用户名: 密码: 验证码:
电镦机气—液联合驱动系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气门是发动机的“心脏”零件,近年来随着汽车产量激增及对性能要求的提高,对气门的制造提出了越来越高的要求。国内生产气门锻件毛坯普遍采用电热镦粗成形工艺。电镦过程涉及的工艺参数较多,如何通过优化工艺参数改进电热镦粗工艺,这方面国内外学者已经做过大量研究,但是对于电镦机本身驱动系统的研究还很少。随着气动、液压技术的不断进步和应用领域与范围的不断扩大,对电镦机的质量也提出了更高的要求。如何提高电镦机的控制精度,增强环境适应能力,改进动态品质,缩短设计周期,优化系统方案成了人们亟待解决的问题。本文针对电镦机驱动系统的研究,对提高电镦机的质量具有重要意义。
     本文在总结国内外电镦机驱动系统的基础上,本着实用、可靠、投资少的原则,按照企业的要求,着重进行了电镦机气—液联合驱动系统设计、计算、选件、安装、调试。为了分析比较全液压驱动和气—液联合驱动电镦机的动态性能,针对这两种不同的驱动系统建立了数学模型,利用Matlab/Simulink工具箱的递阶结构向上构造出了整个系统的大模型,并根据实际情况对模块参数赋予合适的数值。按照输入阶跃信号对系统进行了仿真。对仿真结果进行分析。在仿真的基础上,再对两种不同驱动方式的电镦机进行实验研究,由仿真及实验结果表明:
     1.经过现场实验,运行结果表明:作者设计的电镦机气—液联合驱动系统工作稳定,整体设计合理、技术先进、性能可靠、成本低,实现了预期的设计目标。
     2.仿真及实验所得镦粗缸进气腔压力曲线基本吻合,证明所建立的仿真模型是准确有效的。
     3.仿真及实验结果表明:气—液联合驱动电镦机相比全液压驱动电镦机具有更好的动态特性,镦粗过程中镦粗力更稳定。
     作者提出的对电镦机工作装置驱动系统的建模与仿真方法,对进一步分析影响其动态品质的因素,提出改进的措施也有指导意义。
Valves are of the key parts of engines. With the increasing of production and performance requirements of automobiles in recent years, the requirements for engine valve manufacturing are increased accordingly. Electrical upsetting is widely used in our country. Due to the variety of parameters during electrical upsetting process, both domestic and international scholars have done much research work in how to improve the electrical upsetting process by optimizing the parameters. Regarding to the electrical upsetting machine itself, there is very little research on the transmission system. With the progressing and application extension of pneumatic and hydraulic technology, performance requirements for electrical upsetting machines have been put forward. How to improve the control precision of the electrical upsetting machine, strengthen environmental adaptive ability, improve dynamic performances, shorten design cycle, and optimize systematic scheme are the problems need to be solved urgently. Studying dynamic characteristics of pneumatic and hydraulic transmission system of electrical upsetting machine is important for improving electrical upsetting machine performances.
     Based on summarizing transmission systems of domestic and international electrical upsetting machines and according to the principles of practicability, reliability, economization and the enterprise requirements, a pneumatic-hydraulic composite transmission system designed and manufactured. In order to analyze and compare the pneumatic-hydraulic composite transmission system and the entire hydraulic transmission system, the mathematic models of two different transmission systems were set up. Utilizing the upward structure of Matlab/Simulink toolbox, the author produced whole model of the system. The module parameters values were given according to the actual working conditions. The step responses were simulated and tested. The numerical simulation and the results of experiments shown:
     1. The testing results show that the system is reasonable in the whole design, advanced in technologies, reliable at performances and economical at cost. The system is approved to have achieved the expected results.
     2. The pressure curves from the numerical simulation and experiments were approximately coincided each other, proving that the simulation model is accurate and effective.
     3. The comparison of pneumatic-hydraulic composite transmission system with the entire hydraulic transmission system shown that the former system's dynamic characteristics were better.
     The modeling and simulation method of the transmission system of the electrical upsetting machine which the author put forward have guiding significance in studying influences of dynamic characteristics to electrical upsetting and putting forward the corresponding improvement measures.
引文
[1]Xiao Xiaoting,Zhang Zhengrong,Sun Yousong et al.Product Defect Reasons Analysis and Quality Control[J].Hot Working Technology,2001,(1):46-48.
    [2]李明,孙友松.发动机气门成形加工发展综述[J].锻压装备与制造技术,2007,(6):18-21.
    [3]胡学根.气门的电镦技术[J].内燃机配件,2006,(2):19-26.
    [4]李连章.Dorman电镦机[J].锻压机械,1994,(1):33-35.
    [5]Y Sun,T Liu,Z Zhang et al.Optimum Control of Parameters in Electric Upsetting[J].Journal of Engineering,2003,(9):125-126.
