用户名: 密码: 验证码:
飞机钣金件冷成形快速模拟系统的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在航空制造领域中,产品设计理念不断更新,零件功能性由单一型向复合型转变,大量新材料得到应用,零件外形特征日趋复杂,产品质量要求日益提高,使得传统经验型确定方法已经无法满足发展的需要。随着有限元方法应用水平的提高,数值模拟技术已经在飞机钣金件成形中得到应用,有效地减少了产品开发周期和成本。但现有CAE在实际应用中会遇到专业性不强、数据转换损失、软件操作繁琐、计算速度低、设计与分析脱节和分析重复建模等问题。因此,需要开发一套面向飞机钣金件产品设计与工艺分析的CAD/CAE无缝集成系统。
     论文结合材料成形与模具技术国家重点实验室项目“新一代飞行器钣金件冷成形快速同步模拟技术研究与开发”,对飞机钣金零件成形缺陷评估、成形工艺分析、CAD/CAE无缝集成技术进行了深入研究,并在此基础上建立了飞机钣金件成形的有限元分析模拟算法,提出了飞机钣金件成形质量评估准则,并在CATIA V5平台上开发了飞机钣金件冷成形快速模拟系统。
     在研究初始坯料尺寸对蒙皮零件表面质量影响的基础上,论文采用有限元逆算法,提出了基于厚向应变、成形极限曲线和起皱极限曲线的蒙皮零件初始坯料优化模型。针对铝合金材料,分别从材料的轧制方向、硬化指数和摩擦系数等方面研究了初始板坯尺寸对蒙皮零件表面质量的影响。
     在分析飞机钣金件成形特点的基础上,建立了橡皮囊液压成形的简化模型,将橡皮囊腔内液压等效加载于板料上,增加了橡皮囊层对板料摩擦力的处理;建立了蒙皮拉形的分析模型,将夹钳定义为钳口夹紧区域板料约束节点,并将夹钳模具的运动轨迹进行约束处理;建立了型材拉弯成形理论模型,将夹钳钳口和转臂定义为整体运动机构,控制了由动力效应引起的板料发散节点。在此基础上,采用三维弹塑性有限元动力显式算法和BT及BWC壳单元,开发了橡皮囊液压成形模拟算法、蒙皮拉形模拟算法和型材拉弯成形模拟算法。并提出了橡皮囊成形中液压加载以及摩擦的处理方法,蒙皮拉形中夹钳和成形模具运动轨迹加载方法,型材拉弯成形中发散节点动力效应控制方法。
     在飞机钣金件成形模拟理论和算法研究基础上,采用CATIA CAA二次开发技术,开发了面向飞机钣金件成形快速模拟的CAD/CAE无缝集成系统,包括飞机钣金件初始坯料精确展开系统BES (Blank Eestimation System),橡皮囊液压成形模拟系统EHFS (Elasto Hydro Forming System)、蒙皮拉形模拟系统SSFS (Skin Stretching Forming System)和型材拉弯成形模拟系统ESFS (Extrusion Stretch Forming System)。实现了与CATIA V5平台的无缝集成,克服了CAE技术无法参与飞机钣金件全流程开发的局限性,将该系统应用于飞机产品开发、工艺方案优化、模具设计以及虚拟成形的全流程中,可以有效地降低生产成本、提高产品质量以及生产效率。
In the current aviation manufacturing field, design ideas of aircraft parts are updated, functions of aircraft parts are changed from monotony to composite, lots of new materials are applied, shape features of aircraft parts are complex, and quality requirements of aircraft parts are high, so the process plan determined by the traditional experience has been failed to meet the needs of current development. With the improvement of finite element method, numerical simulation technology has been applied in the forming of aircraft sheet metal parts, which reduces the development cycle and cost of products efficiently. However, there are still many problems appeared in the practical CAE application, including un-profession, data losses in the transformation, fussy operation, separation between design and analysis, and repeated modeling. Thus a CAD/CAE seamless integration system for design and analysis of aircraft sheet metal parts should be developed.
