用户名: 密码: 验证码:
磁场对铝硅合金凝固组织和变质处理的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铸造Al-Si合金应用广泛,对Al-Si合金进行变质处理是提高Al-Si合金性能的重要措施。然而亚共晶型和共晶型Al-Si合金的Na变质处理存在有效时间短、重熔失效和过变质的问题,过共晶型Al-Si合金的P变质(细化)处理中则容易出现初晶Si偏聚的问题。
     本文研究了强磁场对Al-Si合金凝固组织和变质处理的影响,较系统地考察了稳恒强磁场(以下简称强磁场)影响亚共晶和共晶Al-Si合金Na盐变质处理的现象和机制;进行了强磁场对过共晶Al-Si合金凝固组织和P盐变质细化处理的影响的实验研究,并探讨了磁场方向对实验结果的影响:研究了强制流动对过共晶Al-Si合金P盐变质细化处理的影响,得到以下主要结论:
     1)在亚共晶Al—6w_t%Si合金的凝固过程中,单独施加强磁场使凝固组织中的共晶Si粗大。进行Na盐变质处理后冷却至固态,在不施加强磁场的条件下,重熔并在740℃保温20分钟,则凝固组织重新变为未变质组织,即发生了变质失效的现象;在施加强磁场的条件下,重熔并在740℃保温20分钟,没有发生重熔失效的现象。即施加强磁场可以解决Na变质的重熔失效问题。
     2)对亚共晶Al—6w_t%Si合金进行Na盐变质处理后,分别在不施加与施加强磁场的条件下,在液相区740℃、固液两相区590℃和固相区470℃3个温度,使合金快速冷却,观察到了共晶Si的不同形貌。B=0T时,在740℃快速冷却的试样的凝固组织中,共晶Si呈短小的层片状。在590℃快速冷却的试样的凝固组织中,共晶Si呈较长的层片状。在470℃快速冷却的试样的凝固组织中,共晶Si呈形态尖锐的纤维状;B=10T时,在740℃快速冷却的试样的凝固组织中共晶Si细小并呈弥散分布。在590℃快速冷却的试样的凝固组织中,共晶Si呈复杂的丛簇状。在470℃快速冷却的试样的凝固组织中,共晶Si呈形态圆钝分布均匀的颗粒状。即施加强磁场可以使变质效果更好。对上述试样进行X线衍射表明,B=10T时,在470℃快速冷却的试样中出现Si(200)晶面的峰值。而B=0T时,没有Si(200)晶面的峰值,表明强磁场促使Si以孪晶形式生长。X线衍射还表明,B=10T时,在740℃、590℃和470℃快速冷却的试样中均出现Al(200)晶面垂直于磁场方向取向的现象。
     3)强磁场使共晶Al-12.6w_t%Si合金凝固组织中的共晶组织发达,共晶Si增多,且间距变小。对合金进行Na盐变质处理后保温,如果在保温过程中施加强磁场,则得到的试样的变质效果明显优于不施加强磁场的试样。延长保温时间至40分钟,未施加强磁场的试样出现严重的变质衰退现象,施加强磁场的试样变质衰退现象相对比较轻。即强磁场具有延长变质有效时间的作用。电子探针的检测结果表明,不施加强磁场的条件下,Na的分布不均匀,并且在共晶硅上发生Na的聚集现象。施加强磁场的条件下,Na的分布均匀,避免了出现过变质现象。
     4)在过共晶Al-18w_t%Si合金的凝固过程中,施加强磁场使初晶Si由粗大的板片状变为块状,且由集中在试样周边变为均匀分布在试样的整个横截面上。但是强磁场也使得过共晶Al-18w_t%Si合金的凝固组织中的共晶Si变粗大。进行P盐变质处理后,不施加强磁场的条件下,块状初晶Si仍然偏聚在试样周边,试样中心处为共晶组织;而施加强磁场的条件下,块状初晶Si均匀分布在试样的整个横截面上,而且共晶Si也得到细化。
     5)将磁场方向由平行于圆柱试样的轴向改变为垂直于圆柱试样的轴向,可以使过共晶Al-18w_t%Si合金的凝固组织和P盐变质处理后的凝固组织更细化。
     6)对过共晶Al-18w_t%Si合金进行P盐变质处理后施加旋转交变磁场,初晶Si呈粗大的板片状且偏聚于试样边缘。如果只在P盐变质处理后的保温过程中施加旋转交变磁场,而在冷却过程中停止施加旋转交变磁场,则初晶Si呈块状,得到明显细化。即P盐变质处理后的凝固过程中,强制流动对凝固组织不利,而抑制流动对凝固组织有利。
     本论文工作为提高Al-Si合金变质处理的效果提供了新的手段,为形成一种单纯利用静磁场的全新的绿色环保的过共晶Al-Si合金变质细化处理新方法提供了理论基础。
Al-Si alloys are used widedly, while modification of them is the most important methodto improve their mechanical properties. However, there are some problems in the Na-Saltmodification of hypoeutectic Al-Si alloy and eutectic Al-Si alloy, such as the short effectivetime, the loss of efficacy after re-melt and over modification. For P-Salt modifiedhypereutectic Al-Si alloy, the primary Si tends to concentrate at the edge of the sample.
