用户名: 密码: 验证码:
使用高压釜制备聚丙烯发泡珠粒(EPP)的理论及技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
珠粒模塑发泡成型技术组合了预发泡珠粒生产技术和模压熔结成型技术,是目前唯一能生产各种复杂形状的低密度发泡制品的技术,这是挤出发泡成型技术和注塑发泡成型技术所无法实现的。珠粒模塑发泡制品具有含有大量气体的闭孔结构,故珠粒模塑发泡制品虽然质轻,但具有优异的抗冲击性能和隔热性能,被广泛应用于汽车制造、包装运输、建筑工程、化工工程、运动休闲等领域。聚丙烯发泡珠粒(EPP)模塑制品的使用温度高,且具有一系列优异的力学性能,因此,EPP模塑制品的性价比高,市场需求不断增长,尤其在汽车制造业的应用备受关注。然而,目前极少关于EPP制备技术的研究,尤其是关于EPP制备过程控制机理的研究。
     本研究以制得具有适合于蒸汽模塑成型的双峰熔融结晶特性的、高发泡倍率的EPP为目的,设计和研制了制备EPP的高压釜实验装置,其中,采用可更换的排料口模组件设计,首次将释压条件的影响考虑到EPP制备过程中。通过系统地研究关键工艺参数对EPP的发泡效果和熔融结晶特性的影响,探讨了EPP制备过程的控制机理,为丰富和发展EPP制备技术的理论与实践提供了可资借鉴的第一手资料。
     为了寻求既具有良好的发泡加工性能,同时经过发泡后具有双峰熔融结晶特性的聚丙烯(PP)材料,作为制备EPP的原料,采用EPP工业生产中常用的加工工艺条件,以CO_2作为发泡剂,对四种不同分子链结构的PP材料的发泡行为及其发泡试样的熔融结晶特性进行了研究。实验结果表明:支化PP分子链的高缠结程度有利于改善体系的发泡性能和稳定泡孔结构;线性PP的低熔体强度是导致其发泡性能极差的原因;嵌段共聚PP具有较高的结晶度,不利于CO_2的扩散和溶解;无规共聚PP分子链的规整性低,从而结晶度低,使CO_2更易于扩散和溶解。而四种PP材料经过发泡后,只有无规共聚PP呈现出适合于蒸汽模塑成型的双峰熔融结晶特性。
     从发泡过程中气泡成核与气泡长大的相互竞争关系的角度出发,讨论了成核口模的压降速率和压力降对气泡成核的影响。通过建立PP颗粒在成核口模中的流动模型,分析了口模尺寸、系统流率和体系性质等参数对口模压降速率和压力降的影响,从而总结出获得高压降速率和压力降的途径。
     以CO_2作为发泡剂,采用高压釜实验装置制备EPP的研究中,在最佳工艺条件下所获得的EPP的发泡倍率为15倍,泡孔密度为3.47×10~8个/cm~3,且泡孔尺寸呈现双峰特性,同时,EPP的双峰熔融结晶特性与JSP公司生产的EPP相当。通过分析加工压力、温度、气体饱和时间和释压条件(口模尺寸)对EPP制备过程的影响,发现:EPP的发泡倍率和泡孔密度随着加工压力的升高而提高;随着加工温度的升高,EPP的发泡倍率提高,但泡孔密度下降;随着加工压力的升高,EPP两个吸热峰熔点之间的温度差减小,低温吸热峰与高温吸热峰的面积比增加;随着加工温度的升高,EPP低温吸热峰与高温吸热峰的面积比增加,在高压下两个吸热峰熔点之间的温度差增加,但随着加工压力的下降,两个吸热峰熔点之间的温度差变化不大;随着气体饱和时间的增加,低温吸热峰与高温吸热峰的面积比减小,但两个吸热峰熔点之间的温度差变化不大。确定加工压力、温度和气体饱和时间后,保持口模直径不变,随着口模长度的增加(口模的压力降增加),EPP的发泡倍率下降,低温吸热峰与高温吸热峰的面积比减小,泡孔密度和两个吸热峰熔点之间的温度差变化不大;而当口模的压力降相同时,随着口模的压降速率降低,EPP的发泡倍率和泡孔密度均下降,低温吸热峰与高温吸热峰的面积比时而增加时而减小,两个吸热峰熔点之间的温度差变化不大。
In essence, bead foaming technology comprises two main processes: foamed beadfabrication and steam-cheating molding. Bead foaming technology is an innovativetechnology in the plastic foam industry that allows the manufacture of low-density polymericfoam products of a variety of shapes and densities, which is not achievable with conventionalfoam extrusion or injection mold processes. Owing to their high expansion ratio andclosed-cell morphologies, articles of molded foam beads are very light-in-weight and possesssuperior impact and thermal insulation properties. Because of these excellent properties,molded foam bead articles have been widely adopted in a broad spectrum of industries,including the automotive, transportation, construction, chemical engineering, sports,recreation, etc. An example of bead foams is expanded polypropylene (EPP). Products madewith EPP have high service temperature and excellent mechanical properties. Because of itslow cost-to-performance ratio, the market of EPP products has been consistently expanding,in particular, in the automotive industry. Despite its potential, research about themanufacturing technology of EPP, in particular, in the aspects of foaming mechanism andprocessing control of bead manufacturing is still very limited.