     The work of this paper is supported by Research and Development on Rapid Synchronous Simulation Technology for New Generation Aircraft Sheet Metal Parts Forming from State Key Laboratory of Material Processing and Die & Mould Technology. Finite element algorithms for aircraft sheet metal parts forming are built, quality assessment criteria for aircraft sheet metal parts are present, and rapid simulation systems for aircraft sheet metal parts forming are developed based on CATIA V5 to study forming defects evaluation, forming features analysis and CAD/CAE seamless integration technology for aircraft sheet metal parts.
     Based on thickness strain, formablity limit curve and winkle limit curve, an optimization model is present to to study the effect of the initial blank size on the surface quality of aircraft sheet metal parts with using the finite element inverse approach. The effect of initial blank size on the skin parts has been studied from rolling direction, hardening exponent and friction coefficient of the aluminum alloy material.
     Based on forming features of aircraft sheet metal parts, a simplified model for elasto hydro forming is proposed, hydraulic pressure in the elasto hydro cavity should be loaded on the sheet metal part, and friction bewteen the elasto hydro layer and the sheet metal has been treated;an analysis model for skin stretch forming is put forward, the clamp is defined as constraint nodes located in the areas of the clamp mouth, the trajectory of the clamp mould is restricted;a theoretical model for extrusion stretch forming is presented, the clamp and the arm are defined as the whole movement mechanism, divergent nodes caused by dynamic effects have been controlled. The simulation algorithms for elasto hydro forming, skin stretch forming and extrusion stretch forming based on BT and BWC shell elements are developed by using the elastic-plastic three-dimensional finite element dynamic explicit method. And key algorithms are investigated, including the load method of hydraulic pressure and firction treatment in the elasto hydro forming, the trajectory load method of the clamp and the mould in the skin stretch forming, and the control method for divergent nodes in the extrusion stretch forming.
     Based on the research of the theory and algorithm for aircraft sheet metal parts forming, CAD/CAE seamless integration systems for rapid simulation of aircraft sheet metal parts have been developed firstly with the secondary development technology of CATIA/CAA, including the blank estimation system-BES for aircraft sheet metal parts, the elasto hydro forming system-EHFS, the skin stretching forming system-SSFS and the extrusion stretch forming system-ESFS. The integrated systems can be applied in the whole process of aircraft parts manufacturing, including product development, process optimization, mould designing and virtual forming, to realize the seamless integration with CATIA and overcome the limitations of CAE employed in the whole development of aircraft parts, contributing to low cost, good quality and high productivity.