     This dissertation has studied the effects of high magnetic fields on the solidificationstructure and modification of Al-Si alloys. The phenomena and mechanism of the impacts ofstable high magnetic field(high magnetic field hereafter)on the Na-modified hypoeutectic Al-Sialloy and eutectic Al-Si alloy are studied. Experimental studies on the impacts of high magneticfiled on the structure of the hypereutectic Al-Si alloy and on P-Salt modification are implemented.Moreover, impacts of compulsory floating on P-Salt modification of hypereutectic Al-Si alloy arealso studied. The following conclusions can be drawn from the studies.
     1) For Al-6w_t%Si hypoeutectic alloy, eutectic Si in solidification structure became thicker underthe condition with high magnetic field. If the Na-Salt modified sample was re-melted and keptat 740℃for 20 minutes under the condition without high magnetic field, its solidificationstructure returned to its origin, i.e. the loss of efficacy after re-melt, while under the conditionwith high magnetic field the effect of modification was remained. It can be said that highmagnetic field could solve the problem of the loss of efficacy after re-melt.
     2) After Na-Salt modification of Al-6w_t%Si, quickly cooling the samples from 740℃(liquidphase), 590℃(solid-liquid phase) and 470℃(solid phase) under the conditions with andwithout magnetic filed respectively, then the different configurations of eutectic Si couldbe observed. When B=0T, the eutectic Si in solidified structure of the sample quicklycooled from 740℃is short-layer-like. The eutectic Si in solidified structure of the samplequickly cooled from 590℃is long-layer-like. The eutectic Si in solidified structure of thesample quickly cooled from 470℃is sharped-acicular-like. When B=10T, the eutectic Siin solidified structure of the sample quickly cooled from 740℃was thin and distributedevenly. The eutectic Si in solidified structure of the sample quickly cooled from 590℃iscluster-like. The eutectic Si in the solidified structure of the sample quickly cooled from 470℃was ball-particle-like and distributed evenly. It could be said that magnetic filedcould improve the quality of the modification. After diffracting the sample with X-Ray, itwas found that when B=10T, the peak of Si(200) crystal lattice face appared in the samplequickly cooled from 470℃. While B=0T, the peak of Si(200) crystal lattice face did notappear. It means that high magnetic field impelled the growth of the Si in the style of thetwins. The results of the X-Ray diffraction also shows that the Al(200) crystal lattice facetends to arrange in the direction perpendicular to the magnetic strength.
     3) High magnetic filed enforced the eutectic Si in solidification structure of the Al-12.6w_t%Si eutectic alloy, with high magnetic filed the eutectic Si increased and the spacebetween eutectic Si became smaller. If the sample modified by Na-Salt was kept warmunder the condition with high magnetic filed, the modification is obviously better than thatwithout high magnetic field. When the sample was kept warm for 40 minutes, the effectsof modification without high magnetic filed declined seriously, while the decline of themodification with high magnetic field was less. It means that high magnetic field couldpostpone the effective time of the modification. The observed results from the electron-probe shown that without high magnetic filed Na got together and concentrated on theeutectic Si, while with high magnetic filed Na distributed evenly and the overmodification was avoid.
