用户名: 密码: 验证码:
Ba-Mn基钙钛矿及其负载型Ba/Mn/TiO_2-x (x=Al_2O_3/SiO_2/ZrO_2) NOx储存还原催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NOx储存还原(NSR)技术是最有前景的稀燃氮氧化物消除技术。本文系统研究了以Ba-Mn为基础的钙钛矿型和负载型NSR催化剂,采用XRD、TG-MS、BET、H_2-TPR、NOx-TPD、in-situ DRIFT等多种表征技术详细考察了催化剂的NOx储存能力、热稳定性和抗硫能力,对NOx的储存模式进行了深入研究。
     采用柠檬酸络合法制备了BaMnO_3系列钙钛矿催化剂。300℃时,亚硝酸盐到硝酸盐的转化速率远大于硝酸盐和亚硝酸盐的分解速率,NOx在BaMnO_3催化剂上的NSC值最高。掺杂不同比例的B位元素Cu/Mg/Fe后发现,Cu/Mg对催化剂结构和储存性能影响不大,Fe可以进入到BaMnO_3钙钛矿晶格中,增加了氧空位,Fe掺杂比例为0.4时,催化剂对NOx的储存能力大大提高。NOx在BaMnO_3表面的吸附物种随温度和时间发生转变,Fe部分取代后不改变NOx吸附的反应历程。低温下(≤200℃),NOx在表面的吸附主要以亚硝酸盐形式存在;200℃左右,表面硝酸盐物种逐渐脱附或歧化反应生成硝酸盐;高温下(≥300℃),主要以硝酸盐形式存在。
     将Ba-Mn前驱体涂覆在复合载体TiO_2-Al_2O_3、TiO_2-SiO_2和TiO_2- ZrO_2上,600℃焙烧得到催化剂TABM6、TSBM6和TZBM6。样品TABM6和TSBM6中活性组分Ba主要以BaCO_3形式存在,由于TiO_2-SiO_2酸性高于TiO_2- Al_2O_3,导致TABM6中BaCO_3的含量高于TSBM6,NOx储存量结果也相对较大。而TZBM6样品中,除了部分BaCO_3之外,还有大量的BaMnO_3钙钛矿氧化物。TZBM6样品比表面积最小,体系中BaCO_3的含量也最少,但是因为有大量的BaMnO_3钙钛矿氧化物,也具有优良的NOx储存能力,NSC值能够达到105.7μmol/g。原位漫反射红外(in-situ DRIFT)结果表明,富氧条件下吸附NOx时,TABM6和TSBM6上NOx形成硝酸盐结构,尤其是TABM6上可看到从亚硝酸盐到硝酸盐的转化过程。TZBM6上NOx的吸附与BaMnO_3类似,都生成亚硝酸盐。
     800℃高温焙烧之后,TABM6和TSBM6催化剂发生烧结,活性组分Ba与载体反应生成了BaAl_2O_4和Ba_2TiSi_2O_8。TZBM6催化剂结构未发生明显变化,ZrTiO_4固溶体和BaMnO_3钙钛矿晶粒有所增长。总体上看,TZBM6的抗热稳定性最佳。
     硫化后(SO_2: 200ppm),催化剂的NSC值相对于新鲜样品TABM6、TSBM6、TZBM6分别下降了52.6%、19.7%和47.6%。硫化催化剂TABM6的NOx储存量仍然最大,其次为TSBM6,TZBM6样品的再储存能力最小。TSBM6具有最好的抗硫能力,与TiO_2-SiO_2载体具有最大的酸强度有关。
     采用分步浸渍法制备了Pt-Mn/Ba/TiO_2-ZrO_2催化剂。Mn负载量增加时,催化剂表面形成Mn_2O_3晶体,对催化剂氧化性能和NOx储存能力影响不大。表面高度分散的Mn物种,800℃焙烧后,一部分进入载体晶格中形成新的固溶体Mn_(0.33)Ti_(0.33)Zr_(0.33)O_(1.67)。Pt物种的分散性和存在状态对催化剂的NOx储存性能有重要影响。高温焙烧,促进了PtO_2的分散,伴随部分氧化物物种的分解形成金属态的Pt,增强了Pt和Mn物种之间的相互作用。800℃焙烧样品Pt-C1-800中,Pt的分散性最好,对NO氧化能力最好,NSC值最大。
The NOx storage and reduction (NSR) technology will be the most promising way to reduce the NOx emission from lean-burn engines. In this work, we have designed a series of NSR catalysts based on Ba-Mn, including BaMnO_3 perovskite oxides and Ba/Mn/TiO_2-X (X=Al_2O_3/SiO_2/ZrO_2) supported catalysts. Their structures and properties were characterized by the techniques of XRD, TG-MS, BET, H_2-TPR and NOx-TPD.Their NOx storage capacity, thermal stability and sulfur resistance were also investigated. The mechanism of NOx adsorbing species were discussed by in-situ DRIFT.
