(IPSO,Improved Particle Swarm Optimization)算法。采用多种优化算法对作动器位置优化问题进行了仿真计算,验证了改进PSO算法的优点;经位置优化后作动器的控制效率得到了显著的提高。
Recent years, due to the high development of communications, space science, ground observation and reconnaissance technology, large space antennas with high capability on satellites is used more and more widely. Since the development of antennae on five generation satellites have been researched by America, the caliber of antenna goes from 9m to 150m. Due to the impulse on antenna induced by sun wind, astro-fragments and engine, it is indispensable to research dynamic characters and vibration control in order to improve the precision and lifetime of antenna structure.
     Satellite structure is typical weak coupling cyclic periodic structure. The dynamic characters of the structure are very complicated, and vibration control of the structure becomes a quite difficult problem along with the caliber increasing. The vibration control of disordered weak coupling antenna is one of the most difficult problems. Many research results show that the dynamic characters of weak coupling periodic structures are affected obviously by small disorder and remarkable vibration mode localization can be produced. Vibration mode localization has been proved exiting in a 5.75m antenna by a vibration experiment conducted by America researchers, and probability of the localization appearing and awful affects have been confirmed becoming more seriously with bigger antenna.
     The disadvantageous influences on weak coupling satellite antenna by vibration mode localization are mainly presented as follows:
     1) Precision and lifetime of satellite antennas can be influenced greatly by this mode localization.
     2) The vibration control system may be invalid by structural disorder.
     3) The measurements of sensors may be wrong with disorder exiting.
     4) The response of some substructure may be striking and the whole system will be damaged ultimately.
     So the effects of disorder must be considered when carrying on the dynamic analysis of such structures. It is significant to research the effects of disorder for guaranteeing the normal working of antenna, developing space communications and observation and so on.
     In the paper, with considering the effects of small disorder adequately, the dynamic characteristics, vibration control problem of weak coupling satellite antenna structure are studied as follows:
     The dynamical model of weak coupling satellite antenna is established by applying theoretical method and finite element method, respectively. The dynamic characters of weak coupling periodic structures are analyzed. Results show that small disorder can induce remarkable vibration modes localization. The Lyapunov exponents are researched in detail for the purpose of finding the mechanism of vibration mode localization phenomenon and the reason of the spread differences between perfect structure and disordered structure vibrates.
     Based on the theoretical model of weak coupling satellite antenna, effects on dynamic characters due to the disorder of parameters are investigated through lots of calculations. Local factors of disordered and perfect structure are computed under diversified situations of disorder, and the influence law and change trend of dynamic characters of antenna structures in satellites produced by stiffness and mass of antenna ribs, stiffness of antenna membranes and angles between adjacent ribs, are obtained ultimately.
     Considering the effects of disorder, the vibration control is investigated based on the finite element model of piezoelectric smart weak coupling periodic satellite antenna. The effects on vibration control of cyclic periodic structure by disorder are learned. The results show week coupling structure is influenced by disorder obviously, whereas strong coupling structure is affected slightly. The vibration control system is designed applying diversiform control method, respectively. The advantages and disadvantages of those methods are presented, respectively.
     With the intention of investigating the position optimization of sensors and actuators for satellite antenna structure, an improved particle swarm optimization (PSO) method is presented. The general energy of antenna system is regarded as the optimal target in the method. A numerical example is simulated by diversiform optimization method to optimize the positions of sensors and actuators, respectively. The results show the improved PSO method has merits of quick convergence and perfect accuracy, and the efficiency of controller is improved distinctly via position optimizing.