     4) During the solidification of hypereutectic Al-18w_t%Si alloy under the condition with highmagnetic filed, it is found that the shape of primary Si changed to plat-like from sheet-like,and concentrated at the edge of the sample and distribute at the whole cross section of thesample evenly. However, this time the eutectic Si was appreciably thicker than thatwithout high magnetic filed. If the sample was modified by P-Salt under the conditionwithout high magnetic field, the plate-like primary Si still concentrated at the edge of thesample, and the center is concentrated with the eutectic Si. While with the magnetic fieldthe plate-like primary Si distributed evenly at the whole cross section of the sample andthe eutectic Si became fine.
     5) Changing the direction of magnetic filed from the direction paralleled to the axis of thesample to the vertical direction, it found that the solidified structure of the hypereutecticAl-18w_t%Si alloy and the P-Salt modified sample tended to be finer.
     6) Posing rotary magnetic filed on the P-Salt modified hypereutectic Al-18w_t%Si alloy, theprimary Si would be thick and block-like and concentrated at the edge of the sample. If therotary magnetic filed was posed only during the warming after P-Salt modification, thenprimary Si would be fine and plate-like. It means that compulsory floating is not good to the solidified structure during the solidification after the P-Salt modification, and restrainfloating is good to solidified structure.
     The studies provided a new methodology to improve the modification effect of Al-Sialloy. It provided a theoretical base for the new method that modifies the hypereutectic Al-Sialloy with a brand new and green method base on high magnetic filed.
引文
[1] 李文彬.磁力应用工程.北京:兵器工业出版社,1991.
    [2] 李廷举,温斌,张志峰等.电磁场作用下材料加工新技术.大连理工大学学报,2000,40(S1):62-65.
    [3] 费超.日本开展强磁场的新应用的研究概况.国外科技动态,1996,(3):25-28.
    [4] 曹效文.强磁场技术进展.物理,1996,25(11):552-557.
    [5] 李国栋.当代磁学.合肥:中国科技大学出版社,1999.
    [6] 田民波.磁性材料.北京:清华大学出版社,1990.
    [7] 曹效文.强磁场技术进展.物理,1996,25(11):552-557.
    [8] Shigco Asai. The Fourth Pacific Rim International Conference on Advanced Materials and Processing. PRICM4,2001,273-278.
    [9] Asai S. Electromagnctic Processing of Materials. Tokyo:UCHID A ROKAKUHO PUBLISHING CO.,LTD.2000.
    [10] Shimisu K, Kakeshita T. Effect of Magnetic Field on Martensitic Transformations in Ferrous Alloys and Steels. ISIS International,1989,29(2):97-102.
    [11] Kakeshita T. Magnetic Field-induced Martensitic Transformations in a Few Ferrous Alloys. Journal of Magnctism and Magnetic Materials, 1990,10:34-36.
    [12] Kakeshita T. Effect of Magnetic Field on Successive γ→ε′→α′ Martensitic Transformation in an Fe-Mn-C Alloy. Materials Transactions, JIM, 1992,33(5):461-465.
    [13] Kakeshita T. Effect of Magnetic Fields on Athermal and Isothermal Martensitic Transactions in Fe-Ni-Mn Alloys. Materials Transactions, JIM, 1993,34(5):415-422.
    [14] Kakeshita T. A New Model Explainable for Both the Athermal and Isothermal Natures of Martensitic Transformations in Fe-Ni-Mn Alloys. Materials Transactions, JIM, 1993,34(5):423-428.
    [15] Sun E X.Pulsed Magnetic Field-Induced Martensitic Transformation in an Fe-21Ni-4Mn Alloy. ACTA Metall S N, China, 1990,26(4):A242.
    [16] Tanaka Y, Shimizu K. A Variation of Martensite Morphology with Manganese and Carbon Compositions in Fe-Mn-C Alloys. Materials Transactions, JIM, 1980,21(1):34-41
    [17] Ghosh A K, Roy M N. Phase Transformation of Steel in Magnetic Field. Transactions of the Indian Institute of Metals,1987,40(8):329-333.