     The goal of this research is to elucidate factors during the fabrication of EPP that wouldlead to the production of its double-peak melting/crystallization characteristic, which willaffect the sintering behaviour of the beads in the subsequent steam-chest molding process andthe quality of the final foamed bead products. A lab-scale autoclave EPP foaming system wasdesigned and constructed to facilitate the study of the influence of various critical processingparameters on EPP fabrication. This autoclave system adopted a modular die design to allowthe study of the influence of pressure drop and pressure drop rate during the depressurizationprocess of EPP manufacturing. Through the designed lab-scale autoclave EPP foaming system,this research investigated the effect and correlation of a variety of processing parameters onthe manipulation and control of the foaming properties and melting/crystallization behaviourof the EPP beads, thus explores the control mechanism of the EPP fabrication process. Thishelps to provide reference for further study of the theory and practice of EPP fabricationtechnology.
     The double-peak melting/crystallization characteristic of EPP is a requisite for properbead sintering in the steam-chest molding process of bead foaming technology. This researchexamined the foaming behaviour of four different types of PP (branched, linear, blockcopolymer, and random copolymer PP) using a batch foaming visualization system in order to identify suitable EPP materials. As illustrated from the foam visualization experiments, themolecular chain structure significantly affected the foaming behaviour of PP. The high degreeof molecular chain entanglement of branched PP helped cell stabilization during foamexpansion. Linear PP had low melt strength, and hence, the foamability of this PP wasrelatively poor. The high crystallinity of block copolymer PP had hindered the diffusion anddissolution of carbon dioxide (CO_2). Random copolymer PP had relatively low degree ofmolecular chain regularity and crystallinity, allowing CO_2to dissolve into the matrix easily.Amongst the four types of PP examined, only random copolymer PP had yielded awell-distributed double-peak melting/crystallization characteristic after the foaming process.Based on the results, random copolymer PP is a suitable candidate for EPP fabrication.
     Similar to other foaming techniques, cell nucleation and cell growth are two competingprocesses in EPP bead fabrication. Through the use of dies of different diameters (D) andlengths (L), this work investigated the correlation between pressure drop, pressure drop rate,cell nucleation rate and cell density. Through the study of the flow and depressurizationcharacteristic in the autoclave system, the model regarding the flow of PP pellets within thedie was established, and hence the effects of die geometry, volumetric flow rate and systemproperties on the pressure drop and pressure drop rate were analyzed. The requirements ofachieving high pressure drop and pressure drop rate for the production of EPP with high celldensity and expansion ratios were also identified.
     With the designed lab-scale autoclave EPP foaming system and using CO_2as theblowing agent, EPP beads of different cell densities, expansion ratios, and double-peakmelting/crystallization characteristic were attained through varying processing parameters. Inthis work, the EPP beads manufactured under the optimized processing condition possessedan expansion ratio of15-fold, a cell density of3.47×10~8cells/cm3, bi-cellular foam structure,and melting/crystallization behaviour that equivalent to the EPP produced by JSP. Throughthe study of the effects of saturation pressure, saturation temperature, saturation time anddepressurization conditions (i.e., die geometry) on the EPP fabrication, the following resultscan be drawn: The expansion ratio and cell density increased as the saturation pressure. As thesaturation temperature increased, the expansion ratio increased while the cell densitydecreased. As the saturation pressure increased, the temperature difference of the double-peakdecreased, while the area ratio between low-melting-peak and high-melting-peak increased.As the saturation temperature increased, the area ratio between low-melting-peak andhigh-melting-peak increased, and the temperature difference of the double-peak increasedwhen the saturation pressure was high. However, as the saturation pressure decreased, the influence of the saturation temperature on the temperature difference of the double-peak wasnot obvous. As the saturation time increased, the area ratio between low-melting-peak andhigh-melting-peak decreased while the temperature difference of the double-peak changedlittle. When the saturation pressure, saturation temperature and saturation time were fixed, byincreasing the length of the dies with the same diameter (i.e., increasing the pressure drop),both the expansion ratio and the area ratio between low-melting-peak and high-melting-peakdecreased, while the cell density and the temperature difference of the double-peak changedlittle. By decreasing the pressure drop rate of the dies with the same pressure drop, both theexpansion ratio and cell density decreased, the area ratio between low-melting-peak andhigh-melting-peak sometimes increased and sometimes decreased, and the temperaturedifference of the double-peak changed little.
引文
[1] US&ICC protocols, Polymeric foams (MCP-1174)-A global strategic business report[R]. San Jose: Global Industry Analysts, Inc.,2008.
    [2] Stastny F., Gaeth R., Production of porous materials from film-forming organicthermoplastic masses [P]. US Patent:2681321,1954-06-15.
    [3] Hirosawa K., Shimada S., Pre-foamed particles of polypropylene resin and process forproduction thereof [P]. US Patent:4379859,1983-04-12.
    [4] Schweinzer J., Fischer J., Grave I.D., et al., Production of expanded polyolefin beads[P]. US Patent:5703135,1997-12-30.
    [5] Yoshimura S., Yamaguchi T., Hashiba M., et al., Pre-foamed particles of polyethyleneresin [P]. US Patent:4656197,1987-04-07.
    [6] Bruning J., Deseke O., Meyke J., Method of producing a foamed granulate [P]. USPatent:6315931B1,2001-11-13.
    [7] Braun F., Method for producing expanded or expandable polyolefin particles [P]. USPatent:6723760B2,2004-04-20.
    [8] Hira A., Hashimoto K., Sasaki H., Composite foamed polypropylene resin molding andmethod of producing same [P]. US Patent:7182896B2,2007-01-27.
    [9] Gendron R., Champagne M.F., Foaming polystyrene with a mixture of CO2and ethanol[J]. Journal of Cellular Plastics,2006,42(2):127-138.
    [10] Durril P.L., Griskey R.G., Diffusion and solution of gases in thermally softened ormolten polymers: Part I. Development of technique and determination of data [J].AIChE Journal,1966,12(6):1147-1151.