引文
[1]楼瑞祥.大飞机用铝合金的现状与发展趋势.见:大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集.中国深圳.2007.1-8
    [2]万敏,李新军,刘玉芳等.飞机板金成形数据库的开发.北京航空航天大学学报,2004,30(2):118-121
    [3]江勇,万敏,李卫东.基于C_S的飞机钣金成形数据库系统的研究与开发.航空制造技术,2004,(10):82-84,95
    [4]程宝明.发展航空制造技术迎接新世纪的挑战.航空制造技术,2001,(1):19-27
    [5]敖勇刚,万敏,李新军.基于KBE的飞机板金件工艺性审查系统.北京航空航天大学学报,2006,32(9):1096-1099
    [6]程宝填.飞机构造工艺性.(第一版).北京:国防工业出版社,1990
    [7]侯红亮,余肖放,曾元松.国内航空钣金装备技术现状与发展.航空制造技术,2009,(1):34-39
    [8]Chen X., Sowerby R.. Blank development and the prediction of earing in cup drawing. International Journal of Mechanical Sciences,1996,38(5):509-16
    [9]Lee C. H., Huh H.. Blank design and strain estimates for sheet metal forming processes by a finite element inverse approach with initial guess of linear deformation. Journal of Materials Processing Technology,1998,82(1-3):145-155
    [10]Parsa M. H., Matin P. H., Mashadi M. M.. Improvement of initial blank shape for intricate products using slip line field. Journal of Materials Processing Technology, 2004,145(1):21-26
    [11]Sowerby, R.. Determination of large strains in metal forming. The Journal of Strain Analysis for Engineering Design,1982,7:95-101
    [12]Sowerby R., Duncan J. L., Chu E.. The modeling of sheet metal stampings. International Journal of Mechanical Sciences,1986,28(7):415-430
    [13]Guo Y. Q., Batoz J. L., Detraux J. M., et al. Finite element procedures for strain estimations of sheet metal forming parts. International Journal For Numerical Method Engineering,1990,39:1385-1401
    [14]Guo Y. Q., Naceur H., Debray, K., et al. Initial solution estimation to speed up inverse approach in stamping modeling. Engineering Computations,2003,20(7): 810-834
    [15]Batoz J. L., Guo Y.Q., Mercier F.. The inverse approach with simple triangular shell elements for large strain predictions of sheet metal forming parts. Engineering Computations,1998,15(7):864-892
    [16]Naceur H., Delameziere A., Batoz J. L., et al. Some improvements on the optimum process design in deep drawing using the inverse approach. Journal of Materials Processing Technology,2004,146:250-262
    [17]Dong Y., Huh B. H.. Optimum design of trimming line by one-step analysis for auto body parts. Journal of Materials Processing Technology,2007,187-188: 108-112
    [18]Guo Y. Q., Batoz J. L., Naceur H.. Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach. Computers and Structures,2000,78(1-3):133-148
    [19]Guo Y. Q., Li Y. M., Bogard F., et al. An efficient pseudo-inverse approach for damage modeling in the sheet forming process. Journal of Materials Processing Technology,2004,151:88-97
    [20]Azizi R., Assempour A.. Applications of linear inverse finite element method in prediction of the optimum blank in sheet metal forming. Materials and Design,2008, 29(10):1965-1972