    [6]潘东升,陈松茂.液压仿真技术的现状及发展趋势[J].新技术新工艺,2005,(4):7-9.
    [7]冯双昌.挖掘机工作装置液压系统的动态特性的建模与仿真研究[D].贵州大学硕士学位论文,2007.
    [8]叶扬.汽车气门电镦工艺的改进[J].塑性加工技术,2003,(4):39-41.
    [9]W.E.Dowling,J.E.Allison,L.R.Swank et al.New Engine Design[J].Engine Component Technol.,1993,(8):30-38.
    [10]Teterin,G.P.,Kommel.Electric upset forging of perforrns from titanium alloys with ordered microstructure and properties[J].Forging and Stamping Production,1998,(9):14-16.
    [11]SMC(中国)有限公司.现代实用气动技术[M].北京:机械工业出版社,1998.
    [12]吴剑.气压驱动系统节能的重要性[J].江西能源,2004,(1):49-50.
    [13]李毅华,栾振辉.国内外驱动机械学的现状与发展趋势[J].煤矿机械,2005,(12):33-35.
    [14]中国机械工程学会锻压学会编.锻压手册第三卷锻压车间设备[M].北京:机械工业出版社,1993.
    [15]Schneide,R.T..Designing with rodless cylinders[j].Hydraulics and Pneumatics,1992,45(3):51-55.
    [16]Golf,K.H..Electfic upsetting speeds forging production[J].Precision Metal, 1978,2:25-28.
    [17]李东明,孙宝元,王伟.压电结构电/气转换器技术研究[J].化工自动化及仪表,2007,34(4):68-71.
    [18]吴根茂.实用电液比例技术[M].杭州:浙江大学出版社,1993.
    [19]刘能宏,田数军.液压系统动态特性数字仿真[M].大连:大连理工大学出版社,2000.
    [20]李辉,张策,宋轶民.混合驱动精压机的优化设计和运动仿真[J].计算机辅助设计与图形学学报,2004,16(2):211-215.
    [21]程玉军.基于Simulink的冲击式采煤机液压冲击系统动态特性仿真分析[D].太原理工大学硕士学位论文,2005.
    [22]黄忠霖.控制系统Matlab计算与仿真[M].北京:国防工业出版社,2001.
    [23]周洪.电气比例/伺服系统及其控制策略研究[D].浙江大学博士论文,1988.
    [24]陈汉超,盛永才.气压驱动和控制[M].北京:北京工业学院出版社,1998.
    [25]陶国良.电一气比例/伺服连续轨迹控制及其在多自由度机械手中的应用研究[D].浙江大学博士论文,2000.
    [26]Sanville F.E..Some Simplified Flow Calculations for Pneumatic Circuits[J].Hydr-Pneum.Power,1971,(7):195-199.
    [27]谢祖刚.气缸低速摩擦特性的研究[D].浙江大学工学硕士学位论文,2003.
    [28]Zhao Ming,Zhou Hong,Chen Ying.research on the flow rate characteristic of pneumatic component and circuit.ISFP.International Academic Publishers 2003.
    [29]陶国良,王宣银.气动比例/伺服位置控制系统的摩擦力特性研究[J].液压气动与密封,2000,(4):37-42.
    [30]叶建辉,郑天有.Matlab软件及其在系统仿真中的应用[J].机械开发,2000,(3):44-45.
    [31]应自炉.Matlab软件在控制系统仿真与分析中的应用[J].现代电子技术,1995,(4):33-37.
    [32]The Mathworks inc..The help of MATLAB(version 6)[M].U.S.Naval Academy,2000.
    [33]Richard Y.Chang.Matlab Robust Control Toolbox User' s Guide[M],Inc., 1999.
    [34]杨志坚,米柏林.基于Simulink的液压系统动态仿真[J].农机化研究,2005,(5):93-94.
    [35]高钦和.利用Simulink实现液压系统动态仿真[J].自动化与仪器仪表,1999,(9):31-33.
    [36]胡良谋,李景超.基于Matlab/Simulink的电液伺服控制系统的建模与仿真研究[J].机床与液压,2003,(3):230-232.
    [37]徐文灿,李永正.计算气动回路流量特性的参数的方法[J].北方工业大学学报,1994,7(2):141-146.
    [38]Hitchcox,A.L..Pneumatic cylinders epitomize variety[J].Hydraulics and Pneumatics,2000,53(11):47-50.
    [39]Ioannidis I.,Nguyen T..Microcomputer-Controlled Servo-Pneumatic Drives.7~(th)International Fluid Power Symposium,1986,(9):155-164.
    [40]徐文灿.串接音速排气测定气动元件的流量特性[J].液压与气动,1989,(2):40-43.
    [41]李建藩.气压传动系统动力学[M].广州:华南理工大学出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700