    [11] Koros W.J., Paul, D.R., Sorption and transport of CO2above and below the glasstransition of poly(ethylene terephthalate)[J]. Polymer Engineering and Science,1980,20(1):14-19.
    [12] Berens A.R., Huvard G.S., Interaction of polymer with near-critical carbon dioxide, In:Johnston K.P., Penninger J.M.L., Supercritical Fluid Science and Technology [M].Washington: American Chemistry Society,1989:207–223.
    [13] Vieth W.R., Diffusion in and through Polymers: Principles and Applications [M]. NewYork: Hanser Publishers,1991:15-44.
    [14] Ramesh N.S., Fundamentals of bubble nucleation and growth in polymers, In: Lee S.T.,Ramesh N.S., Polymeric Foams: Mechanisms and Materials [M]. Boca Raton: CRCPress LLC,2004:72-109.
    [15] Springer G.S., Homogeneous nucleation, In: Advances in Heat Transfer [M]. New York:Academic Press,1978:281-345.
    [16] Han C.D., Yang H.-H., The effect of nucleating agents on the foaming extrusioncharacteristics [J]. Journal of Applied Polymer Science,1984,29(12):4465-4470.
    [17] Colton J.S., Suh N.P., The nucleation of microcellular thermoplastic foam with additives:Part II: Experimental results and discussion [J]. Polymer Engineering and Science,1987,27(7):485-492.
    [18] Wilt P.M., Nucleation rates and bubble stability in water-carbon dioxide solutions [J].Journal of Colloid and Interface Science,1986,112(2):530-538.
    [19] Lee S.T., Foam nucleation in gas-dispersed polymeric systems, In: Lee S.T., FoamExtrusion: Principles and Practice [M]. Boca Raton: CRC Press LLC,2000:107-115.
    [20] Street J.R., The rheology of phase growth in elastic liquid [J]. Journal of Rheology,1968,12(1):103-131.
    [21] Han C.D., Yoo H.J., Studies on structural foam processing: IV. Bubble growth duringmold filling [J]. Polymer Engineering and Science,1981,21(9):518-533.
    [22] Arefmanesh A., Advani S.G., An accurate numerical solution for mass diffusion-inducedbubble growth in viscous liquids containing limited dissolved gas [J]. InternationalJournal of Heat and Mass Transfer,1992,35(7):1711-1722.
    [23] Arefmanesh A., Advani S.G., Diffusion-induced growth of a gas bubble in a viscoelasticfluid [J]. Rheologica Acta,1991,30(3):274-283.
    [24] Zhu Z., Xu D., Park C.B., et al., Finite element analysis of cell coarsening in plasticfoaming [J]. Journal of Cellular Plastics,2005,41(5):475-486.
    [25] Arefmanesh A., Advani S.G., Nonisothermal bubble growth in polymer foams [J].Polymer Engineering and Science,1995,35(3):252-260.
    [26] Amon M., Denson C.D., A study of the dynamics of foam growth analysis of the growthof closely spaced spherical bubbles [J]. Polymer Engineering and Science,1984,24(13):1026-1034.
    [27] Xu D., Pop-Iliev R., Park C.B., et al., Fundamental study of CBA-blown bubble growthand collapse under atmospheric pressure [J]. Journal of Cellular Plastics,2005,41(6):519-538.
    [28] Lundberg J.L., Mooney E.J., Rogers C.E., Diffusion and solubility of methane inpolyisobutylene [J]. Journal of Polymer Science, Part A-2: Polymer Physics,1969,7(5):947-962.
    [29] Cheng Y.L., Bonner D.C., Solubility of nitrogen and ethylene in molten, low-densitypolyethylene to69atmospheres [J]. Journal of Polymer Science: Polymer PhysicsEdition,1978,16(2):319-333.
    [30] Maloney D.P., Prausnitz J.M., Solubilities of ethylene and other organic solutes in liquid,low-density polyethylene in the region124°to300°C [J]. AlChE Journal,1976,22(1):74-82.
    [31] Berens A.R., Gravimetric and volumetric study of the sorption of gases and vapors inpoly(vinyl chloride) powders [J]. Polymer Engineering and Science,1980,20(1):95-101.
    [32] Shine A.D., Polymers and supercritical fluids, In: Mark J.E., Physical Properties ofPolymers Handbook (second edition)[M]. New York: Springer,2007:321–327.
    [33] Sanchez I.C., Lacombe R.H., An elementary molecular theory of classical fluids. Purefluids [J]. The Journal of Physical Chemistry,1976,80(21):2352-2362.
    [34] Simha R., Somcynsky T., On the statistical thermodynamics of spherical and chainmolecule fluids [J]. Macromolecules,1969,2(4):342-350.
    [35] Sato Y., Takikawa T., Takishima S., et al., Solubilities and diffusion coefficients ofcarbon dioxide in poly(vinyl acetate) and polystyrene [J]. Journal of Supercritical Fluids,2001,19(2):187-198.
    [36] Sato Y., Takikawa T., Yamane M., et al., Solubility carbon dioxide in PPO and PPO/PSblends [J]. Fluid Phase Equilibria,2002,194-197:847-858.
    [37] Sato Y., Takikawa T., Sorakubo A., Solubility and diffusion coefficient of carbondioxide in biodegradable polymers [J]. Industrial&Engineering Chemistry Research,2000,39(12):4813-4819.
    [38] Sato Y., Wang M., Takishima S., et al., Solubility of butane and isobutane in moltenpolypropylene and polystyrene [J]. Polymer Engineering and Science,2004,44(11):2083-2089.
