用户名: 密码: 验证码:
Ti-44Al-5Nb-0.85W-0.85B高温蠕变行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究了细晶铸态TiAl合金Ti-44Al-5Nb-0.85W-0.85B(at.%)的蠕变行为。合金在蠕变前分别在1260℃和1340℃两个不同温度下热等静处理以得到两种不同的显微结构:经1260℃热等静压处理后,块状B2+ω沉淀相在板条晶界偏析,而在α单相区(1340℃)进行的热等静压处理完全消除了这种块状B2+ω偏聚相。
     在700℃,150~300MPa应力下进行恒应力拉伸蠕变实验,研究并讨论了B2+ω偏聚相对合金在不同应力下的蠕变性能的影响。结果显示,两种状态的下的该合金即使是在700℃,300MPa应力下经历1000小时长时间蠕变后,仍处于稳态蠕变阶段,没有发生断裂现象。含W的全板条合金显示出了良好的蠕变性能。并且发现,含有B2+ω偏聚相的显微结构比不含该偏聚相的显微结构表现出更好的蠕变性能,在200~300MPa之间存在蠕变控制机理的转变。
     对显微组织进行详细的扫描电镜和透射电镜观察,结果显示,粗大γ板条含有较高的位错密度,在板条尖端和反向畴界以及α_2/γ界面发现了位错塞积现象。α_2+γ板条表现出相对好的稳定性。偶尔发现粗大α_2板条发生了平行分解,仅少量γ板条生成变形孪晶,没有发现板条断开和发生球化的现象。
     研究表明,块状B2+ω偏聚相在1340℃下热等静压处理后被完全消除,但是,此有序相在蠕变后又重新出现在晶界。在热等静压处理消除块状B2+ω偏聚相之后,晶界仍残留了细小颗粒或者线状B2相,由于难溶元素W,Nb扩散缓慢,仍然集中在初生B2+ω相被消除的区域附近,在高温高应力蠕变过程中,它们对B2+ω沉淀相重新偏聚将作出贡献。因此可以得出这样的结论:对于TiAl合金,通过热等静压处理消除B2+ω偏聚相并不是强化α_2+γ板条的有效方法。
The creep behavior of a fine-grained cast TiAl alloy with nominal chemical composition of Ti-44Al-5Nb-0.85W-0.85B(at.%) was studied.The material was HIPped(hot isostatic pressed) at the temperatures of 1260℃and 1340℃respectively to produce different microstructures:the B2+ωphase was segregated at lamellar colony boundaries after 1260℃HIPping,and it was completely removed after 1340℃HIPping.
     Tensile creep tests were performed at the temperature of 700℃under a constant stress ranging from 150MPa to 300MPa.The influence of B2+ωprecipitates on creep under different stresses was studied and discussed.The results showed that the two conditions of the cast alloy subjected to creep for up to 1000 hours,even at the temperature of 700℃and at the stress of 300MPa,were still in the secondary creep regime,no fracture occurred.This reveals a good creep resistance for the W-containing fully lamellar TiAl alloy.Also found is that the fully lamellar microstructure with B2+ωsegregation shows a better creep resistance than that without B2+ωsegregation.Creep mechanism has been found to change between 200MPa and 300MPa.
     The microstructure evaluation was performed by scanning electron microscopy (SEM) and transmission electron microscopy(TEM).The results showed that coarseγlaths contained a relatively high dislocation density.Dislocation pile-ups were observed among lamellar tips,antiphase domain boundaries andα_2/γinterfaces.Theα_2+γlamellae exhibit relatively high stability.Parallel decomposition of coarseα_2 laths was rarely found,the deformation twins were found only inγlaths,and no any lamellae were observed to break-up and globularise.
     The research has found that that blocky B2+ωordered phase can be removed completely after 1340℃HIPping.However,the ordered phase was precipitated again around the colony boundaries after creep.It is deduced that the refractory elements W,Nb still distribute nearby after the HIPping due to sluggish diffusion.They would contribute to the re-precipitation of B2+ωduring long-time creep under the high temperature and high stress.It is therefore concluded that the removing of B2+ωby HIPping is not an effective way to strengthen theα_2 andγlamellae in TiAl alloys.
引文
[1]张澜庭,毛大立,吴建生.金属间化合物在工业中的应用.上海金属.1999,2:18-21
    [2]D.M.Dimiduk.Gamma Titanium Aluminide Alloys-an Assessment within the Competition of Aerospace Structural Materials.Materials Science and Engineering.1999,263A:281-288
    [3]曾泉浦.TiAl_3基复合材料的制备号性能.稀有金属快报.1993,12(10):13-14
    [4]黄金昌,阎蕴琪.γ-TiAl合金的研究与开发.稀有金属快报.2003,22(6):16-18
    [5]张国才.γ-TiAl基耐热合金研制的进展.稀有金属材料与工程.1990,4:2-8
    [6]林栋梁.高温有序金属间化合物研究现状及前景.上海金属.1992,14(2):1-7
    [7]H.A.Lipsitt.Titanium aluminides-an overview.Mater.Res.Soc.Symp.Proc.1985,39:351-364
    [8]M.Yamaguchi,H.Inui.TiAl compounds for structural applications.Edited by R.Darolia et al.Structural Intermetallics.Warrendale,P.A.,TMS,1993,45:127-142.