引文
1 M. JIN. Deployment Analysis of Large Space Antenna Using Flexible Multibody Dynamics Simulation. Acta Astronautica. 2000, 47(1):1~26
    2施浒立,张巨勇.我国大天线的新进展.电子机械工程. 2004,20(6):21~24
    3齐春子,昌振铎.卫星大型挠性天线弹性振动抑制的研究. 1998, 19(4): 60~64
    4 T. Takano, K. Miura, M. Natori, etal. Deployable Antenna with 10-m Maximum Diameter for Space Use. IEEE Transactions on Antennas and Propagation. 2004,52(1):2~11
    5孙红霞.大型空间天线的控制问题.电子科学技术革命. 2005(6):24~27
    6 Q. Hu, G.. Ma. Variable Structure Control and Active Vibration Suppression of Flexible Spacecraft During Attitude Maneuver. Aerospace Science and Technology. 2005(9):307~317
    7王援朝.大型星载电子侦察天线结构概述.雷达与对抗. 2006(4):30~34
    8梅国宝,吴世龙.电子侦察卫星的发展、应用及其面临的挑战.舰船电子对抗. 2005,28 (4) :28~31
    9 Masayoshi M, Akihito O. Analytical and Experimental Frequency Verification of Deployed Satellite Antennas. 44th AIAA/ASME/ASCE/AHS/ ASC Structures Structural Dynamics and Materials Conference. Norfolk, VA, USA.2003:7~10
    10 X. Fang, J. Tang, E. Jordan, etal. Crack Induced Vibration Localization in Simplified Bladed-disk Structures. Journal of Sound and Vibration. 2006,291(1-2):395~418
    11 Angelo Luongo. Mode Localization in Dynamics and Buckling of Linear Imperfect Continuous Structures. Nonlinear Dynamics. 2001, 25: 133~156.
    12姚宗健,于桂兰.失谐循环周期结构振动模态局部化问题的研究.科学技术与工程. 2005,5(21):1616~1622
    13 No?l Challamel, Christophe Lanosand, Charles Casandjian. Localization in the Buckling or in the Vibration of a Two-Span Weakened Column. Engineering Structures. 2006, 28(5):776~782
    14 M. P. Castanier, C. Pierre. Predicting Localization via Lyapunov Exponent Statistics. Journal of Sound and Vibration. 1997, 203(1):151~157
    15 F. M. Li, Y. S. Wang, C. Hu, etal. Localization of Elastic Waves in Randomly Disordered Mufti-coupled Mufti-span Beams. Waves in Random Media. 2004, 14: 217~227
    16 D. Bouzit, C. Pierre. Wave Localization and Conversion Phenomena in Mufti-coupled Mufti-span Beams. Chaos, Solitons and Fractals. 2000, 11:1575~1596
    17 B. O. Al-Bedoor. Modeling the Coupled Torsional and Lateral Vibrations of Unbalanced Rotors. Computer Methods in Applied Mechanics and Engineering. 2001,190 (45):5999–6008
    18 S. C. Hsieh, J. H. Chen, A. C. Lee. A Modified Transfer Matrix Method for the Coupled Lateral and Torsional Vibrations of Ansymmetric Rotor-Bearing Systems. Journal of Sound and Vibration. 2008,312 (4-5):563~571
    19田海民,缑新科.压电材料与智能结构在振动控制中的研究与前景展望.仪表技术与传感器. 2007,8:7~9
    20赵豫,赵国伟,黄海等.基于压电材料的智能天线结构控制实验研究.压电与声光. 2007, 29(3):295~301
    21权渭锋,毛剑琴,李超等.智能结构与智能控制在振动主动控制的应用.信息与电子工程. 2004,2(3):232~237
    22 P. W. Anderson. Absence of Diffusion in Certain Random Lattices. Phys Rev. 1958, 109:1492~505
    23李凤明,胡超,黄文虎等.失谐周期弹性支撑多跨梁中的波动局部化.固体力学学报. 2004,25(1):83~86
    24秦飞,陈立明.失调叶片—轮盘系统耦合振动分析.北京工业大学学报. 2007, 33(2):126~129
    25段宝岩.柔性天线结构分析、优化与精密控制.科学出版社.2005:264~275
    26程亮.大口径星载雷达天线结构分析.电子机械工程. 2007,23(5):24~26
    27 M. W. Thomson. Astro-mesh Deployable Reflector. Antennas and Propagation Society International Symposium. IEEE. 1999, 3(7): 1516~1519