    [18] Kakeshita T, Fukuda T. Martensitic transformations in some ferrous and non-ferrous alloys under high magnetic field. AsaiS. The 3rd Int Symp on EPM. Nagoya, Japan: ISIJ, 2000,584-589.
    [19] Choi J K, Ohtsuka H Y, Xu et al. Effects of a strong magnetic field on the phase stability of plain carbon steels. Scripta Matedalia, 2000, 43(3):221-226.
    [20] 大冢秀幸.磁场对相变形核的影响.金属材料研究,1999,25:63-70.
    [21] Kakeshita T, Kuroiwa K, Shimizu K. Effects of magnetic fieldson athermal and isothermal martensitis actions. Materials transactions,1993,34(5): 415-422.
    [22] Fonika E A, Kaletin A Y, Olesov V N et al. Influence of permanent magnetic field on pearlitic transformation and reversible temperbrittleness in steels. Fiz Metal Metalloved,1995,79(4):110~118.
    [23] 杨钢,冯光宏.磁场热处理铁素体钢或珠光体钢时的传热现象.钢铁研究学报,2000,12(3):31-34.
    [24] Li J, Yang C, Dong H. Computer Simulations of Phase Transformation in Steels. Materials and Design,2001,22:39-42.
    [25] 李静波.MOCVD法影响Ⅲ-W族半导体生长的热力学分析:(硕士学位论文).北京:北京科技大学,1998.
    [26] Feng GuangHong, Zhou Shaoxiong, Yang Gang et al. Effect of stable Magnetic Field on Grain Refinement of Low Carbon Mn-Nb Steel. Journal of Iron and Steel Research, 2000, 12(4):27-30.
    [27] 冯光宏,周少雄.稳恒磁场对低碳锰铌钢晶粒细化的影响.钢铁研究学报,2000,12(4):27-30.
    [28] 王晖,任忠鸣,徐匡迪等.纯物质凝固的磁场热力学分析.中国有色金属学报,2004,14(6):456-460.
    [29] Martikainen H O, Lindroos V K. Observations on the Effect of Magnetic Field on the Recrystallization in Ferrite. Scadinavian Journal of Metallurgy, 1981, 10:3-11.
    [30] Ya Xu, Ohtsuka H, Anak, S et al. Effects of High Magnetic Field on Recrystallization Texture in Fe-3%Si Steel. Transactions of the Materials Research society of Japan, 2000,25:501-505.
    [31] Masahashi N, Matsuo M, Watanabe K. Development of preferred orientation in annealing of Fe-3.25%Si in a high magnetic field.Journal of Materials Research, 1998, 13:457-461.
    [32] 吴存有.强磁场作用力对材料组织和性能的影响:硕士学位论文.大连:大连理工大学,2003.
    [33] 佐健介,森川拓,浅井滋生.强磁場晶出相配向结晶方位制御.日本金属学会誌,1997,61(12):1283-1287.
    [34] Kensuke S, Norihisa W, Asai S. Elimination of inclusions in a molten metal by using a high magnetic field. Second International Conference on Processing Materials for Properties, San Francisco, TMS, 2000, 565-571.
    [35] Tahashi M, Sassa K, Asai S. The effect of a high magnetic field on surface aspect of vapordeposited films of bismuth and zinc. Materials Transactions, 2002, 43(11):2813-2819.
    [36] 任忠鸣,苏辉,金俊泽.合金在磁场中凝固时生成的特殊表面.金属学报,1990,26:374-376.
    [37] 冉新天,任忠鸣,邓康等.Al-18%Si合金在梯度强磁场中凝固时初生硅的行为.中国有色金属学报,2005,15(1):72-78.
    [38] 脇憲尚,佐健介,浅井滋生.强磁場利用溶融金属中介在物磁気分離.铁钢,2000,86(6):363-369.
    [39] Li Tian Xiao, Xu Zhen Ming, Sun Bao De et al. Remove Inclusion from Aluminum Melt in Electromagnetic Field. ACTA Metallurgical Sinica,2000,13(5):1068-1074.
    [40] Joon P P, Kensuke S,Shigeo A. Elimination of Iron in Molten Al-Si Alloys by Electromagnetic Force. Metals,1995,59:312-318.
