用户名: 密码: 验证码:
钛表面热浸铝工艺及反应产物组织与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛铝化合物具有耐高温和耐腐蚀的优良性能,钛及钛合金则具有非常优良的强韧性能,为了发挥钛铝化合物和钛及合金各自的优良性能,在钛及合金表面上复合钛铝化合物层,因此可以大大提高材料整体的综合性能。
     本文选用纯钛为基体材料,以纯铝和Al-7%Si为热浸材料,在钛材料表面进行热浸铝。然后,在氩气保护条件下700℃加热退火2小时。分别研究了热处理前后的相组成、抗拉性能、抗高温氧化性能和微观组织。
     浸纯铝5至50分钟及更长时间,反应生成了Al3Ti,且随浸铝时间的增加,反应生成的Al3Ti的量逐渐增加。浸铝后退火使Al3Ti的量都有所增加。浸Al-7%Si反应除生成Al3Ti外,还生成了TiSi化合物和Ti9Al23。
     浸铝或Al-7%Si后钛的塑性远低于纯钛。浸Al-7%Si退火后抗拉强度有显著提高,塑性也有所改善。元素硅的添加明显降低了材料的塑性,而热处理在提高材料强度的同时也改善了材料的塑性。
     纯钛在550℃、600℃条件下具有较好的抗氧化性能,650℃时抗氧化能力明显下降。浸纯铝和浸Al-7%Si,都提高了试样的抗高温氧化性能,特别是氧化温度在650℃时最为明显,且浸Al-7%Si比浸纯铝效果更佳。
     组织观察表明,随着浸铝时间的增加,反应生成化合物层的厚度逐渐增加,加硅得到化合物层的厚度比浸纯铝也有了显著的增加。热处理对促使反应物生成和形貌有明显的作用,能使反应物分布均匀,形成连续层,并且使反应层厚度增加。
TiAl compounds have high oxidation resistance, excellent resistance against corrosion, while Ti and Ti alloys have high reinforced-toughening properties, for combining of their good properties, make the titanium and Ti alloys substrate was covered by a layer of TiAl compounds, so comprehensive properties of materials can be improved greatly.
     In this dissertation, pure titanium was used as the substrate, pure aluminum and Al-7%Si were used as the molten aluminum bath respectively for hot-dip. The samples obtained were annealed for two hours under argon atmosphere at 700℃. The samples before and after annealing were studied systematically, including phase analysis, microstructure, tensile properties, and high temperature oxidation resistance measurement.
     For hot-dip with aluminum from 5 to 50 minutes and more, there is the Al3Ti, and the content of Al3Ti increases with the increase of the dipping time. When the samples were annealed, Al3Ti becomes much more. For the titanium plate hot-dipped with Al-7%Si, TiSi and Ti9Al23 formed, besides Al3Ti.
     The plastic deformation of the samples hot-dipped with aluminum and Al-7%Si is much lower than that of the pure titanium. After annealing, the tensile strength of sample hot-dipped with Al-7%Si, improved remarkably, and the plastic deformation increase at the same time. The tensile tests indicate that Si reduces plasticity, while heat-treatment can improve the strength and plasticity.
     The oxidation resistance of the pure titanium is good at 550℃and 600℃, but decrease greatly at 650℃. The sample hot-dipped with Al and Al-7%Si can improve high-temperature oxidation resistance remarkably, especially at 650℃, while Al-7%Si does better than Al.
     The thickness of compounds increases with the increase of the dipping time. The thickness of compounds from hot-dip with Al-7%Si is thicker than aluminum. The annealing can promote the formation of reaction products and increase the thickness of reaction layer, make the reaction products uniform and more continuum.