    [39] Sato Y., Fujiwara K., Takikawa T., et al., Solubilities and diffusion coefficients ofcarbon dioxide and nitrogen in polypropylene, high-density polyethylene, andpolystyrene under high pressures and temperatures [J]. Fluid Phase Equilibria,1999,182(1-2):261-276.
    [40] Areerat S., Hayata Y., Katsumoto R., et al., Solubility of carbon dioxide inpolyethylene/titanium dioxide composite under high pressure and temperature [J].Journal of Applied Polymer Science,2002,86(2):282-288.
    [41] Areerat S., Funami E., Hayata Y., et al., Measurement and prediction of diffusioncoefficients of supercritical CO2in molten polymers [J]. Polymer Engineering andScience,2004,44(10):1915-1924.
    [42] Li G., Li H., Wang J., Investigating the solubility of CO2in polypropylene using variousEOS models [J]. Cellular Polymers,2006,25(4):237-248.
    [43] Li G., Gunkel F., Wang J., et al., Solubility measurements of N2and CO2inpolypropylene and ethane/octane copolymer [J]. Journal of Applied Polymer Science,2007,103(5):2945-2953.
    [44] Li G., Wang J., Park C.B., et al., Measurement of gas solubility in linear/branched PPmelts [J]. Journal of Polymer Science, Part B: Polymer Physics,2007,45(17):2497-2508.
    [45] Moisan J.Y., Effects of oxygen permeation and stabilizer migration on polymerdegradation, In: Comyn J., Polymers Permeability [M]. London: Chapman&Hall,1985:119–176.
    [46] Durril P.L., Griskey R.G., Diffusion and solution of gases into thermally softened ormolten polymers: Part II. Relation of diffusivities and solubilities with temperaturepressure and structural characteristics [J]. AlChE Journal,1969,15(1):106-110.
    [47] Cogswell F.N., Converging flow of polymer melts in extrusion dies [J]. PolymerEngineering and Science,1972,12(1):64-73.
    [48] Ladin D., Park C.B., Park S.S., et al., Study of shear and extensional viscosities ofbiodegradable PBS/CO2solutions [J]. Journal of Cellular Plastics,2001,37(2):109-148.
    [49] Wang J., James D.F, Park C.B., Planar extensional flow resistance of a foaming plastic[J]. Journal of Rheology,2010,54(1):95-116.
    [50] Gibbs J.W., The Scientific Papers of J. Willard Gibbs [M]. New York: Dover,1961: Vol.1.
    [51] Cole R., Boiling nucleation, In: Advances in Heat Transfer [M]. New York: Academic,1974:86-166.
    [52] Tucker A.S., Ward C.A., Critical state of bubbles in liquid-gas solutions [J]. Journal ofApplied Physics,1975,46(11):4801-4808.
    [53] Forest T.W., Ward C.A., Effect of a dissolved gas on the homogeneous nucleationpressure of a liquid [J]. Journal of Chemical Physics,1977,66(6):2322-2330.
    [54] Ward C.A., Levart E., Conditions for stability of bubble nuclei in solid surfacescontacting a liquid-gas solution [J]. Journal of Applied Physics,1984,56(2):491-500.
    [55] Ward C.A., Balakrishnan A., Hooper F.C., On the thermodynamics of nucleation inweak liquid-gas solutions [J]. Journal of Basic Engineering ASME,1970,92(4):695-704.
    [56] Kagan Y., The kinetics of boiling of a pure liquid [J]. Russian Journal PhysicalChemistry (English Translation),1960,34(1):92-101.
    [57] Katz J.L., Blander M., Condensation and boiling: corrections to homogeneousnucleation theory for nonideal gases [J]. Journal of Colloid and Interface Science,1973,42(3):496-502.
    [58] Blander M., Bubble nucleation in liquids [J]. Advances in Colloid and Interface Science,1979,10(1):1-32.
    [59] Fisher J., The fracture of liquids [J]. Journal of Applied Physics,1948,19(11):1062-1067.
    [60] Fletcher N.H., Size effect in heterogeneous nucleation [J]. Journal of Chemical Physics,1958,29(3):572-576.
    [61] Moore G.R., Vaporization of superheated drops in liquids [J]. AIChE Journal,1959,5(4):458-466.
    [62] Apfel R.E., Vapor nucleation at a liquid-liquid interface [J]. The Journal of ChemicalPhysics,1971,54(1):62-63.
    [63] Jarvis T.M., Donohue M.D., Katz J.L., Bubble nucleation mechanisms of liquid dropletssuperheated in other liquids [J]. Journal of Colloid and Interface Science,1975,50(2):359-368.
    [64] Blander M., Katz J.L., Bubble nucleation in liquids [J]. AIChE Journal,1975,21(5):833-848.
    [65] Leung S.N., Park C.B., Li H., Numerical simulation of polymeric foaming processesusing a modified nucleation theory [J]. Plastics, Rubber and Composites:Macromolecular Engineering,2006,35:93-100.
    [66] Rayleigh L., On the pressure developed in a liquid during the collapse of a sphericalcavity [J]. Philosophical Magazine,1917,34:94-98.
    [67] Epstein P.S., Plesset M.S., On the stability of gas bubbles in liquid-gas solutions [J]. TheJournal of Chemical Physics,1950,18(11):1505-1509.
    [68] Scriven L.E., On the dynamics of phase growth [J]. Chemical Engineering Science,1959,10(1):1-13.
    [69] Barlow E.J., Langlois W.E., Diffusion of gas from a liquid into an expanding bubble [J].IBM Journal of Research of Development,1962,6(3):329-337.
    [70] Fogler H.S, Goddard J.D., Collapse of spherical cavities in viscoelastic fluids [J].Physics of Fluids,1970,13(5):1135-1141.