    [41] Kim J H, Yoon E P. Elirnination of Fe Element in A380 Aluminum Alloys Scrap by Electromagnetic Force. Journal of Materials Science Letters,2000, 19(3):253-255.
    [42] Xu Zhen Ming, Li Tian Xiao, Zhou Yao He. Electromagnetic Filtration of Primary IronRich Phases from Al-Si Alloys Melt. Journal of Materials Science and Technology, 2001, 17(3): 306-310.
    [43] L i Tian xiao, Xu Zhen ming, Sun Bao de et al. Electromagnetic Separation of Primary iron- rich Phases from Aluminum2silicon Melt. The Chinese Journal of Nonferrous Metals, 2003, 13(1):1212-1215.
    [44] Xu Zhen Ming, L i Tian Xiao, Zhou Yao He. An In-situ Surface Composite Produced by Electromagnetic Force. Materials Research Bulletin,2000,35(15):2331-2336.
    [45] 李强,莫春立,李殿中等.凝固过程中自然对流作用下组织演化模拟.特种铸造及有色合金,2003,(4):18-21.
    [46] 徐才录,Tensi H M,梁吉等.强制对流对AlSi7.0合金定向凝固界面溶质分布的影响.清华大学学报,1998,38(11):42-44.
    [47] 王强,王恩刚,赫冀成.静磁场在材料生产过程中的应用研究评述.材料科学与工程学报,2003,21(4):590-595.
    [48] Takeuchi E. Proceeding of a Symposium on Magnetohydrodynamics in Process Metallurgy.TMS., USA, 1992,189-196.
    [49] Takatani K, Nakai K, KasaiN. Analysis of heat transfer and fluid flow in the continuous casting mold with electromagnetic brake. ISIJ International, 1989,29(12) :1063-1068.
    [50] Tozawa H, Kitaoka H, Sorimach i K et al. Flow Control of Molten Steel in Continuous Casting Mold. Proceedings of the Sixth International Iron and steel congress, Nagoya, 1990, ISIJ, 1990: 438-445.
    [51] 毛斌,邢文彬.结晶器电磁制动的实验研究.第四届连铸铸钢学术会议论文选,桂林,1990:189-194.
    [52] Takeuchi E, Tanaka H, Kajioka H.Proceeding of the 1ST International Symposium on Electromagnetic Processing of Materials, ISIJ, Nagoya, 1994:364.
    [53] MULLER A, WIEHELM M. Periodische temperatur schwankungen in fluessigem insb alsursache schichtweisen einbaus von te in kristallisierendes insb. Z Naturf A,1964,19: 254-263.
    [54] HOF B. A study of magnetohydrodynamic convection in liquid gallium: Thesis PHD of Univ Manchester,2001.
    [55] 杨森,梁文心.磁场对偏晶合金定向凝固组织的影响.铸造技术,1999,(5):44-46.
    [56] 时海芳,顾春雷等.直流磁场对Al-Cu合金定向凝固组织的影响.有色金属,2003,55(1):13-17.
    [57] 王晖,任忠鸣.磁场对Bi-Mn合金两相区中MnBi相凝固组织的影响.金属学报,2002,38(1):41-46.
    [58] Hideyuki Y, Itsuo O, Yuki Net al. Levitation of metallic melt by using the simultaneous imposition of the alternating and the high magnetic fields. Journal of Crystal Growth, 2004, 260(3): 475-485.
    [59] 安田秀幸.强磁场对Cu-Pb偏晶合金凝固组织的影响.CAMP-ISU,2000,13:148-154.
    [60] 王强,王春江,王恩刚等.强磁场对不同磁化率非磁性金属凝固组织的影响.金属学报,2005,41(2):128-132.
    [61] Wang Q, Wang E G, He J C et al. Effects of Magnetic Fields on Solidified Structures of Metals with Different Susceptibilities.Proceeding of the 4th International Symposium on Electromagnetic Processing of Materials, Lyon, France, 2003:464-466.
    [62] 王强,王春江,庞雪君等.利用强磁场控制过共晶铝硅合金的凝固组织.材料研究学报,2004,18(6):568-576.