    [21]Azizi R.. Different Implementations of inverse finite element method in sheet metal forming. Materials and Design,2009,30(8):2975-2980
    [22]Parsa H., Pournia P.. Optimization of initial blank shape predicted based on inverse finite element method mohammad. Finite Elements in Analysis and Design,2007, 43(3):218-233
    [23]Lee C. H., Huh H.. Three dimensional multi-step inverse analysis for the optimum blank design in sheet metal forming processes. Journal of Materials Processing Technology,1998,80:76-82
    [24]Lee, C. H., Cao J.. Shell element formulation of multi-step inverse analysis for axisymmetric deep drawing process. International Journal for Numerical Method Engineering,2001,50:681-706
    [25]Kim S. H., Huh H.. Finite element inverse analysis for the design intermediate dies in multi-stage deep drawing processes with large aspect ratio. Journal of Materials Processing Technology,2001,113:779-785
    [26]Kim S. H, Huh, H.. Construction of sliding constraint surfaces and initial guess shapes for intermediate steps in multi-step finite element inverse analysis. Journal of Materials Processing Technology,2002,130-131:482-489
    [27]沈启或,卫原平,王玉国等.金属板料成形的快速有限元分析,计算力学学报,2000,17(2):242-245
    [28]沈启或,卫原平,王玉国等.金属板料成形的一步有限元模拟方法.上海交通 大学学报,2000,34(10):1404-1405
    [29]兰箭,董湘怀,陈志明等.板料成形毛坯展开方法研究.锻压技术,2000,4:21-25
    [30]Lan J., Dong X. H., Li Z. G.. Inverse finite element approach and its application in sheet metal forming. Journal of Materials Processing Technology,2005,170(3): 624-631
    [31]Liu yuqi, Li Zhigang, Yan Yakun, Fast accurate prediction of blank shape in sheet metal stamping forming. Acta Mechanincal Solida Sinica,2004,17:36-42
    [32]柳玉起,李志刚,杜亭等.FASTAMP在汽车覆盖件及其工艺设计中的应用.机械工人:冷加工,2006,4:18,20-21
    [33]金卯,晓立.航空钣金成形设备应用调查报告.航空制造技术,2009,(2):58-59
    [34]李国祥.我国飞机钣金成形技术发展的展望.航空工艺技术,1988,(2):41-44
    [35]刘闯.面向飞机钣金数字化制造的知识重用方法研究与应用:[博士学位论文].西安:西北工业大学,2007
    [36]刘闯,王俊彪,黄俊勇等.飞机钣金零件数字化制造系统及其应用.航空制造技术,2008,(16):34-37
    [37]刘善国.国外飞机先进制造技术发展趋势.航空科学技术,2002,(4):26-29
    [38]程宝明.发展航空制造技术,迎接新世纪的挑战.航空制造技术,2001,(1):19-26
    [39]戴美云,周贤宾.高压橡皮囊成形工艺及应用(上).航空工程与维修,1994,(9):13-15
    [40]戴美云,周贤宾.高压橡皮囊成形工艺及应用(下).航空工程与维修,1994,(10):16-18
    [41]陈磊,邱晞,李善良等.橡皮液压凸弯边成形试验与分析研究.锻压技术,2007,32(6):58-60
    [42]陈磊,白颖,邱超斌.铝合金板料橡皮成形数值模拟研究.航空科学技术,2007,(6):32-35
    [43]陈磊,张亚兵,李善良.钣金橡皮液压成形过程中的研究进展.机床与液压,2010,38(4):63,82-84
    [44]付云方,高霖,王辉.橡皮囊成形的研究进展.中国制造业信息化,2009,38(7):59-63,66
    [45]陈先有,赵良堂,白春华等.精密钣金成形技术在航空制造领域的应用分析.航空精密制造技术,2008,44(2):38-40,47
    [46]刘光伟,万世明,何万飞等.论航空钣金模具数字化设计制造技术的发展.航空制造技术,2009,(20):42-47
    [47]常荣福,陈孝戴,周安龙.橡皮囊成形工艺及设备综述.北京航空航天大学学报,1980,1:115-126
    [48]直妍,阳林,吴道建.液压成形技术在汽车工业中的应用.锻压装备与制造技术,2004,5:22-24
    [49]付云方.橡皮囊成形弯曲回弹的研究:[硕士学位论文].南京:南京航空航天大学,2009
    [50]赵凌霄,王新伟.液压橡皮成形凸弯边起皱临界条件分析.航天工艺,1997,(3):13-16
    [51]Vollertsen F., Breede R., Lange K., et al. A method for deep drawing with multiple elastomer membranes. CIRP Annals-Manufacture. Technolnolgy,1999,48(1): 221-226