    28孙京,邵成勋.用拉格朗日键图建立复杂航天器系统的动力学方程.哈尔滨工业大学学报. 2000,32(2):95~99
    29于登云,孙京,马兴瑞.空间机械臂技术及发展建议.航天器工程. 2007, 16(4):1~8
    30史纪鑫,曲广吉.可变构型复合柔性结构航天器动力学建模研究.宇航学报.2007,28(1):130~135
    31刘延柱.多刚体系统动力学.高等教育出版社. 1989
    32黄文虎,邵成勋.多柔体系统动力学.科学出版社. 1997
    33刘延柱.星载光学敏感器受天体干扰的可能性分析.空间科学学报. 2006, 26(3):215~219
    34朱敏波,刘明治,徐海强.基于在轨热环境的可展开天线反射面精度调整技术.宇航学报. 2007,28(3):727~730
    35关富玲,杨玉龙,赵孟良.星载可展开网状天线的网面成形与防缠绕设计.工程设计学报. 2006,13(4):271~276
    36 N. Mott, P. W. Anderson. Nobal Lectures in Physics for 1977. Review of Modern Physics. 1978, 50(1): 191~208
    37 N. Mott, W.D. Twose. The Theory of Impurity Condition. Advances in Physics. 1961, 10: 107~163
    38 C. H. Hodges. Confinement of Vibration by Structural Irregularity. Journal of Sound and Vibration. 1982, 82(3), 411~424.
    39 C. H. Hodges, J. Woodhouse. Vibrations Isolation from Irregularity in Nearly Periodic Structures: Theory and Measurement. Journal of the Acoustical Society of America. 1983, 74: 894~905
    40 D. J. Ewins. Vibration Modes of Mistuned Bladed Disks. ASME Journal of Engineering for Power. 1976,98(7):349~355
    41 D. J. Ewins, Z. S. Han. Resonant Vibration Levels of A Mistuned Bladed Disk. ASME Vib Acous Stress Rel Des. 1984, 106: 211~217
    42 D. Bouzit, C. Pierre. Localization of Vibration in Disordered Multi-span Beams with Damping. Journal of Sound and Vibration. 1995, 187(4):625~648
    43 M. P. Castanier, C. Pierre. Lyapunov Exponents and Localization Phenomena in Multi-coupled Nearly Periodic System. Journal of Sound and Vibration. 1995, 183(3):493~515
    44 C. Pierre. Weak and Strong Vibration Localization in Disordered Structures-a Statistical Investigation. Journal of Sound and Vibration. 1990,139(1): 111~132
    45 C. Pierre. Mode Localization and Eigenvalue Loci Veering in Disordered Structures. Journal of Sound and Vibration. 1988, 126(3):485~502
    46 C. Pierre, R.H. Plaut. Curve Veering and Mode Localization in a Buckling Problem. Z Angew Math Phys. 1989,40:758~761
    47 C. Pierre, E. H. Dowell. Localization of Vibrations by Structural Irregularity.Journal of Sound and Vibration. 1987,114(3): 549~564
    48 G.óttarsson, C. Pierre. A Transfer Matrix Approach to Free Vibration Localization in Mistuned Blade Assemblies. Journal of Sound and Vibration. 1996, 197(5):589~618
    49 C. Pierre. Strong Mode Localization in Nearly Periodic Disordered Structures. AIAA Journal.1989,27(2): 227~241
    50 O. O. Bendikson. Localization Phenomena in Structural Dynamics. Chaos, Solitons and Fractals. 2000,11:1621~1660
    51 O. O. Bendikson. Localization of Vibrations in Large Space reflectors. AIAA Journal. 1989 ,27(2):219~226
    52 J. Judge, C. Pierre, O. Mehmed. Experimental Investigation of Mode Localization and Forced Response Amplitude Magnification for a Mistuned Bladed Disk. ASME, Journal of Engineering for Gas Turbines and Power. 2001, 123: 940~950
    53 J. H. Kuang, B. W. Huang. Mode Localization of a Cracked Blade Disk. ASME, Journal of Engineering for Gas Turbines and Power. 1999, 121: 335~341