    [71] Zana E., Leal L.G., Dissolution of a stationary gas bubble in a quiescent, viscoelasticliquid [J]. Industrial and Engineering Chemistry Fundamentals,1975,14(3):175-182.
    [72] Venerus D.C., Yala N., Bernstein B., Analysis of diffusion-induced bubble growth inviscoelastic liquids [J]. Journal of Non-Newtonian Fluid Mechanics,1998,75(1):55-75.
    [73] Amon M., Denson C.D., A study of the dynamics of foam growth: simplified analysisand experimental results for bulk density in structural foam molding [J]. PolymerEngineering and Science,1986,26(3):255-267.
    [74] Ramesh N.S., Campbell G.A., Rasmussen D.H., Numerical and experimental studies ofbubble growth during the microcellular foaming process [J]. Polymer Engineering andScience,1991,31(23):1657-1664.
    [75] Simon C.J., Schniders F., Business Data and Charts2006[R]. Brussels: PlasticEurope,2007.
    [76]张京珍.泡沫塑料成型加工[M].北京:化学工业出版社,2005:22-23.
    [77] Burt J.G., The elements of expansion of thermoplastics part II [J]. Journal of CellularPlastics,1978,14(6):341-345.
    [78] Rachtanapun P., Selke S.E.M., Matuana L.M., Relationship between cell morphologyand impact strength of microcellular foamed high-density polyethylene/polypropyleneblends [J]. Polymer Engineering and Science,2004,44(8):1551-1560.
    [79] Zhang P., Zhou N., Wu Q., et al., Microcellular foaming of PP/PE blends [J]. Journal ofApplied Polymer Science,2007,104(6):4149-4159.
    [80] Liu C., Wei D., Zheng A., et al., Improving foamability of polypropylene by graftingmodification [J]. Journal of Applied Polymer Science,2006,101(6):4114-4123.
    [81] Han D.H., Jang J.H., Kim H.Y., et al., Manufacturing and foaming of high meltviscosity of polypropylene by using electron beam radiation technology [J]. PoylmerEngineering and Science,2006,46(4):431-437.
    [82]鲍洪杰.一步法化学交联聚丙烯挤出发泡成型的实验与理论研究[D].北京:北京化工大学,2001.
    [83] Doroudiani S., Park C.B., Kortschot M.T., Processing and characterization ofmicrocellular foamed high density polyethylene/isotactic polypropylene blends [J].Polymer Engineering and Science,1998,38(7):1205-1215.
    [84] Xu Z.M., Jiang X.L., Liu T., et al., Foaming of polypropylene with supercritical carbondioxide [J]. Journal of Supercritical Fluids,2007,41(2):299-310.
    [85] Naguib H.E., Park C.B., Panzer U., et al., Strategies for achieving ultra low-density PPfoams [J]. Polymer Engineering and Science,2002,42(7):1481-1492.
    [86] Naguib H.E., Park C.B., Reichelt N., Fundamental foaming mechanisms governingvolume expansion of extruded PP foams [J]. Journal of Applied Polymer Science,2004,91(4):2661-2668.
    [87] Lee C.P., Kaewmesri W., Wang J., et al., Effect of die geometry on foaming behaviorsof high-melt-strength polypropylene with CO2[J]. Journal of Applied Polymer Science,2008,109(5):3122-3132.
    [88] Behravesh A.H., Park C.B., Cheung L.K., et al., Extrusion of polypropylene foams withhydrocerol and isopentane [J]. Journal of Vinyl and Additive Technology,1996,2(4):349-357.
    [89] Park C.B., Cheung L.K., A study of cell nucleation in the extrusion of polypropylenefoams [J]. Polymer Engineering and Science,1997,37(1):1-10.
    [90] Pop-Iliev R., Liu F., Liu G., et al., Rotational foam molding of polypropylene withcontrol of melt strength [J]. Advances in Polymer Technology,2003,22(4):280-296.
    [91] Liu F., Processing of fine cell polyethylene and polypropylene foams in rotationalmolding [D]. Toronto: University of Toronto,1998.
    [92]曹民干.注塑工艺对PP板材结构发泡的影响[J].工程塑料应用,2001,29(12):14-15.
    [93] Park J.J.H., Injection foam molding on glass-fiber reinforced polypropylene [D]. Toronto:University of Toronto,2010.
    [94]张纯,罗筑,于杰等.二次开模注射成型微孔发泡PP工艺及其性能研究[J].中国塑料,2005,19(8):67-70.
    [95] Kitamori Y., Process for producing foamable polyethylene resin particles [P]. US Patent:4168353,1979-09-18.
    [96] Barnetson A., Expanded polystyrene: Development, processing, applications and keyissues, In: Eaves D., Handbook of Polymer Foams [M]. Shawbury: Rapra TechnologyLimited,2004:37-54.
    [97] Senda K., Nishida T., Nakagawa M., Expandable thermoplastic polymer beads withmethod of producing same [P]. US Patent:4433029,1984-02-21.
    [98] Lee E.K., Novel manufacturing processes for polymer bead foams [D]. Toronto:University of Toronto,2010.
    [99]何继敏.新型聚合物发泡材料及技术[M].北京:化学工业出版社,2007:126-133.
    [100] Nakai S., Taki K., Tsujimura I., et al., Numerical simulation of a polypropylene foambead expansion process [J]. Polymer Engineering and Science,48(1):107-115.
    [101] BASF-The Chemical Company, Building and modernizing with Neopor [EB/OL].Neopor (EPS)-Application brochure,2011-12.
    [102] Climate and Pollution Agency, Alternatives to the use of flame retarded EPS inbuildings [EB/OL]. Chemicals in products-TA2827,2011.