    [63] 晋芳伟,任忠鸣,王晖等.强磁场对Al-18Si合金凝固组织的影响及其机理研究.材料工程,2005,4:30-32.
    [64] 王艳,边秀房,徐昌业等.直流磁场作用下Al-18Si合金的凝固行为.金属学报,2000,36(2):159-161.
    [65] 田静.恒定磁场对Al-Si熔体中Si原子的偏聚作用.青岛大学学报,2000,13(3):68-71.
    [66] 宋大有.半导体硅材料进展.稀有金属,1995,19(1):62-68.
    [67] 王广厚.团簇物理的新进展.物理学进展,1994,14(2):121-136.
    [68] 李基永,刘让苏,周征谢等.液态金属铝及其凝固过程的微观结构转变特性.中国有色学报,1997,7(3):81-84.
    [69] 潘学民,边秀房,秦敬玉等.Cu-12%Al合金熔体内中程有序原子团簇.物理化学学报,2001,17(8):708-712.
    [70] 班春燕,崔建忠,巴启先等.电磁场对7075铝合金液固相线温度的影响.特种铸造及有色合金,2004,(1):26-27.
    [71] 班春燕,巴启先,崔建忠等.直流磁场作用下Al-13.3%Cu合金的熔点变化.热加工工艺,2004,2:7-8.
    [72] 许光明,包卫平,郑佳伟等.静磁场作用下镁合金AZ61凝固过程研究.稀有金属,2004,28(1):89-92.
    [73] 班春燕,巴启先,崔建忠等.磁场作用下铝合金的微观结构.东北大学学报(自然科学版),2002,23(8):779-782.
    [74] 许光明,包卫平,崔建忠等.不同磁场作用下ZK60镁合金的凝固组织.东北大学学报(自然科学版),2004,25(1):48-50.
    [75] 牟世辉,袁艳,姚淑霞.稳恒磁场对电镀铬的影响.沈阳工业学院学报,2004,23(2):83-85.
    [76] 杨院生,刘清民,焦育宁等.液态金属电磁离心凝固的力场分析.金属学报,1994,30(5):2098-212.
    [77] 葛云龙,杨院生.电磁离心铸造工艺的研究.金属学报,1993,29(3):134-135.
    [78] 隋贤栋,罗永萍,骆灼旋.离心铸造Al基复合材料中SiC粒子的偏析行为.铸造,1997,(9):5-7.
    [79] 于化顺,闵光辉.复合材料凝固过程中颗粒推移距离及其影响因素.金属学报,1999,35(37):781-784.
    [80] 时海芳,傅华萌,张伟强等.磁场对离心铸造SiCp/Al合金基复合材料中颗粒分布的影响.哈尔滨理工大学学报,2001,6(6):49-51.
    [81] 贺幼良,杨院生,胡状麒.电磁离心凝固过程熔体流动和传热的有限元数值模拟.铸造,2000,(8):473-477.
    [82] 熊艳才,刘伯操.铸造铝合金现状及其展望.特种铸造及有色合金,1998,(4):1-5.
    [83] 万任芳,韩姝芹,张立波.汽车铸件市场分析.铸造,2034,53(5):335-340.
    [84] 罗启全.铝合金熔炼与铸造.广州:广东科技出版社,2002.
    [85] 张伟强,王小丽,裴延玲.电磁振荡对铝硅合金凝固组织的影响.铸造,2005,54(11):1148-1149.
    [86] 张兴国,何文庆,曲若家等.铝合金扁锭热顶电磁铸造技术.中国有色金属学报,2004,14(7):1084-1088.
    [87] 宋长江,许振明,刘向阳等.电磁分离技术制备过共晶Al-Si合金自生功能梯度材料.上海交通大学学报,2005,39(7):1089-1093.
    [88] 李业欣,崔建忠,秦克.电磁场频率对电磁铸造4045合金微观组织的影响.特种铸造及有色合金,2005,25(4):243-245.
    [89] 王登峰,蒋业华,卢德宏等.电磁搅拌与变质复合作用对Al-20Si合金初生硅相的影响.特种铸造及有色合金,2005,25(12):737-739.
    [90] 李高宏,李建平,夏峰等.复合变质和电磁搅拌对过共晶铝合金组织的影响.热加工工艺,2004,(6):9-10.