    [52]Danckert J., Nielsen K. B.. Hydromechanical deep drawing with uniform pressure on the flange. CIRP Annals-Manufacturing Technology,2000,49(1):217-220
    [53]Giuseppe S., Luca D. L., Denis C. A numerical and experimental approach to optimise sheet stamping tchnologies:part Ⅱ-aluminium alloys rubber-forming Journal of Materials Processing Technology,2002,23(1):21-39
    [54]李靖谊,王化明,张中元等.弯曲半管橡皮成形工艺过程数值模拟研究.计算力学学报,2003,(1):43-48
    [55]李靖谊,王化明,张中元.基于数值模拟的极限凸翻边研究.材料科学与工艺,2004,12(4):409-412
    [56]Dirikolu M. H., Akdemir E.. Computer aided modeling of flexible forming process. Journal of Materials Processing Technology,2004,148(3):376-381
    [57]徐作文.橡皮成形的有限元模拟.机械制造与自动化,2006,35(3):78-81
    [58]梁明刚,陈磊.橡皮囊成形的有限元模拟.航空制造技术,2007,增刊:553-555
    [59]Khandeparkar T., Liewald M.. Hydromechanical deep drawing of cups with stepped geometries. Journal of Materials Processing Technology,2008,202(1-3):246-254
    [60]陈磊,邱晞,李善良等.橡皮液压成形直弯边回弹试验与分析研究.塑性工程学报,2008,15(3):47-60
    [61]Ramezani M., Ripin Z. M., Ahmad R.. Computer aided modeling of friction in rubber-pad forming process. Journal of Materials Processing Technology,2009, 209(10):4925-4934
    [62]杨伟俊,李东升,李小强.铝合金橡皮成形简化数值分析模拟研究.中国机械工程,2009,20(19):2382-2386
    [63]韩志仁,吴娜,詹庆熙等.基于试验和有限元方法的橡皮囊液压成形回弹规律. 塑性工程学报,2010,17(3):98-102
    [64]訾维强.钛板小蒙皮冷拉形工艺.航空制造技术,1982,(7):5-8
    [65]吕坤升.飞机进气道唇口蒙皮拉深成形工艺.洪都科技,1997,(2):6-14
    [66]万敏,周贤宾,李晓星等.镜面蒙皮拉形工艺参数研究.航空学报,1999,20(4):326-330
    [67]伍惠.双曲度镜面蒙皮的成形工艺.航空制造技术,2002,(3):55-57
    [68]万敏,胡运斌,谢英等.飞机蒙皮铝合金板材成形极限及应用.中国有色金属学报,2002,12:180-183
    [69]张彦敏,周贤宾,罗红宇.双曲度飞机蒙皮拉伸成形轨迹优化与验证.中国机械工程,2006,17(19):2053-2056
    [70]张彦敏,周贤宾.飞机蒙皮拉伸成形工艺参数优化.航空学报,2006,27(6):1203-1208
    [71]张彦敏,周贤宾.飞机蒙皮拉伸成形加载轨迹设计及优化.北京航空航天大学学报,2007,33(7):826-829
    [72]Hessami M. A., Yuen W. Y. D.. Residual stresses induced by stretch-bending. In: International Conference on Manufacturing Engineering-Fourth International Conference on Manufacturing Engineering. Barton Australia.1988.78-83
    [73]Micari F.. CAE of stretch forming processes. In:Proceedings of the Fourth International Conference on Technology of Plasticity. Beijing China.1993.1541-1546
    [74]李晓星,李玺莹.拉形工艺数值模拟软件的前后置处理系统.塑性工程学报,1999,6(2):43-50
    [75]王晓林,周贤宾,李晓星.飞机蒙皮拉形过程的有限元数值模拟.航天制造技术,2002,(2):39-42
    [76]白笛,周贤宾,李东升.飞机复杂蒙皮拉形过程有限元分析中的接触搜索算法.航空学报,2004,25(3):308-311
    [77]白笛,周贤宾,李东升等.飞机复杂蒙皮拉形数值模拟系统开发及关键技术研究.航空学报,2004,25(6):606-610
    [78]白雪飘,李东升,万敏等.基于蒙皮拉形模拟系统的数控拉形仿真与实践.塑性工程学报,2004,11(1):43-45,51
    [79]李卫东,万敏,战强等.数控蒙皮横拉机运动分析与仿真控制.北京航空航天大学学报,2004,30(2):105-108
    [80]赵秋玲,李东升,周贤宾等.基于蒙皮拉形模拟系统的后处理技术及开发.材 料科学与工艺,2004,12(5):553-556
    [81]Wisselink H.H., Boogaard A. H.. Finite element simulation of the stretch-forming of aircraft skins. In:Numisheet 2005 Conference. Detroit USA.2005.60-65
    [82]王丽丽,李东升,曹珺雯等.可重构柔性模具蒙皮包覆拉形仿真系统开发.锻压技术,2009,34(2):142-145
    [83]何德华,李东升,李小强等.飞机蒙皮包覆拉伸成形加载轨迹设计优化方法.塑性工程学报,2009,16(6):102-106