    [9]J.B.McAndrew,H.D.Kessler.Ti-36%aluminum as a base for high-temperature alloys.Journal of Metals.1956,8:1348-1352
    [10]Y.W.Kim.Ordered intermetallic alloys,PartⅢ:Gamma Titanium Aluminides.JOM.1994,46:30-40
    [11]Y.W.Kim.Materials Science and Engineering.1995,192/193 A:519-525
    [12]Y.W.Kim,D.M.Dimiduk.Journal of Metals.1991,43(8):40-47.
    [13]K.S.Chan,Y.W.Kim.Acta Metal Mater.1995,43:439
    [14]Toshimitsu Tetsui.Development of a TiAl turbocharger for passenger vehicle.Materials Science and Engineering.2002,329/331A:582-588.
    [15]A.M.Hodge,L.M.Hsiung,T.G.Nieh.Creep of nearly lamellar TiAl alloy containing W.Scripta Materialia.2004,51(5):411-415.
    [16]阎蕴琪,王文生.TiAl化合物-一种具有竞争力的高温结构材料.钛工业进展.2000, 17(5):9
    [17]阎蕴琪.γ-TiAl金属间化合物研究现状与未来展望.材料导报.2000,14(2):31
    [18]孔凡涛,陈玉勇.TiAl基金属间化合物研究进展.材料科学与工艺.2003,4:441
    [19]宋玉泉.铝系结构金属间化合物及其塑性和超塑性.航空制造技术.2003,(7):17-22
    [20]E.Donald,Jr.Larsen.Status of investment cast gamma titanium aluminides in the USA.Materials Science and Engineering.1996,213A:128-133.
    [21]C.M.Austin,T.J.Kelly.Gamma Titanium Aluminides.edited by Y.W.Kim,et al.(TMS,Las Vegas,NV:1995):1-32
    [22]T.Tetsui.Application of Cast Gamma Alloys for Turbochargers.Edited by M.V.Nathal et al.ISSI-2,Champion,Pennsylvania,1997:489-493
    [23]M.Yamaguchi et al.High-Temperature Ordered Intermetallics Alloys Ⅵ.edited by J.A.Horton et al.(MRS,Pittsburgh,PA:1995):3-16
    [24][日]山口正治,马越佑吉著,丁树深译.金属间化合物.科学出版社,1991:1-11.
    [25]Edward A.Loria,Gamma titanium aluminides as prospective structural materials.Intermetall- ics.2000,8:1339-1345
    [26]李成功,傅恒志,于翘.航空航天材料.国防工业出版社,2002:16
    [27]张永刚,韩雅芳,陈国良等主编.金属间化合物结构材料.国防工业出版社,2001:705
    [28]H.Buhl.Advance Aerospace Materials.German Spring-Verlag.1992
    [29]张小明.TiAl基合金在汽车发动机上的应用.稀有金属快报.2002,10:18
    [30]M.Yamaguchi,H.Inui,K.Ito.High-temperature structural intermetallics.Acta Materialia.2000,48:307-322
    [31]林凡,王家芳,耿瑞山.TiAl合金增压器涡轮的铸造.热加工工艺.2001,5:33-34
    [32]韩明臣,朱昱.TiAl合金汽车气门.汽车工艺与材料.1999,(4):21-23
    [33]林建国,张永刚,陈昌麒,等.TiAl金属间化合物在汽车上的应用潜力.钛工业进展,1997,(2):25-28
    [34]S.Isobe,T.Noda.Automotive Applications of TiAl Intermetallics.Edited by M.V.Nathal et al. ISSI-2, Champion, Penns- ylvania, 1997: 427-433
    [35] D.Schneider, et al. Production of Titanium Aluminide Valves for Automotive Engines by Reactive Sintering. Edited by M.V.Nathal et al. ISSI-2, Champion, Pennsylvania, 1997:453-460
    [36] M.M.Keller, P.E.Jones, W.J.Porter III, D.Eylon. The development of low-cost TiAl automotic values. JOM. 1997,49(5): 42-44
    [37] M.Takeyama, Y.Kato, M.Kikuchi. In: P.A. Blenkinsop, W.J. Evanie and H.M. Filower,Editors. Titanium '95 Science and Technology. The Institute of Metals, London ,1996: 294
    [38] R.Mahapatra, S.K.Varma, B.A.Pregger, W.E.Frazier. Edited by M.A. Imam, et al. PRICM-3,Hawaii, USA, 1998:789
    [39] W.J.Zhang, L.Francesconi, E.Evangelista. Precipitation kinetics of lamellar (y) laths in a TiAl-base alloy. Scripta Materialia. 1997, 36(9): 981-987
    [40] D.S.Xu. Substitution behavior of alloying elements in intermetallics compound TiAl. Acts Metallargica Sinica. 1993, 8(4): 609-613
    [41] A.Vassel. Continuous fibre reinforced titanium and aluminium composites: a comparison.Materials Science and Engineering. 1999, 263A: 305-313
    [42] C.M.Ward-Close, L.Chandrasekaran, et al. Advances in the fabrication of titanium metal matrix composite. Materials Science and Engineering. 1999, 263A: 314-318
    [43] Y.B.Zhu. Diffusion behavior of atoms across interface in TiAl/Mo IMC. Proceedings of the Xi'an International Titanium Conference, Xi'an, China, 1998: 885-890