    54 M. E. King, A. F. Vakakis. Asymptotic Analysis of Nonlinear Mode Localization in a Class of Coupled Continuous Structure. International Journal of Solids and Structures. 1995, 32(8/9): 1161~1177
    55 A. F. Vakakis, G.. Salenger. Generation of Localization in a Discrete Chain with Periodic Boundary Conditions. Journal of Applied Mathematics. 1998, 58: 1730~1747
    56 O. Gendelman, A. F. Vakakis. Transitions from Localization to Nonlocalization in Strongly Nonlinear Damped Oscillators. Chaos, Solitons and Fractals. 2000, 11: 1535~1542
    57 J. Emad, A. F. Vakakis, N. Miller. Experimental Nonlinear Localization in a Periodically Forced Repetitive System of Coupled Magnetoelastic Beams. Physica D. 2000, 137: 192~201
    58 S. T. Ariaratnam, W. C. Xie. Wave Localization in Randomly Disordered Nearly Periodic Long Continuous Beams. Journal of Sound and Vibration. 1995, 181(1): 7~22
    59 W. C. Xie. Buckling Mode Localization in Randomly Disordered Multispan Continuous Beams. AIAA Journal. 1995, 33(6): 1142~1149
    60 Z. Chen, W. C. Xie. Vibration Localization in Plates Rib-Stiffened in Two Orthogonal Directions. Journal of Sound and Vibration, 2005, 280(1-2): 235~262
    61 W. C. Xie. Localization of Vibration Propagation in Two-Dimensional Systems. Chaos, Solitons & Fractals. 2000, 11(10): 1505~1518
    62 W. C. Xie, S. T. Ariaratnam. Vibration Mode Localization in Disordered Cyclic Structures, ?: Single Substructure Mode. Journal of Sound and Vibration.1996, 189(5):625~646
    63 W. C. Xie, S. T. Ariaratnam. Vibration Mode Localization in Disordered Cyclic Structures, II: Multiple Substructure Modes, Journal of Sound and Vibration, 1996, 189(5):647~660
    64王建军,许建东,李其汉.失谐叶片—轮盘结构振动局部化的分析模型.汽轮机技术. 2004,46(4):256~259
    65王建军,李其汉,朱梓根.失谐叶片—轮盘结构系统振动局部化问题的研究进展.力学进展. 2000, 30(4): 517~528
    66姚宗健,于桂兰.肋环形平面结构失谐振动模态局部化问题的研究.科学技术与工程.2006,6(8):926~930
    67李凤明,汪越胜,黄文虎等.失谐周期结构中振动局部化问题的研究进展.力学进展. 2005,35(4):498~512
    68李凤明,汪越胜.失谐周期压电复合材料结构中的波动局部化研究.航空学报. 2006,27(1):38~43
    69周传月,邹经湘.失调对叶片—轮盘藕合系统振动影响的预测.航空学报. 2001,22(5):465~467
    70曾志锋.非谐调叶盘振动研究.南京航空学院博士学位论文. 1990: 52~75
    71徐伟华,吕中荣,刘济科.失调耦合梁的模态局部化和频率轨迹转向现象.中山大学学报. 2007,46(4):9~12
    72 C. Pierre, S. W. Shaw. Mode Localization due to Symmetry-breaking Nonlinearities. International Journal of Bifurcation and Chaos. 1991, 1(2): 471~475
    73 A. Baz. Active Control of Periodic Structures. ASME, Journal of Vibration and Acoustics. 2001,123:4 72~479
    74 S. T. Wei, C. Pierre. Statistical Analysis of the Forced Response of Mistuned Cyclic Assemblies. AIAA Journal. 1990, 28(5): 861~868
    75 E. F. Crawley, K. C. Hall. Optimization and Mechanisms of Mistuning in Cascades. ASME, Journal of Engineering for Gas Turbines and Power. 1985, 107: 418~426
    76 J. H. Griffin, T. M. Hoosac. Model Development and Statistical Investigation of Turbine Blade Mistuning. ASME, Journal of Vibration, Acoustics, Stress andReliability in Design. 1984, 106: 204~210