    [84]He D. H., Li D. S., Li X. Q., et al. Optimization on springback reduction in cold stretch forming of titanium-alloy aircraft skin. Transactions of Nonferrous Metals Society of China,2010,20(12):2350-2357
    [85]韩金全,万敏,袁胜等.飞机蒙皮拉形模拟中上压模具网格的生成技术.计算机辅助设计与图形学学报,2010,22(3):527-533
    [86]Kuwabara T., Takahashi S., Akiyam K., et al.2-D springback analysisfor stretch-bending processes based on total strain theory. Journal of Material and Manufacturing,1995,104:504-513
    [87]Clausen A. H., Hopperstad O. S., Langseth M.. Stretch bending of aluminum extrusions:effect of geometry and alloy. Journal of Engineering Mechanics ASCE, 1999,125(4):392-400
    [88]Vollertsen F., Sprenger A., Kraus J., et al. Extrusion channel and profile bending a review. Journal of Materials Processing Technology.1999,87(1-3):1-27
    [89]Paulsen F., Welo T. A.. Design method for prediction of dimensions of rectangular hollow sections formed in stretch bending. Journal of Materials Processing Technology,2002,128(1-3):48-66
    [90]Corona E.. A simple analysis for bend-stretch forming of aluminum extrusions. International Journal of Mechanical Sciences,2004,46(3):433-448
    [91]Clausen A. H., Hopperstad O. S., Langseth M.. Stretch bending of aluminum extrusions:effect of tensile sequence. Journal of Engineering Mechanics,1999, 125(5):521-529
    [92]Lademo O. G., Hopperstad O. S., Langseth M.. An evaluation of yield criteria and flow rules for aluminum alloys. International Journal of Plasticity,1999,15(2): 192-208
    [93]Malo K. A., Hopperstad O. S., Lademo O. G.. Calibration of anisotropic yield criteria using uniaxial tension tests and bending tests. Journal of Materials Processing Technology,1998,80-81:538-544
    [94]Miller J. E., Kyriakides S., Bastard A. H.. On bend stretch forming of aluminum extruded tubes-Ⅰ:experiments. International Journal of Mechanical Sciences,2001, 43(5):1283-1317
    [95]余同希,张亮炽.塑性弯曲理论及其应用.(第一版).北京:科学出版社,1992
    [96]Rees D. W. A.. Anisotropic hardening theory and the Bauschinger effect. Journal of Strain Analysis,1981,16(2):85-95
    [97]Ohno N. A constitutive model of cyclic plasticity with a non-hardening strain range. Journal of Applied Mechanics ASME,1982,49:721-727
    [98]孙惠学,胡金华,李春科等.奥迪轿车门竖框拉弯成形弹复分析.塑性工程学报,1998,5(3):32-38
    [99]EL-Domiaty A. A., Shabara M. A. N., AL-Ansary M. D.. Determination of stretch-bendability of sheet-metals. International Journal of Machine Tools and Manufacture,1996,36(5):635-650
    [100]El-Domiaty A A, ELsharkawy A. A.. Stretch-bending analysis of U-section beams. International Journal of Machine Tools and Manufacture,1998,38(2):75-95
    [101]Hopperstad O. S., Berstad T., Ilstad H., et al. Effects of the yield criterion on local deformation in numerical simulation of profile forming. Journal of Materials Processing Technology,1998,80-81:551-555
    [102]Hopperstad O. S., Leiraa B. J., Remsetha S., et al. Reliability-based analysis of a stretching-bending process for aluminium extrusions. Computers and Structures, 1999,71(1):63-75