     BaMnO_3 perovskite oxides were prepared by citric acid complexation method. At 300oC, the rate of nitrite to nitrate transformation is higher than that of nitrate and nitrite decomposition. As a result, the BaMnO_3 perovskite oxide exhibits the highest NOx uptake at 300oC. No difference in the structure and NSR activity is found in the case of partial substitution of Mn by Cu/Mg. However, Fe substitution in B site leads to generation of oxygen vacancies. The highest NOx storage capacity is achieved on BaMn_(0.6)Fe_(0.4)O_3. Adsorption and storage of NOx on BaMnO_3 proceeds in three steps: (1) the formation of nitrites at low temperature (≤200oC); (2) its transformation to nitrates at temperature higher than 200oC, but lower than 300oC; (3) the formation of nitrates at high temperature (≥300oC). On the Fe-substitution catalysts, the NOx adsorption and storage processes are similar to the BaMnO_3 catalyst.
     The TABM6、TSBM6 and TZBM6 catalysts were prepared by spreading Ba-Mn precursors as a thin layer on the TiO_2-Al_2O_3, TiO_2-SiO_2 and TiO_2- ZrO_2 supports calcined at 600 oC. The NOx storage capacity depends strongly on the relative abundance of BaCO_3 phases. Compared with the TSBM6 catalyst, more active BaCO_3 phases are detected in the TABM6 catalyst due to less acidity, which results in a higher NOx storage capacity. Although the BaCO_3 concentration was relatively lower, the TZBM6 catalyst still shows a high NSC of 105.7μmol/g due to the presence of a large amount of BaMnO_3 perovskite phase. During adsorption of NOx under lean burn condition, surface nitrates are formed on the TABM6 and TSBM6 catalysts, while surface nitrites are the dominant species on the TZBM6 catalyst. The transformation of nitrites to nitrates is observed on the TABM6 catalyst by in-situ DRIFT.
     Thermal aging at 800oC leads to the conversion of dispersed BaCO_3 in the TABM6 and TSBM6 catalysts to crystalline BaAl_2O_4 and Ba_2TiSi_2O_8 respectively. The TZBM6 catalyst is quite stable against thermal treatment. NOx storage capacities of TABM6、TSBM6 and TZBM6 catalysts decline by the percentages of 52.6%,19.7% and 47.6% respectively, after treated in 200ppm SO_2 atmosphere for 30 min. The order of NSC of sulfated catalysts is TABM6>TSBM6>TZBM6. The TSBM6 catalyst displays the best sulfur resistance ability due to the highest acidity of TiO_2-SiO_2 support.
     The Pt-Mn/Ba/TiO_2-ZrO_2 catalysts were prepared by a successive incipient wetness impregnation using TiO_2-ZrO_2 as support. Higher Mn loading resulted in aggregation of Mn_2O_3 crystallites on TiO_2-ZrO_2 support. After calcination at 800oC, a part of Mn species diffuses into the lattice of the support and forms a new phase Mn_(0.33)Ti_(0.33)Zr_(0.33)O_(1.67). The dispersion and phase of Pt species is the key factor for the NOx storage capacity of the catalyst. As the calcinations increases, the dispersion of Pt species is higher, while some PtO_2 species decompose to Pt metal phase. The results of EXAFS and NSC measurements showed that the maximum NO conversion and NOx storage capacity were achieved on the sample Pt-C1-800 due to the highest dispersion of Pt species.