    77 M. P. Castanier, C. Pierre. Consideration on the Benefits of Intentional Blade Mistuning for the Forced Response of Turbomachinery Rotors. Proceedings of the 1997 International Mechanical Engineering Congress and Exposition, The Winter Annual Meeting of the ASME. 1997, AD-55: 419~425
    78 F. J. Shelley. Closed-Loop Mode Localization for Vibration Control in Flexible Structures. Proceedings of the American Con. Conf. Baltimore, Maryland. June 1994
    79 F. J. Shelley, W. W. Clark. Active Mode Localization in Distributed Parameter Systems with Consideration of Limited Actuator Placement, Part I: Theory. ASME, Journal of Vibration and Acoustics. 2000, 122: 160~164
    80 F. J. Shelley, W. W. Clark. Active Mode Localization in Distributed Parameter Systems with Consideration of Limited Actuator Placement, Part II: Simulations and Experiments. ASME, Journal of Vibration and Acoustics. 2000, 122: 165~168
    81 F. J. Shelley, W. W. Clark. Experimental Application of Feedback Control to Localize Vibration. ASME, Journal of Vibration and Acoustics. 2000, 122: 143~150
    82刘济科,赵令诚.结构振动模态局部化评述.振动与冲击. 1995,14(4): 1~4
    83 C. Pierre, D. M. Tang, E. H. Dowell. Localized Vibrations of Disordered Multi- span Beams: Theory and Experiment. AIAA Journal. 1987, 25(9): 1249~1257
    84 S. T. Wei, C. Pierre. Localization Phenomena in Mistuned Assemblies with Cyclic Symmetry, Part 1: Free Vibrations. ASME, Journal of Vibration, Acoustics, Stress and Reliability in Design. 1988, 110: 429~438
    85 G.S. Happawana, A. K. Bajaj, O. D. I. Nwokah. A Singular Perturbation Analysis of Eigenvalue Veering and Model Sensitivity in Perturbed Linear Periodic Systems. Journal of sound and vibration. 1993, 160(2): 225~242
    86 G.S. Happawana, O. D. I. Nwokah, A.K. Bajaj, M. Azene. Free and Forced Response of Mistuned Linear Cyclic Systems: a Singular Perturbation Approach. Journal of Sound and Vibration. 1998, 211(5): 761~789
    87 W. C. Xie. Buckling Mode Localization in Rib-stiffened Plates with Randomly Misplaced Stiffeners. Computers and Structures. 1998, 67: 175~189
    88 C. X. Qiu, Y. K. Lin. Localization of Mono- and Multi-channel Waves in Disordered Periodic Systems. ASCE, Journal of Engineering Mechanics. 1997, 123(8): 830~836
    89 F. M. Li, C. Hu, W. H. Huang. One-dimensional Localization of Elastic Waves in Rib-stiffened Plates. Chinese Journal of Aeronautics. 2002, 15(4): 208~212
    90 C. A. Tan, C. H. Riedel. Wave Analysis of Mode Localization and Delocalization in Elastically Constrained Strings and Beams. ASME, Journal of Vibration and Acoustics. 1999, 121: 169~173
    91 B.R. Mace, R.W. Jones, N.R. Harland. Wave Transmission through Structural Inserts. Journal of Acoustical Society of America. 2001, 109(4): 1417~1421
    92李凤明,胡超,黄文虎.周期波导中弹性波局部化问题的研究.应用力学学报. 2002, 19(4): 47~51
    93 R.S. Langley. Wave Transmission through One-dimensional Near Periodic Structures: Optimum and Random Disorder. Journal of Sound and Vibration. 1995, 188(5): 717~743