    [103]Elsharkawy A A., El-domiaty A. A.. Determination of stretch-bendability limits and springback for t-section beams. Journal of Material Precessing Technology,2001, 110(3):265-276
    [104]Clausen A. H., Hopperstad O. S., Langseth M.. Sensitivity of model parameters in stretch bending of aluminium extrusions. International Journal of Mechanical Sciences,2001,43:427-453
    [105]裴广勇.拉弯成形过程的有限元模拟:[硕士学位论文].西安:西北工业大学,2003
    [106]张贺刚.型材转台式拉弯的力学与回弹分析:[硕士学位论文].西安:西北工业大学,2004
    [107]谢兰生,胡浩.型材拉弯回弹有限元分析.航空精密制造技术,2004,40(5):34-36
    [108]刁可山,周贤宾,金朝海等.复杂截面型材力控制拉弯成形数值模拟分析.材料科学与工艺,2004,12(4):413-416
    [109]张晓丽,李晓星,周贤宾等.复杂截面铝合金型材拉弯成形有限元模拟.塑性 工:程学报,2004,11(4):44-47
    [110]金朝海,周贤宾,刁可山等.铝合金矩形管拉弯成形过程的数值模拟.材料科学与工艺,2004,12(6):572-575
    [111]金朝海,周贤宾,刁可山等.型材2D拉弯数值模拟建模技术研究.塑性工程学报,2005,12(1):24-28
    [112]于成龙.拉弯成形过程的数值模拟:[硕士学位论文].西安:西北工业大学,2005
    [113]李小强,周贤宾,金朝海等.型材拉弯数值模拟夹钳边界条件的一种等效模型.塑性工程学报,2009,16(1):64-69
    [114]李小强,周贤宾,金朝海等.基于有限元模拟的三维型材拉弯轨迹设计.航空学报,2009,30(3):544-550
    [115]朱有利,王先进等.用有限变形弹塑性有限元法对金属塑性成形工艺的分析和优化.机械工程学报,1996,32(6):37-44
    [116]胡平,卫教善.冲压成形模具分析软件-KMAS.模具制造,2004,(6):9-11
    [117]施法中,徐国艳,王呈皓.一步法冲压成形分析软件SheetForm-OneStep的研究与开发.轻型汽车技术,2005,(1):4-7
    [118]Du T., Liu Y. Q., Zhang Z. B., et al. Fast FE analysis system for sheet metal stamping-FASTAMP. Journal of Materials Processing Technology,2007, 187-188(6):402-406
    [119]康占武,赵君.论CAD技术在工程设计中的应用.国土资源高等职业教育研究,2008,(2):62-63
    [120]朱颜.汽车优化设计中CAE技术的应用.科技信息(学术研究),2008,32:279-281
    [121]Armstrong C. G.. Modeling requirements for finite-element analysis. Computer-Aided Design,1994,26(7):573-578
    [122]De Martino T., Falcidieno B., Hassinger S.. Design and engineering process integration through a multiple view intermediate modeler in a distributed object-oriented system environment. Computer-Aided Design,1998,30(6):437-452
    [123]张世莹.欧洲CATIA-CADAM会议.世界制造技术与装备市场,2001,1:56-57
    [124]盛传禹.CATIA曲线和曲面功能详解.(第一版).北京:机械工业出版社,2004
    [125]尤春风.CATIA V5曲面造型.(第一版).北京:清华大学出版社,2004
    [126]黄俊波,陈先有.飞机钣金零件的计算机辅助设计与制造.2008,机械设计与制造,(2):83-85
    [127]Yue S. H., Wang G. X., Yin F., et al. Application of an integrated CAD/CAE/CAM system for die casting dies. Journal of Materials Processing Technology,2003, 139(1-3):465-468
    [128]Lin B. T., Kuo C. C. Application of an integrated CAD/CAE/CAM system for stamping dies for automobiles. The International Journal of Advanced Manufacturing Technology,2006,35(9-10):1000-1013
    [129]Hamri O., Leon J. C., Giannini F., et al. Software environment for CAD/CAE integration. Advances in Engineering Software,2010,41(10-11):1211-1222
    [130]柳玉起.计算机模拟在金属成形行业的应用和发展现状.锻造与冲压,2005,6:16,18,20,22
    [131]龚科家,胡平.汽车覆盖件模面设计中补充曲面的生成方法.吉林大学学报(工学版),2006,36(1):63-66
    [132]王伟,施法中.覆盖件拉延模型工艺补充部分的参数化设计.锻压技术,2007,32(2):105-109
    [133]杜亭.面向冲压全工序与设计全流程的板料成形模拟系统:[博士学位论文].武汉:华中科技大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700