    [103]叶辰炫,王志伟. EPE和EVA发泡缓冲材料吸能特性表征[J].包装工程,2012,33(1):40-45.
    [104] BASF, Products&industries-BASF automotive solutions [EB/OL].http://www.basf.com/group/products-and-industries/index,2005.
    [105]宋国君,谷正,杨淑静等.发泡高熔体强度聚丙烯研究进展[J].塑料,2007,36(1):81-85.
    [106] Modern Plastic Industry Company, Limited, EPP library-Characteristics of EPP
    [EB/OL]. http://www.mpic.co.kr/eng/info/epp_1.asp,2003.
    [107]刁雪峰,卢军.超临界CO2方法挤出生产发泡聚丙烯及其在汽车内外是件上的应用[A].中国工程塑料工业协会加工应用专委会,2009年中国工程塑料复合材料技术研讨会论文集[C].2009年中国工程塑料复合材料技术研讨会,张家界,2009:211-214.
    [108] Witt M.R.J., Shah S., Methods of manufacture of polylactic acid foams [P]. US Patent:2010029793A1,2010-02-04.
    [109] Pawloski A., Cernohous J.J., Kaske K., Expandable beads of a compostable or biobasedthermoplastic polymer [P]. US Patent:2012010307A1,2012-01-12.
    [110] Parker K., Garancher J.P., Shah S., et al., Expanded polylactic acid-an eco friendlyalternative to polystyrene foam [J]. Journal of Cellular Plastics,2011,47(3):233-243.
    [111] Park C.B., Behravesh A.H., Venter R.D., Low density microcellular foam processing inextrusion using CO2[J]. Polymer Engineering and Science,1998,38(11):1812-1823.
    [112] Lee S.T., Park C.B., Ramesh N.S., Foaming fundamentals, In: Polymeric Foams:Science and Technology [M]. Boca Raton: CRC Press LLC,2006:49-50.
    [113] Sopher S., Advances in low density expanded polyolefin bead foam for shape moldingand fabrication [A]. Proceedings of the Polymer Foam [C]. Polymer Foam2007,Newmark,2007:1-5.
    [114] Braun F., Glück G., Hahn K., et al., Expanded polypropylene particles [P]. US Patent:6677040B1,2004-07-13.
    [115] Fischer J., Dietzen F., Ehrmann G., et al., Prefoamed polyolefin beads produced byextrusion [P]. US Patent:5744505,1998-04-28.
    [116] Kolossow K.D., Extruder for plastics [P]. US Patent:6074084,2000-07-13.
    [117] Tang L., Zhai W., Zheng W., Autoclave preparation of expandedpolypropylene/poly(lactic acid) blend bead foams with a batch foaming process [J].Journal of Cellular Plastics,2011,47(5):429-446.
    [118] Ichimura T., Nakamura K., Senda K., Pre-expanded particles of polypropylene resin,process for producing the same and process for producing in-mold foamed articlestherefrom [P]. US Patent:6166096,2000-12-26.
    [119] Mihayashi T., Yanagihara Y., Goda T., In-mold foaming article of polypropylene resincomposition [P]. US Patent:6326409B1,2001-12-04.
    [120] Sasaki H., Sakaguchi M., Tokoro H., Foamed particles of modified polypropylene resinand method of preparing same [P]. US Patent:6051617,2000-04-18.
    [121] Sasaki H., Sakaguchi M., Akiyama M., et al., Expanded polypropylene resin beads anda molded article [P]. US Patent:6313184B1,2001-11-06.
    [122] Yamada H., Hosoda S., Ogawa T., Foamed particles of propylene-type polymer [P]. USPatent:4766157,1988-08-23.
    [123] Ogita T., Yamaguchi T., Pre-expanded particles of polypropylene resin and inmoldedfoamed article using the same [P]. US Patent:20030060545A1,2003-03-27.
    [124]郑云生,张丽叶,刘太闯等.聚丙烯可发性珠粒的制备及其发泡性能研究[J].中国塑料,2007,21(7):56-59.
    [125] Pae K.D., Sauer J.A., Effects of thermal history on isotactic polypropylene [J]. Journalof Applied Polymer Science,1968,12(8):1901-1919.
    [126] Choi J.B., Chung M.J., Yoon J.S., Formation of double melting peak ofpoly(propylene-co-ethylene-co-1-butane) during the pre-expansion process forproduction of expanded polypropylene [J]. Industrial&Engineering ChemistryResearch,2005,44(8):2776-2780.
    [127] Nofar M., Guo Y., Park C.B., Double crystal melting peak generation for expandedpolypropylene bead foam manufacturing [J]. Industrial&Engineering ChemistryResearch,2013,52(6):2297-2303.
    [128]Zhai W., Kim Y.-W., Park C.B., Steam-chest molding of expanded polypropylene foams,1: DSC simulation of bead foam processing [J]. Industrial&Engineering ChemistryResearch,2010,49(20):9822-9829.
    [129] Mills N.J., Time dependence of the compressive response of polypropylene bead foam[J]. Cellular Polymers,1997,16(3):194-215.
    [130] Beverte I., Deformation of polypropylene foam Neopolen P in compression [J].Cellualr Plastics,2004,40(3):191-204.
    [131] Mills N.J., Gilchrist A., Properties of bonded-polypropylene-bead foams: Data andmodelling [J]. Journal of Materials Science,2007,42(9):3177-3189.
    [132] Jung D.W., Lee E.K., Park C.B., et al., Study on steam chest molding process for EPPbead foam [A]. Annual Technical Conference-ANTEC, Conference Proceedings [C].Annual Technical Conference, Orlando,2010:528-539.