引文
1 R. R. Boyer. Titanium alloys. ASM: International. 1994, (4):1011~1012
    2屈翠芬.钛铝系金属间化合物的研究与发展.稀有金属材料与工程. 1991, 20(6): 20~21
    3胡建华. Ni-Al、Ti-Al系金属间化合物合成与成形的电脉冲效应研究.武汉理工大学博士论文. 2003: 32~33
    4秦高梧,郝士明. Ti-Al系金属间化合物.稀有金属材料与工程. 1995, 24(2): 1~2
    5曹春晓,马济民,颜鸣皋. Ti3Al基合金的进展.材料工程. 1991, (2): 32~35
    6 Y. W. Kim, D. M. Dimidak. J. Metals. 1991, (43): 40~47
    7 S. C. Huang, E. L. Hall. Metall. Trans. 1991, (22): 261~262
    8曹春晓,马济民,颜鸣皋. Ti3Al基合金的进展.材料工程. 1991, (2): 32~33
    9 E. A. Loria. Quo vadis gamme titanium aluminide. Intermetallics. 2001, (9): 997~1001
    10 Y. W. Kim. Wrought TiAl alloy design. Trans. Nonferrous Met. Soc. China. 1999, 9(1): 298~308
    11 Y. W. Kim. Gamma titanium aluminide: Their status and future. JOM. 1995, 47(7):39~41
    12彭超群,黄伯云,贺跃辉.热处理对TiAl基合金相变和显微组织的影响.材料科学与工艺. 2002, 10(3): 331~337
    13钱九红.航空航天用新型钛合金的研究发展及应用.稀有金属. 2005, 24(3): 221~223
    14 Executive committeeon 43rd corrosion conference.材料と环境. 1997, 47(3): 146~147
    15 Wang Deqing, Shi Ziyuan, Teng Yingli. Microstructure and oxidation of hot-dip aluminized titanium at high temperature. Applied Surface Science. 2005, 250(31): 238~246
    16 H. A. Lipsitt, C. C. Koch, C. Liu, Stoloff (Eds). High-temperature ordered intermetallic alloys. Materials Research Society. 1985, (39): 351~352
    17 S. Naka, M. Thomas, T. Khan. Potential and prospects of some intermetallic compounds for structural applications. Mater Sci Technol. 1992, (8): 291~292
    18 F. H. Froes, C. Suryanarayana, D. Eliezer. Synthesis, Properties and application of titanium aluminides. J. Mater. Sci.. 1992, (27): 5113~5117
    19 U. Rajendra Vaidya, Y. W. Sin, K. N. Subramanian, etal. Processing and fabrication of advanced materialsⅢ. Edited by V. A. Ravi, T. S. Srivatsan and. J. J. Mooer. The Minerals & Materials Society. 1994, (5): 15~17
    20贾均.钛铝合金及其熔炼技术.特种铸造及有色合金. 1998, (4): 6~11
    21闫蕴琪,张振琪. TiAl基合金的制备.钛工业进展. 2000, (1): 33~37
    22 Y. W. Kim. Intermetallic alloys based on gamma titanium aluminide. JOM. 1989, 41(7): 24~30
    23 Y. W. Kim. M Dennis. Dimiduk. Progress in the understanding of gamma titanium aluminide. JOM. 1991, 43(8): 40~47
    24 Y. W. Kim. Gamma titanium aluminide: Their statusand future. JOM. 1995, 47(7): 39~41
    25唐建成,黄伯云,贺跃辉等.两步热处理制备高延性TiAl基合金机理.中国有色金属学报. 2002, 12(2): 221~225
    26闫蕴琪,王文生,张振琪等.高Nb-TiAl基合金的开坯锻造.热处理工艺. 2000, (1): 32~34
    27苏彦庆,刘畅,毕维升等. TiAl基合金杆形件铸造缺陷与铸造方法的关系.特种铸造及有色合金. 2002, (5): 11~14