    [91] 上海交通大学.铸造有色合金及其熔炼.北京:国防工业出版社,1980.
    [92] Mohanty P S, Gruzleski J E. Mechanism of grain refinement in aluminum. Acta Mertall. Mater.,1995,43(5):635-640.
    [93] Kang H G. Influence of cooling rate and additions of Sr and Ti-B on solidification structures of AC4B type alloy. Proceeding of 3rd Asian Found Congress, Kyongju, Korea, 1995.
    [94] Garcia-Hinojosa J A, Gonzalez C R, Houbaert Y. Structure and properties of Al-7Si-Cu cast alloys nonmodified and modified with Sr.J.Mater.Processing Technol.,2003,25:1084-1092.
    [95] Sadeler R, Totik Y, Gavgal M et al.Improvements of fatigue behavior in 2014Al alloy by soiution heat treating and age-hardening.Mater.and Design,2004.
    [96] 彭晋民,钱翰成.铸态铸造铝硅合金的现状和发展.铸造技术,2000,6(6):66—169.
    [97] 黄良余.铝硅合金变质机理的新发展和新观点(上).特种铸造及有色合金,1995,(4):30-32.
    [98] 黄良余.铝硅合金变质机理的新发展和新观点(下).特种铸造及有色合金,1995,(5):19-22.
    [99] 周永欣,吕振林,赵西城.铸造Al—Si合金变质剂的研究现状和发展动态.铸造技术,2004,25(1):13-14.
    [100] 董光明,孙国雄,廖恒成.共晶硅的变质.铸造,2005,54(1):1-5.
    [101] Makhlouf M M, Gthy H V. The aluminum-silicon eutectic reaction: mechanisms and crystallography. Journal of Light Metals, 2001,(1):199-218.
    [102] L U S-Z, Hellawell A. The mechanism of silicon modification in aluminum-silicon alloys: impurity induced twinning. Metallurgical Transactions A,1987,18A:1721-1733.
    [103] Shamsuzzoha M, Hogan K M, Berry J T.Effects of modifying agents on crystallography and growth of silicon phase in Al-Si alloy. AFS Transactions,1993,154:999-1005.
    [104] Justi Stefan. High temperature microscope investigations on strontium modified aluminum silicon alloys. Giesserei forschung,1975,27(4):141-143.
    [105] Dowling J M, Corbett J M, Wkerr H.Growth mechanisms of modified eutectic silicon. Journal of Materials Science,1987,22:4503-4513.
    [106] Takahashi E, Tsuneo. Mechanism of Al-Si Alloys Castings Modified with Sodium, Strontium and Antimony. Journal of Japan Institute of Light Metals, 1982,32(10): 511-516.
    [107] David P. Processing Molten Aluminum-Part1: Understanding Silicon Modification. Modern Casting, 1990,1:24-27.
    [108] Crosley P B. The Modification of Aluminum-Silicon Alloys. Modern Castings 1966,(3):89-100.
    [109] Lu Shu Zu, Hellawell A. Modification of Al-Si Alloys: Microstructure, Thermal Analysis, and Mechanisms.JOM.Feb.1996:36- 40.
    [110] 廖恒成,孙瑜,孙国雄.Al-5%Ti-1%B对Sr变质Al-13.0%Si合金组织影响的研究.铸造,2000,49(5):251-256.
    [111] Heusler L, Schneider W.Recent investigations of influence of P on Na and Sr modification of Al-Si alloys.AFS Transactions,1997,97:915-921.
    [112] 姚书芳,安钢,王树朝等.CX型长效无公害铝硅合金变质剂的应用.铸造技术,1997,(6):35-38.
    [113] 孙瑜,陈晋,孙国雄.铝硅合金硅相演变及其对力学性能的影响.特种铸造及有色合金,2001,(6):1-3.
    [114] 廖恒成,孙国雄.共晶硅变质机理研究进展.铸造,2003,52(12):1127-1129.
    [115] 赵玉涛.过共晶Al-23%Si合金中硅相生长的研究.铸造技术,1996,(6):43-46.