引文
[1]郝吉明,傅立新,贺克斌,城市机动车排放污染控制:国际经验分析与中国的研究成果,北京:中国环境科学出版社,2001.96-98
    [2]Matsumoto S. Catalytic reduction of nitrogen oxides in automotive exhaust containing excess oxygen by NOx storage-reduction catalyst. Cattech, 2000, 4(2):102-109
    [3]Akama H, Matsushita K. Recent lean NOx catalyst technologies for automobile exhaust control. Catalysis Surveys from Japan, 1999, 3(2):139-146
    [4]Hamada H, Kintaichi Y, Sasaki M, Ito T. Silver-Promoted Cobalt Oxide Catalysts for Direct Decomposition of Nitrogen Monoxide. Chemistry Letters, 1990, 19 (7): 1069-1070
    [5]Iwamoto M, Hamada H. Removal of nitrogen monoxide from exhaust gases through novel catalytic processes. Catalysis Today, 1991, 10(1):57-71
    [6]Zhang G, Yamaguchi Y, Kawakami H, et al. Selective reduction of nitric oxide over platinum catalysts in the presence of sulfur dioxide and excess oxygen. Applied Catalysis B: Environmental, 1992, 1(3): L15-L20
    [7]Obuchi A, Nakamura N, Ogata A, et al. Performance of platinum-group metal catalysts for the selective reduction of nitrogen oxides by hydrocarbons. Applied Catalysis B: Environmental, 1993, 2(1): 71-80
    [8]Miyoshi N, Matsumoto S, Katoh K, et al. Development of New Concept Three-Way Catalyst for Automotive Lean-Burn Engines, SAE Technical Paper, 1995, 950809
    [9]Takahashi N, Shinjoh H, Lijima T, et al. The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst. Catalysis Today, 1996, 27(1-2): 63-69
    [10]Matsumoto S. DeNOx catalyst for automotive lean-burn engine. Catalysis Today, 1996, 29(1-4): 43-45
    [11]龚金科,汽车排放污染与控制,人民交通出版社, 2005.183-184
    [12]姜鹏明,我国汽车污染控制技术对策概述,中国环保产业,2001, (1):30-33
    [13]夏耀勤,王敬生,汽车尾气催化剂的应用和展望,汽车工艺与材料,2000, (1):27-30
    [14]Ansell G P, Diwell A F, Golunski S E, et al, Mechanism of the lean NOx reaction over Cu/ZSM-5. Applied Catalysis B: Environmental, 1993, (2):81-100
    [15]郭锡坤,张俊豪,贺璇,贫燃条件下净化汽车尾气中NOx的还原催化剂研究进展,精细与专用化学品, 2003, 21:3-5
    [16]Ka?par J, Fornasiero P, Hickey N. Automotive catalytic converters: current statusand some perspectives. Catalysis Today, 2003, 77(4):419-449
    [17]Li Y J, Hall W K. Stoichiometric catalytic decomposition of nitric oxide over copper-exchanged zeolite (CuZSM-5) catalysts. The Journal of Physical Chemistry, 1990, 94 (16), 6145-6148
    [18]Winter, E. R. S, The catalytic decomposition of nitric oxide by metallic oxides. Journal of Catalysis, 1971, 22(2):158-170
    [19]Tofan C, Klvana D, Kirchnerova J. Decomposition of nitric oxide over perovskite oxide catalysts: effect of CO_2, H_2O and CH_4. Applied Catalysis B: Environmental, 2002, 36(4):311-323
    [20] Ishihara T, Ando M, Sada K,et al, Direct decomposition of NO into N_2 and O_2 over La(Ba)Mn(In)O_3 perovskite oxide. Journal of Catalysis, 2003, 220(1): 104-114
    [21]Ishihara T, Anami K, Takiishi K, et al. Direct decomposition of NO on Cu-doped La(Ba)Mn(In)O_3 perovskite oxide under coexistence of O_2, H_2O, and SO_2. Chemistry Letters, 2003, 32(12):1176-1177
    [22]Iwakuni H, Shinmyou Y, Yano H, et al. Direct decomposition of NO into N_2 and O_2 on BaMnO_3-based perovskite oxides. Applied Catalysis B: Environmental, 2007, 74(3-4): 299-306