    [44] Y.Q.Yang. Interfacial reaction of SCS-6SiC/Ti-Al alloys. Proceedings of the Xi'an International Titanium Conference, Xi'an, China, 1998: 931
    [45] C.McCullough, J.J.Valencia, et al. Phase equilibria and solidification in Ti-Al alloys. Acta Metallurgica. 1989,37(5): 1321-1336
    [46] J.L.Murray. Phase Diagrams of Binary Titanum Alloys. Edited by T.B.Massalski, et al. (Am.Soc. Metals, Metals Park, Ohio: 1986): 12-24
    [47]S.A.Jones,M.J.Kaufman.Phase equilibria and transformations in intermediate titanium- alu -minum alloys.Acta Metallurgica et Materialia.1993,41(2):387-398
    [48]M.Takeyama,T.Kumagai,et al.Structural Intermetallics.Edited by R.Darolia,et al.TMS,Warrendale,Pennsylvania,1993:167
    [49]G.Ramanath,V.K.Vasudevan.High-temperature ordered-intermetallics alloys.Edited by I.Baker,et al.MRS.Pittsburgh,PA,1993:223
    [50]P.Wang,V.K.Vasudevan.High-temperature ordered-intermetallics alloys V.Edited by I.Baker,et al.MRS.Pittsburgh,PA,1993:229
    [51]A.Denquin,S.Naka.Phase transformation mechanisms involved in two-phase TiAl-based alloys-I.Lamellar structure formation.Acta Metall Mater.1996,44:343-352
    [52]Y.W.Kim.Gamma Titanium Aluminides.Edited by Y.W.Kim,R.Wagner,et al.TMS.Warrendale,PA,1995:637
    [53]M.J.Blackburn.Science,in The Technology and Application of Titanium.Edited by R.T.Jaffee,N.E.Promisel.Plenum Press.New York,N-Y,1970,3:633-643
    [54]H.Inui,A.Nakarnura,M.H.Oh,M.Yamaguchi.High-resolution electron microscope study of lamellar boundaries in Ti-rich TiAl polysynthetically twinned crystals.Ultramicroscopy.1991,39:268-278
    [55]H.Inui,A.Nakamura,M.H.Oh,M.Yamaguchi.Deformation structures in Ti-rich TiAl polysynthetically twinned crystals.Philos.Mag.A.1992,66(4):557-573
    [56]徐颖,徐东,王征,等.金属间化合物材料的熔炼和铸造.兵器材料科学与工程.1996,19(5):43-48
    [57]苏彦庆,刘畅,毕维升,等.TiAl基合金杆形件铸造缺陷与铸造方法的关系.特种铸造及有色合金.2002,(5):11-14
    [58]F.N.R.Nabarro,H.L.Villiers.The physics of creep.Creep and Creep-resistant Alloys.Taylor & Francis Ltd,London:1995:413
    [59]J.Beddoes,W.Wallace,L.Zhao.Current understanding of creep near γ-titanium aluminides. Int.Mater.Rev.1995;40(5):197-218
    [60]林建国,张永刚,陈昌麒.γ-TiAl合金的显微组织对其蠕变性能的影响.北京航空航天大学学报.1998,24(6):734-737
    [61]D.W.McKee,S.C.Huang.The oxidation behavior of gamma-titanium aluminide alloys under thermal cycling conditions.Corrosion Science.1992,33(12):1899-1914
    [62]S.Becker,M.Sch(u|¨)tze,A.Rahmel.Cyclic-oxidation behavior of TiAl and of TiAl alloys.Oxid- ation of Metals.1993,39:93-106
    [63]Y.Shida,H.Anada.Oxidation Behavior of Binary Yi-Al Alloys in High Temperature Air Environment,JIM.1993,34(3):236-242
    [64]黄伯云,曲选辉.钛铝有序合金研究综述.材料导报.1992,2:25
    [65]W.J.Zhang,G.L.Chen,Z.Q.Sun.Oxidation of ternary Ti18Nb48Al and Ti10Nb45Al alloys.Scripta Metallurgica et Materialia.1993,28(5):563-567
    [66]W.J.Zhang,Z.C.Liu,G.L.Chen,Y.W.Kim.Deformation mechanisms in a high-Nb containing γ-TiAl alloy at 900℃.Mater.Sci & Eng A.1999,271:416-423
    [67]J.D.H.Paul,F.Appel,R.Wagner.The compression behaviour of niobium alloyed γ-titanium alumindies.Acta Mater.1998,46(4):1075-1085
    [68]J.Beddoes,L.Zhao,W.Wallace.High temperature compression behaviour of near γ-titanium aluminides containing additions of chromium or tungsten.Mater Sci & Eng A.1994,184:11
    [69]P.J.Maziasz,R.V.Ramanujan,et al.Effects of B and W alloying additions on the formation and stability of lamellar structures in two-phase γ-TiAl.Intermetallics.1997,5:83
    [70]H.Y.Kim,W.H.Sohn,S.H.Hong.High temperature deformation of Ti-(46-48) Al-2W intermetallic compounds.Mater Sci & Eng A,1998,251:216.