    94 I. Elishakoff, Y. W. Li, J. H. Starnes Jr. Passive Control of Buckling Deformation via Anderson Localization Phenomena. Chaos, Solitons and Fractals. 1997, 8(1): 59~75
    95高晓芳,苏德胜,邵敏.电流变液减振器技术的研究现状及发展方向.机械工程师. 2007,1:21~23
    96 Gyuhae Park, Matthew T. Bement. The Use of Active Materials for Machining Processes: A Review. International Journal of Machine Tools and Manufacture. December 2007, 47(15): 2189~2206
    97 Jia-Yi Yeh. Vibration Analyses of the Annular Plate with Electrorheological Fluid Damping Treatment. Finite Elements in Analysis and Design. 2007, 43(11-12): 965~974
    98冷劲松,刘彦菊,杜善义等.智能复合材料结构的主动振动控制.复合材料学报. 1996,13(4):53~57
    99 M. Ruzzsne, A. Baz. Control of Wave Propagation in Periodic Composite Rods Using Shape Memory Inserts. ASME Journal of Vibration and Acoustics, 2000,122:151~159
    100 Andrew J. Young, Colin H. Hansen. Control of Flexural Vibration Control of Flexural Vibration in Stiffened Structures Using Multiple Piezoceramic Actuators. Applied Acoustics. 1996,49(1):17~48
    101 H. S. Tzou, C. L. Tseng. Distributed Piezoelectric Sensor/Actuator Design for Dynamic Measurement/Control of Distributed Parameter Systems-a Piezoelectric Finite Element Approach. Journal of Sound and Vibration.1990, 138(1):17~34
    102 Ahmadl. Proceedings of U.S.-Japan Workshop on Smart/Intelligent Material andSystems. The Unlv. of Hawaii Honolulu March. 1990:19~23
    103 C. A. Rogers. Intelligent Materials-The Dawn of a New Materials Age. Intelligent Material Structure. 1993,41:4~12
    104 Hong Hee Yoo, Jae Young Kim, Daniel J. Inman. Vibration Localization of Simplified Mistuned Cyclic Structures Undertaking External Harmonic Force. Journal of Sound and Vibration. 2003,261:859~870
    105李凤鸣.结构中弹性波与振动局部化问题的研究.哈尔滨工业大学博士学位论文. 1993
    106 M. E. King, A. F. Vakakis. A Very Complicated Structure of Resonances in a Nonlinear System with Cyclic Symmetry: Nonlinear Forced Localization. Nonlinear Dynamics. 1995,7: 85~104
    107姚军.压电结构的主动振动控制.南京航空航天大学博士学位论文. 1999:1~10
    108 Bor Tsuen Wang, C. A. Rogers. Laminated Plate Theory for Spatially Distributed Induced Strain Actuators. Journal of Composite Material. 1991, 25(3):433~452
    109 F. P.Liang, C. A. Rogers. Dynamic Output Characteristics of Piezoelectric Actuators. SPIE Smart Structures and Materials’93, Albuquerque. 1992, 4:3618~3624
    110 H. S. Tzou. A New Distributed Sensation and Control Theory for Intelligent Shells. Journal of Sound and Vibration. 1992, 152(1):176~184
    111 Li Y. Y., Cheng L. A, Li P. A. Modeling and Vibration Control of a Plate Coupled with Piezoelectric Material. Composite Structures. 2003, 62(2):155~162
    112 M. S. El, Hu Yan-Ru, Ngo Anh Dung. Modeling of Annular Plate with Piezoelectric Actuators for Active Vibration Control. American Society of Mechanical Engineers, Aerospace Division. 2002, 67:341~350
    113 Kai Cai, Juntao Xia, Longtu Li, etal. Analysis of the Electrical Properties of PZT by a BP Artificial Neural Network. Computational Materials Science. 2005,34(2):166~172
    114路小波,陶云刚,何延伟.基于极点配置的柔性智能结构主动振动控制.压电与声光. 1997,19(4):282~284