    [23]刘钰,杨向光,赵震,Study on the elimination of NO over the La-Ba-Cu mixed oxide catalysts with perovskite structure,高等化学学报, 1998, 19(3):414-418
    [24]Kagawa S, Yoko S, IwamotoM. Activity of copper(Ⅱ)-exchanged Y-type zeolites in the catalytic decomposition of nitrogen monoxide. Journal of the Chemical Society Chemical Communications, 1978, (23):1058-1059
    [25]Iwamoto M,Yahiro H,Mizuno N,et al. Removal of nitrogen monoxide through a novel catalytic process. 2. Infrared study on surface reaction of nitrogen monoxide adsorbed on copper ion-exchanged ZSM-5 zeolites, The Journal of Physical Chemisry,1992, 96(23):9360-9367
    [26]Gopalakrishnan R, Stafford P R, Davidson J E, et al. Selective catalytic reduction of nitric oxide by propane in oxidizing atmosphere over copper-exchanged zeolites. Applied Catalysis B: Environmental,1993,2(2-3):165-182
    [27]Amirnazmi A, Benson J E, Boudart M. Oxygen inhibition in the decomposition of NO on metal oxides and platinum. Journal of Catalysis, 1973, 30(1):55-56
    [28]Amirnazmi A, Boudart M. Decomposition of nitric oxide on platinum. Journal of Catalysis, 1975, 39(3):383-394
    [29]Ogata A, Obuchi A, Mizuno k, et al. Enhancement effect of Mg~(2+) ion on direct nitric oxide decomposition over supported palladium catalysts. Journal of Catalysis, 1990, 65(1):11-15
    [30]Ogata A, Obuchi A, Mizuno K, et al. Active Sites and Redox Properties of Supported Palladium Catalysts for Nitric Oxide Direct Decomposition. Journal of Catalysis, 1993, 144(2):452-459
    [31]Wu R T, Chou T Y, Yeh C T. Enhancement effect of gold and silver on nitric oxidedecomposition over Pd/Al_2O_3 catalysts. Applied Catalysis B: Environmental, 1995, 6(2):105-116
    [32]Forzatti P. Present status and perspectives in de-NOx SCR catalysis. Applied Catalysis A: General, 2001, 222(1-2):221-236
    [33]Bosch H, Janssen F. The activity of supported vanadium oxide catalysts for the selective reduction of NO with ammonia. Applied Catalysis, 1986,25(2):239-248
    [34]Miyamoto A, Yamazaki Y, Inomata M, et al. Determination of the number of vanadium=oxygen species on the surface of vanadium oxide catalysts. 1. Unsupported vanadium pentoxide and vanadium pentoxide/titanium dioxide treated with an ammoniacal solution. The Journal of Physical Chemisry, 1981, 85(16):2366-2372
    [35]Bond G C, Tahir S F. Vanadium oxide monolayer catalysts preparation characterization and catalytic activity. Applied Catalysis, 1991, 71(1):1-31
    [36]Morikawa S, Yoshida H, Takahashi K, et al. Improvement of V_2O_5-TiO_2 catalyst for NOx reduction with NH_3 in flue gases. Chemistry Letters, 1981, 10(2): 251-254
    [37] Liu ZM, Woo SI. Recent advances in catalytic DeNOx science and technology. Catalysis Reviews-Science and Engineering, 2006, 48(1):43-89
    [38]Centi G, Perathoner S, Nature of active species in copper-based catalysts and their chemistry of transformation of nitrogen oxides. Applied Catalysis A: General, 1995,132(2):179-259