    [71]S.C.Huang,E.L.Hall.Structures and properties of gamma-titanium-aluminum alloys containing interstitial elements.Materials Research Society Symposium Proceedings.1991,213:827-832
    [72]D.E.Larson.Microstructure/Property Relationships in Titanium Aluminides and Alloys.Edited by Y.W.Kim,R.R.Boyer.TMS.Warrendale,PA,1993:345.
    [73]T.T.Cheng.The mechanism of grain refinement in TiAl alloys by boron addition-an alternat- ertive hypothesis.Intermetallics.2000,8(1):29-37
    [74]M.Krishnan,B.Natarajan,et al.Structural Intermetallics.TMS.1997:235-245
    [75]D.Srivastava,D.Hu,et al.The influence of thermal processing route on the microstructure of some TiAl-based alloys.Intermetallics.1999,7(10):1107-1112
    [76]Z.W.Huang,W.Voice,P.Bowen.Presented in 5th Int.Conf.on Structural and Functional Intermetallics.Vancouver,TMS,2000
    [77]Z.W.Huang,W.Voice,P.Bowen.Ti Alloys at Elevated Temperature:Structural Development and Service Behaviour,edited by M.Winston,IOM,Birmingham.UK.2000:277-289
    [78]Z.W.Huang,W.Voice,P.Bowen.Mater Sci & Eng A.2002,329/331:435-445
    [79]丛韬.长期大气热暴露环境中含钨铌细晶TiAl合金的组织和性能变化.西南交通大学,硕士学位论文.2007:24-42
    [80]F.S.Sun,C.X.Cao,S.E.Kim,Y.T.Lee,M.G.Yan.Metall Mater Trans.2001,32A:1573-1589
    [81]S.Nishikiori,S.Takahashi,S.Satou,T.Tanaka,T.Matsuo.Mater Sci & Eng A.2002,329/331:802-809
    [82]J.G.Wang,T.G.Nieh.Creep of a beta phase-containing TiAl alloy.Intermetallics.2000,8:737-748
    [83]W.R.Chen,J.Beddoes,L.Zhao.Effect of aging on the tensile and creep behavior of a fully lamellar near γ-TiAl alloy.Materials Science and Engineering A.2002,323:306-317
    [84]Y.Q.Yan,L.Zhou,W.S.Wang,Y.N.Zhang.J.Alloys and Compounds.2003,361:241-246
    [85]T.T.Cheng.Effects of thermal exposure on the microstructure and properties of a γ-TiAl based alloy containing 44Al-4Nb-4Zr-0.2Si-0.3B.Intermetallics.1999,7(9):995-999
    [86]W.J.Zhang,S.C.Deevi.The controlling factors in primary creep of TiAl-base alloys.Intermetallics.2003,11(2):177-185
    [87]Y.W.Kim et al eds.Gamma Titanium Aluminides.Las Vegas:TMS,1995:689
    [88]S.Bystrzanowski,A.Bartels,et al.Intermetallics.2005,13:515
    [89]M.Oehring,F.Appel,P.J.Ennis,R.Wagner.Intermetallics.1999,7:335
    [90]Z.W.Huang,W.Voice,P.BOWEN.The effects of long-term air exposure on the stability of lamellar TiAl alloys.Intermetallics.2000,8:417-426.
    [91]T.T.Cheng,M.H.Loretto.The decomposition of the beta phase in Ti-44Al-8Nb and Ti-44Al-4Nb-4Zr-0.2Si alloys.Acta Mater.1998,46:4801-4819

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700