    [116] 全燕鸣,周泽华,张发英.过共晶铝硅合金组织对切削加工性能的影响.机械工程学报,1998,34(1):1-6
    [117] Weiss J C. Primary silicon in hypereutectic aluminum silicon casting alloys. AFS Trans, 1987,32:51-62.
    [118] 张蓉,黄太文,刘林.过共晶Al-Si合金中初生硅生长特性.中国有色金属学报,2004,14(2):262-266.
    [119] Lu Shu Zu, Hellawell A. Growth mechanisms of silicon in AI-Si alloys. J Crystal Growth, 1985,73: 316-328.
    [120] Shamsuzzoha M, Hogan L M.The Crystal Morphology of Fibrous Silicon in Strontium-Modified Al-Si Eutectic. Philosophical Magazine A,1986,54(4): 459-477.
    [121] 安阁英.铸件形成理论.北京:机械工业出版社,1989.
    [122] 廖恒成.近共晶Al-Si合金组织细化与力学性能的研究.东南大学博士学位论文,2000
    [123] 李庆春.铸件形成理论基础.北京:机械工业出版社,1982.
    [124] 胡汉起.金属凝固.北京:冶金工业出版社,1985.
    [125] 孙继红,张家涛,彭著刚等.变质处理及成分对大过共晶铝硅合金耐磨性的影响.云南冶金,2004,33(6):36-37.
    [126] 张卫文,尹志民.过共晶高硅铝合金磷-稀土双重变质处理.中国有色金属学报,1995,5(1):59-62.
    [127] Tuttle M, M Mclellanl. Silicon particle characteristics in Al-Si-Mg casting. AFS Trans,1882,90:12-23.
    [128] 王渠东,丁文江,翟春泉等.AL-Si合金中初晶硅的台阶生长.上海交通大学学报,1999,33(2):142-145.
    [129] 王兆昌.铝硅合金的结晶与钠变质处理.特种铸造及有色合金,1990,4:13-29.
    [130] Sigworth G K, Guzowski M M. Grain refining of hypoeutectic AlSi alloys. AFS Trans,1985,93:907-912.
    [131] Guzowski M M,Sigworth G K, Sentner D A.The role of bole of boron in the grain refinement of aluminum of aluminum with titanium.Metall Trans,1987,18A(4):603-619.
    [132] Kearns M A, Cooper P S.Effects of solutes on grain refinement of selected wrought aluminum alloys.Mater Sci Tech,1997,13(8):650-654.
    [133] (美)L.F.蒙多尔福著.王祝堂,张振录,郑旋等译.铝合金的组织与性能,第一版,北京:冶金工业出版社,1988:316-317.
    [134] 大野篇美.金属凝固学,第四版,东京:地人耆馆出版社,1995
    [135] 张金山,许春香,韩富银.复合变质对过共晶高硅铝合金组织和性能的影响.中国有色金属学报.2002,12(S1):107-110.
    [136] 赵爱民,毛卫民,甄子胜等.冷却速度对过共晶铝硅合金凝固组织和耐磨性能的影响.中国有色金属学报.2001,11(5):827-833.
    [137] 周永欣,谢辉,吕振林.电磁搅拌对铝硅合金显微组织的影响.铸造技术,2003,24(3):199-201.
    [138] 毛为民,李树索,赵爱民等.电磁搅拌Al-24%Si合金的显微组织.中国有色金属学报,2001,11(5):819-823.
    [139] 毛为民,李树索,赵爱民等.电磁搅拌对过共晶Al-Si合金初生Si分布的影响.金属学报,2001,37(7):781-784.
    [140] 赵树国,袁晓光,于海朋.电磁搅拌对过共晶Al-Si合金组织的影响.辽宁工程技术大学学报,2005,24(6):913-915.
    [141] 曹志强,任振国,张婷等.电磁搅拌对半固态Al-24%Si合金凝固过程及组织的影响.铸造,2005,54(10):967-970.
    [142] 毛卫民,李树索,赵爱民等.电磁搅拌对过共晶Al-Si合金初生Si分布的影响.金属学报,2001,37(7):781-784.
    [143] 韩富银,赵浩峰,陈建勤.旋转磁场对ZA27(Si)合金组织的影响.铸造设备研究,2003,(4):6-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700