    28王尔德,李小强,胡连喜.粉末冶金法制备TiAl基合金,粉末冶金技术. 2002, 10(5): 288~293
    29李小强,胡连喜,王尔德.机械球磨与反应烧结制备TiAl基合金.粉末冶金技术. 2001, 19(3): 131~135
    30 G. A. Salishchev, R. M. Imayev, O. N. Senkovetal. Formation of a submicrocrystalline structure in TiAl and Ti3Al intermetallics by hot working. Materials Science & Engineering. A. 2000, (286): 236~243
    31 T. Klassen, M. Oehring, R. Bormann. Microscopic mechanisms of metastable phase formation during ball millin go fintermetallic TiAl phase. Acta.mater.. 1997, 45(9): 3935~3948
    32熊翔,黄怕云.高温反映合成TiAl金属键化合物的研究.粉末冶金技术. 1994, 12(2): 83~86
    33陶春虎,王守凯,张少卿.采用XD工艺合成TiAl合金及TiC/TiAl复合材料的研究.航空学报. 1994, 15(12): 1445~1449
    34吴引江,兰涛.漫渗燃烧合成TiAl金属间化合物的物化过程探讨.稀有金属材料与工程. 1996, 25(2): 17~20
    35 T. Klassen, M. Oehring, R. Bormann. Microscopic mechanisms of metastable phase formation during ball millin gofinter metallic TiAl phase. Acta. Mater.. 1997, 45(9): 3935~3948
    36魏尊杰,王宏伟,张二林等.原位自生Ti3Al金属间化合物基复合材料的微观结构.材料科学与工艺. 2001, 9(1): 100~103
    37刘凯文,张济山,王金国等.机械合金化制备Ti-Al-Si纳米金属间化合物.北京科技大学学报. 1999, 19(1): 89~94
    38 C. D. Turner, W. O. Power, etal. Microstructure, deformation and fracture characteristics of an Al67Ni8Ti25 intermetallic alloy. Acta metall. Mater.1989, 37(10):2635~2640
    39赵景泰,宋明虎.极具潜力的金属间化合物功能材料.厦门科技. 1999, (2): 8~9
    40阎蕴琪,王文生. TiAl化合物─一种具有竞争力的高温结构材料.钛工业进展. 2000, (5): 9~12
    41张小明. TiAl基合金在汽车发动机上的应用.稀有金属快报. 2002, (10): 18~20
    42 M. Yamaguchi, H. Inui, K. Ito. High-temperature structural intermetallics. Acta. Mater. . 2000, (48): 307~322
    43林凡,王家芳,耿瑞山. TiAl合金增压器涡轮的铸造.热加工工艺. 2001, (5): 33~34
    44韩明臣,朱昱. TiAl合金汽车气门.汽车工艺与材料. 1999, (4):21~23
    45闫蕴琪,王文生,张振琪等. TiAl基合金汽车部件的开发.航空制造技术. 2000, (5): 37~39
    46艾桃桃,王芬. Al-Ti-TiO2-Nb2O5系的热扩散法合成及热力学计算.特种铸造及有色合金. 2006, 12(26): 823~824
    47 M. Sujata, S. Bhargava, L. S. Sang. On the formation of Al3Ti during reaction between solid Ti and liquid Al. J. Mater Sci Lett. 1996, (16): 1175~1176
    48 E. K. Y Fu, R. D. Rawlinqs, H. B. Mcshane. Reaction synthesis of titanium aluminides. J. Mater. Sci.. 2001, (36): 5537~5539
    49李志强,韩杰才,赫晓东等.燃烧合成TiAl金属间化合物的反应机制.稀有金属材料与工程. 2002, 31(1): 4~6
    50 G. X. Wang. TiAl-based alloys prepared by elemental powder metallurgy. PMI. 1992, 24(4): 219~221
    51关山,张琦,陶冶等. Ti-Al系金属间化合物的抗高温氧化技术.腐蚀与防护. 2000, 21(6): 263~265
    52周伟,赵宇光.在钛合金表面制备Al-Si涂层的方法及其高温抗氧化性.北京科技大学学报. 2007, 29(2): 159~161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700