    [133] Zhai W., Kim Y.-W., Jung D.W., et al., Steam-chest molding of expanded polypropylenefoams,2: Mechanism of interbead bonding [J]. Industrial&Engineering ChemistryResearch,2011,50(9):5523-5531.
    [134] Liao X., Li Y.G., Park C.B., et al., Interfacial tension of linear and branched PP insupercritical carbon dioxide [J]. The Journal of Supercritical Fluids,2010,55:386-394.
    [135] Chen D., Hsue G., Gas sorption in side-chain liquid crystalline polymers [J]. Polymer,1994,35(13):2808–2814.
    [136] Samuels R.J., Quantitative structural characterization of the melting behaviour ofisotactic polypropylene [J]. Journal of Polymer Science: Polymer Physics Edition,1975,13(7):1417-1446.
    [137] Jiang X.L., Liu T., Xu Z.M., et al., Effects of crystal structure on the foaming ofisotactic polypropylene using supercritical carbon dioxide as a foaming agent [J].Journal of Supercritical Fluids,2009,48(2):167-175.
    [138] Padden F.J., Keith H.D., Spherulitic crystallization in polypropylene [J]. Journal ofApplied Physics,1959,30(10):1479-1484.
    [139] Kardos J.L., Christiansen A.W., Baer E., Structure of pressure-crystallizedpolypropylene [J]. Journal of Polymer Science, Part A-2: Polymer Physics,1966,4(5):777-788.
    [140] Pae K.D., γ-α solid-solid transition of isotactic polypropylene [J]. Journal of PolymerScience, Part A-2: Polymer Physics,1968,6(4):657-663.
    [141] Sharudin R.W.B, Ohshima M., CO2-induced mechanical reinforcement ofpolyolefin-based nanocellular foams [J]. Macromolecular Materials and Engineering,2011,296(11):1046-1054.
    [142] Zhang R., Luo X., Wang Q., et al., Melting behaviour of low ethylene contentpolypropylene copolymers with and without nucleating agents [J]. Chinese Journal ofPolymer Science (English Edition),1994,12(3):246-255.
    [143] Behravesh A.H., Park C.B., Lee E.K., Formation and characterization of polyethyleneblends for autoclave-based expanded-bead foams [J]. Polymer Engineering and Science,2010,50(6):1161-1167.
    [144] GB150-1998,钢制压力容器[S].北京:中国标准出版社,1998.
    [145]王凯,虞军.搅拌设备[M].北京:化学工业出版社,2003.
    [146]陈志平,章序文,林兴华.搅拌与混合设备设计选用手册[M].北京:化学工业出版社,2004.
    [147]陈允中,汪霞倩.搅拌设备的设计与计算[J].石油化工设备技术,1997,18(6):13-22.
    [148] Park C.B., Baldwin D.F., Suh N.P., Effect of the pressure drop rate on cell nucleation incontinuous processing of microcellular polymers [J]. Polymer Engineering and Science,1995,35(5):432-440.
    [149] Xu X., Park C.B., Pop-Iliev R., Effects of die geometry on cell nucleation of PS foamsblown with CO2[J]. Polymer Engineering and Science,2003,43(7):1378-1390.
    [150] Shafi M.A., Joshi K., Flumerfelt R.W., Bubble size distributions in freely expandedpolymer foams[J]. Chemical Engineering Science,1997,52(4):635-644.
    [151] Joshi K., Lee J.G., Shafi M., et al., Prediction of cellular structure in free expansion ofviscoelastic media[J]. Journal of Applied Polymer Science,1998,67(8):1353-1368.
    [152] Skinner S.J., Polymer rheology [J]. Journal of Applied Polyemr Science,1961,5(14):S5.
    [153] Sha H., Harrison I.R., CO2permeability and amorphous fractional free-volume inuniaxially drawn HDPE [J]. Journal of Polymer Science, Part B: Polymer Physics,1992,30(8):915-922.
    [154]Colton J.S., The nucleation of microcellular foams in semi crystalline thermoplastics [J].Materials and manufacturing processes,1989,4(2):253-262.
    [155] Baldwin D.F., Park C.B., Suh N.P., A microcellular processing study of poly(ethyleneterephthalate) in the amorphous and semicrystalline states. Part I: Microcell nucleation[J]. Polymer Engineering and Science,1996,36(11):1437-1445.
    [156] Baldwin D.F., Park C.B., Suh N.P., A microcellular processing study of poly(ethyleneterephthalate) in the amorphous and semicrystalline states. Part II: Cell growth andprocess design [J]. Polymer Engineering and Science,1996,36(11):1446-1453.
    [157] Doroudiani S., Park C.B., Kortschot M.T., Effect of the crystallinity and morphology onthe microcellular foam structure of semicrystalline polymers [J]. Polymer Engineeringand Science,1996,36(21):2645-2622.
    [158] Kishimoto Y., Ishii R., Differential scanning calorimetry of isotactic polypropene athigh CO2pressures [J]. Polymer,2000,41(9):3483–3485.
    [159] Naguib H.E., Park C.B., Song S-W., Effect of supercritical gas on crystallization oflinear and branched polypropylene with foaming additives [J]. Industrial&EngineeringChemistry Research,2005,44(17):6685-6891.
    [160] Taki K., Kitano D., Ohshima M., Effect of growing crystalline phase on bubblenucleation in poly(L-lactide)/CO2batch foaming [J]. Industrial&EngineeringChemistry Research,2011,50(6):3247-3252.
    [161] Oda T., Saito H., Exclusion effect of carbon dioxide on the crystallization ofpolypropylene [J]. Journal of Polymer Science Part B: Polymer Physics,2004,42(9):1565–1572.