    115 A. L. Araujo, H. M. R. Lopes, etal. Parameter Estimation in Active Plate Structures. Computers and Structures. 2006,84(22):1471~1479
    116 Jamshidi.M. Large-scale System Modeling and Control. North-Holland, 1983:169~172
    117 M. L. Friswell. Model Reduction Using Dynamic and Iterated IRS Techniques. Journal of Sound and Vibration. 1985,186(2):311~323
    118陈禹六.大系统理论及其应用.清华大学出版社.1988
    119 B. C.Moore. Principal Component Analysis in Linear System: Controllability Observability and Model Reduction. IEEE Trans on Automatic Control. 1981,26(1): 17~32
    120 Jr. C. Z. Gregory. Reduction of Flexible Spacecraft Model Using Internal Balancing Theory. Journal of Guidance Control and Dynamics. 1984, 79(6): 725~732
    121 Y. Chahlaoui, D. Lemonnier, A. Vandendorpe, etal. Second-order Balanced Truncation. Linear Algebra and its Applications. 2006,415:373~384
    122 P. Benner, Enrique S. Quintana-Ort?, G. Quintana-Ort?. State-space Truncation Methods for Parallel Model Reduction of Large-scale Systems. Parallel Computing. 2003,29:1701~1722
    123 L.Meirovitch, H.Baruh. Effect of Damping on Observation Spillover Instability. Journal of Optimization Theory Application. 1981, 35(1):31~44
    124 L.Meirovitch, H. Baruh. The Implementation of the Modal Filters for Control of Structures. Journal of Guidance. 1985,8(6):707~716
    125 Min-Huang Hsiao. An Optimal Modal-Space Controller for Structural Damping Enhancements. Proceedings of the American Con. Conf. Baltimore, Maryland. June 1994
    126 C. M. A. Vasques,J. Dias Rodrigues. Active Vibration Control of Smart Piezoelectric Beams: Comparison of Classical and Optimal Feedback Control Strategies. Computers and Structures. 2006,84(22):1402~1414
    127司洪伟,李东旭.结构振动的主动模糊控制研究进展.噪声与振动控制. 2007(1):1~5
    128郑毅强.模糊神经网络在结构振动控制中的应用研究.工程与建设. 2007,21(2):113~117
    129翟东武,朱晞.基于神经网络的结构振动响应预测控制.清华大学学报(自然科学版). 2000,40(s1):61~65
    130舒迪前.预测控制系统及其应用.机械工业出版社,1998.
    131 J. Richalet. Industrial Applications of Model Based Predictive Control.Automatica. 1993, 291:251~1274
    132 M. Hassan, R. Dubay, C. Li, R. Wang. Active Vibration Control of A Flexible One-link Manipulator using A Multivariable Predictive Controller. Mechatronics. 2007,17: 311~323
    133 M. Kamrunnahar, D. G. Fisher, B. Huang. Model Predictive Control Using an Extended ARMarkov Model. Journal of Process Control. 2002, 12: 123~129
    134 Bernt M. ?kesson, Hannu T. Toivonen. A Neural Network Model Predictive Controller. Journal of Process Control. 2006, 16(9): 937~946
    135 Li-Xin Wang, Feng Wan. Structured Neural Networks for Constrained Model Predictive Control. Automatica. 2001, 37( 8):1235~1243
    136 O. Ibidapo-Obe. Optimal Actuators Placements for the Active Control of Flexible Structures. Journal of Mathematical Analysis and Applications. 1985, 105 (1): 12~25
    137王存堂,唐建中,费鸣等.主动振动控制中传感/作动元件配置问题的全局优化方法研究.应用力学学报. 1998, 15(1):55~59
    138孙万泉,李庆斌.随机荷载作用下结构主动控制的作动器优化配置.工程力学. 2007,24(3):115~119