    [162] Reignier J., Tatibou t J., Gendron R., Batch foaming of poly(ε-caprolactone) usingcarbon dioxide: Impact of crystallization on cell nucleation as probed by ultrasonicmeasurements [J]. Polymer,2006,47(14):5012-5024.
    [163] Koga Y., Saito H., Porous structure of crystalline polymers by exclusion effect of carbondioxide [J]. Polymer,2006,47(21):7564-7571.
    [164] Liao R., Yu W., Zhou C., Rheological control in foaming polymeric materials: II.Semi-crystalline polymers [J]. Polymer,2010.51(26):6334-6345.
    [165] Keith H.D., Padden F.J., A phenomenological theory of spherulitic crystallization [J].Journal of Applied Physics,1963,34(8):2409-2421.
    [166] Keith H.D., Padden F.J., Spherulitic crystallization from the melt. I. Fractionation andimpurity segregation and their influence on crystalline morphology [J]. Journal ofApplied Physics,1964,35(4):1270-1285.
    [167] Leung S.N., Wong A., Wang L.C., Park C.B., Mechanism of extensional stress-inducedcell formation in polymeric foaming processes with the presence of nucleating agents[J]. The Journal of Supercritical Fluids,2012,63:187-198.
    [168] Baldwin D.F., Park C.B., Suh N.P., Microcellular sheet extrusion system process designmodels for shaping and cell growth control [J]. Polymer Engineering and Science,1998,38(4):674-688.
    [169] Michaels A.S., Bixler H.J. Solubility of gases in polyethylene [J]. Journal of PolymerScience,1961,50(154):393-412.
    [170] Suh K.W., Paquet A.N., Rigid polystyrene foams and alternative blowing agents, In:Scheirs J., Priddy D.B., Modern Styrenic Polymers: Polystyrenes and StyrenicCopolymers [M]. New York: John Wiley&Sons,2003.
    [171] Suh K.W., Killingbeck G.W., Styrene polymer foam and preparation thereof [P]. GBPatent:1537421,1978-12-29.
    [172] Gendron R., Huneault M., Tatibou t J., et al., Foam extrusion of polystyrene blown withHFC-134a [J]. Cellular Polymers,2002,21(5):315-341.
    [173] Dournel P., Zipfel L., HFC blends for the production of high performance XPSinsulating foams [A]. Blowing Agents and Foaming Processes Conference, ConferenceProceedings [C]. Shawbury: Rapra Technology Limited,2001: Paper24,1-7.
    [174] Butler F., Radlinsky J., The change of thermal conductivity with time of extrudedpolystyrene skinboards [R]. Dusseldorf: The Ninth International Foamed PlasticsSymposium,1979.
    [175] Kuhn J., Ebert H.-P., Arduini-Schuster M.C., Thermal transport in polystyrene andpolyurethane foam insulations [J]. International Journal of Heat and Mass Transfer,1992,35(7):1795-1801.
    [176] Leung S.N., Wong A. Guo Q., et al., Change in the critical nucleation radius and itsimpact on cell stability during polymeric foaming processes [J]. Chemical EngineeringScience,2009,64(23):4899-4907.
    [177] Liu T., Hu G., Tong G., et al., Supercritical carbon dioxide assisted solid-state graftingprocess of maleic anhydride onto polypropylene [J]. Industrial&EngineeringChemistry Research,2005,44(12):4292-4299.
    [178] Park C.B., Cheung L.K., Song S.-W., The effect of talc on cell nucleation in extrusionfoam processing of polypropylene with CO2and isopentane [J]. Cellular Polymers,1998,17(4):221-251.
    [179] Menczel J., Varga J., Influence of nucleating agents on crystallization of polypropylene.I. Talc as a nucleating agent [J]. Journal of Thermal Analysis and Calorimetry,1983,28(1):161-174.
    [180] Velasco J.I., De Saja J.A., Martinez A.B., Crystallization behavior of polypropylenefilled with surface-modified talc [J]. Journal of Applied Polymer Science,1996,61(1):125-132.
    [181] Cook M., Harper J.F., The influence of magnesium hydroxide morphology on thecrystallinity and properties of filled polypropylene [J]. Advances in Polymer Technology,1998,17(1):53-62.
    [182] Beck H.N., Heterogeneous nucleating agents for polypropylene crystallization [J].Journal of Applied Polymer Science,1967,11(5):673-685.
    [183] Mitsuishi K., Ueno S., Kodama S., et al., Crystallization behavior of polypropylenefilled with surface-modified calcium carbonate [J]. Journal of Applied Polymer Science,1991,43(11):2043-2049.
    [184] Khare A., Mitra A., Radhakrishnan S., Effect of CaCO3on the crystallization behaviourof polypropylene [J]. Journal of Materials Science,1996,31(21):5691-5695.
    [185] Agarwal P.K., Somani R.H., Weng W., et al., Shear-induced crystallization in novel longchain branched polypropylenes by in situ rheo-SAXS and-WAWD [J]. Macromolecules,2003,36(14):5226-5235.
    [186] Nogales A., Hsiao B.S., Somani R.H., et al., Shear-induced crystallization of isotacticpolypropylene with different molecular weight distributions: in situ small-andwide-angle X-ray scattering studies [J]. Polymer,2001,42(12):5247-5256.
    [187] Pogodina N.V., Lavrenko V.P., Srinvas S. et al., Rheology and structure of isotacticpolypropylene near the gel point: quiescent and shear-induced crystallization [J].Polymer,2001,42(21):9031-9043.
    [188] Zhai W., Kuboki T., Wang L., et al., Cell structure evolution and the crystallizationbehavior of polypropylene/clay nanocomposites foams blown in continuous extrusion[J]. Industrial&Engineering Chemistry Research,2010,49(20):9834-9845.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700