    139 M. R. Kermani, M. Moallem, R.V. Patel. Parameter Selection and Control Design for Vibration Suppression Using Piezoelevtric Transducers. Control Engineering Practice. 2004,12(8): 1005~1015
    140 Dunant Halim, S. O. Reza Moheimani. An Optimization Approach to Optimal Placement of Collocated Piezoelectric Actuators and Sensors on a Thin Plate. Mechatronics. 2003,13(1):27~47
    141 Zhi-cheng Qiu, Xian-min Zhang, Hong-xin Wu, etal. Optimal Placement and Active Control for piezoelectric Smart Flexible Cantilever Plate. Journal of Sound and Vibration. 2007, 301(3):521~543
    142严天宏,段登平,王建宇等.振动主动控制中传感器/作动器最优配置问题的模拟退火方法研究.振动与冲击. 2000,19(2):1~5
    143 Yaowen Yang, Zhanli Jin, Chee Kiong Soh. Integrated optimal design of vibration control system for smart beams using genetic algorithms. Journal of Sound and Vibration. 2005, 282(3-5): 1293~1307
    144 A. Colornia, M. Dorigo, V. Maniezzo. An investigation of Some Properties of an Ant Algorithm. Proceeding of the Parallel Problem Solving from Nature Conference,Brussels, Belgium, Elsevier Publishing. 1992: 509~520
    145 Felipe Antonio, Chegury Viana, Giovanni Iamin Kotinda, etal. Tuning Dynamic Vibration Absorbers by Using Ant Colony Optimization. Computers & Structures. 2008, 86(13-14): 1539~1549
    146 K. Jha Akhilesh, Inman. J. Daniel. Optimal Sizes and Placements of Piezoelectric Actuators and Sensors for an Inflated Torus. Journal of Intelligent Material Systems and Structures. 2003,14(9): 563~576
    147 JoséM. Sim?es Moita, Victor M. Franco Correia, Pedro G. Martins, etal. Optimal Design in Vibration Control of Adaptive Structures Using a Simulated Annealing Algorithm. Composite Structures. 2006,75(1-4):79~87
    148 J. Kennedy, R. Eberhart. Particle Swarm Optimization. Proceeding of IEEE International Conference on Neural Networks, Australia. 1995,4:1942~1948
    149 F. van den Bergh, A. P. Engelbrecht. A study of particle swarm optimization particle trajectories. Information Sciences. 2006,176: 937–971
    150 A. García-Villoria, Rafael Pastor. Introducing dynamic diversity into a discrete particle swarm optimization. Computers & Operations Research. 2009, 36(3):951~966
    151 Y. W. Guo, W. D. Li, A. R. Milehama, etal. Applications of Particle Swarm Optimization in Integrated Process Planning and Scheduling. Robotics and Computer-integrated Manufacturing. 2009,25: 280~288
    152 A. Wolf, J. B. Swift, H.L. Swinney, etal. Determining Lyapunov Exponents from a Time Series. Physica D. 1985, 16: 285~317
    153 J. Dosch. Comparison of Vibration Control Schemes for a Smart Antenna. Proceedings of the 31st Conference on Decision and Control, Tucson, Arizona, IEEE. 1992:815~1820
    154席裕庚.预测控制.国防工业出版社.1993
    155王丽珍,郑晟,张爱新.神经网络预测控制算法及其应用.机械工程与自动化. 2007(2):98~100
    156吴磊,王建国.各种支撑压电智能板的LQR振动控制.合肥工业大学学报. 2006,29(7):888~893
    157周克敏等.鲁棒与最优控制.国防工业出版社. 2002 :535~554
    158黄曼磊.鲁棒控制理论及应用.哈尔滨工业大学出版社. 2007: 32~45
    159潘伟.基于遗传算法的鲁棒控制问题研究.东北大学博士学位论文. 2006
    160杨要恩,刘明治,王庆敏等.基于智能结构的空间大型可展开天线H∞振动.南京理工大学学报.2005,29(144):112~115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700