    [39]Shi C, Walters A B, Vannice M A. NO reduction by CH4 in the presence of O_2 over La2_O_3 supported on Al_2O_3. Applied Catalysis B: Environmental, 1997, 14(3-4):175-188
    [40]Miyadera T, Alumina-supported silver catalysts for the selective reduction of nitric oxide with propene and oxygen-containing organic compounds. Applied Catalysis B: Environmental, 1993, 2(2-3):199-205
    [41]Libby W F. Promising Catalyst for Auto Exhaust. Science. 1971, 171 (3970): 499-500
    [42]孟明,林培炎,γ-Al_2O_3负载的钴基催化剂上乙烯选择还原氧化氮,催化学报,1998, 19(1):70-72
    [43]Amin N A S, Tan E F, Manan Z A. Selective reduction of NOx with C3_H_6 over Cu and Cr promoted CeO_2 catalysts. Applied Catalysis B: Environmental,2003, 43 (1):57-69
    [44]Held W, Karnig A, Richter T, et al. Catalytic NoDx reduction in net oxidizing exhaust gas, SAE Paper, 1990, 900496
    [45]Li Yuejin, Armor J N. Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen. Applied Catalysis B: Environmental, 1992, 1(4): L31-40
    [46]Amiridis M D, Zhand Tiejun, Farrauto R J. Selective catalytic reduction of nitric oxide by hydrocarbons, Applied Catalysis B: Environmental, 1996,10(1-3):203-227
    [47]Shichi A, Katagi K, Satsuma A, et al. Influence of intracrystsalline diffusion on the selective catalytic reduction of NO by hydrocarbon over Cu-MFI zeolite. Applied Catalysis B: Environmental, 2000, 24(2):97-105
    [48]朱兵,李平,贫燃NOx选择性催化还原技术及其研究进展,化学世界,1999(6):283-287
    [49]Inaba M, Kintaichi Y, Hamada H. Cooperative effect of platinum and alumina for the selective reduction of nitrogen monoxide with propane, Catalysis Letters, 1996,36(3-4):223-227
    [50]Vernoux P, Leinekugel A Y, Gaillard F. Effect of the addition of Na to Pt/Al_2O_3 catalysts for the reduction of NO by C_3H_8 and C_3H_6 under lean-burn conditions. Journal of Catalysis, 2003, 219(1):247-257
    [51]Yentekakis I V, Tellou V, Botzolaki G, et al. A comparative study of the C_3H_6+ NO+O_2, C_3H_6+O_2 and NO+O_2 reactions in excess oxygen over Na-modified Pt/γ-Al_2O_3 catalysts. Applied Catalysis B: Environmental, 2004, 56(3):229-239
    [52]Burch R, Watling T C. The effect of promoters on Pt/Al_2O_3 catalysts for the reduction of NO by C3H6 under lean-burn conditions. Applied Catalysis B: Environmental, 1997,11(2):207-216
    [53]García-Cortés J M, Pérez-Ramírez J, Illán-Gómez M J, et al. Activation by sintering of Pt-beta catalysts in deNOx HC-SCR. Structure-activity relationships. Catalysis Communications, 2003, 4(4):165-170
    [54]Vaccaro A R, Mul G, Pérez-Ramírez J, et al. On the activation of Pt/Al_2O_3 catalysts in HC-SCR by sintering: determination of redox-active sites using Multitrack. Applied Catalysis B: Environmental, 2003, 46(4):687-702
    [55]郑小明,周仁贤,环境保护中的催化治理技术,北京:化工出版社,2003.
    [56]Iwamoto M, Zengyo T. Highly selective reduction of NO in excess oxygen through the intermediate addition of reductant (IAR) between Pt- and Zn-MFI zeolites. Chemistry Letters, 1997, 26(12):1283-1284
    [57]Iwamoto M, Hernandez A M, Zengyo T. Oxidation of NO to NO_2 on a Pt-MFI zeolite and subsequent reduction of NOx by C_2H_4 on an In-MFI zeolite: a novel de-NOx strategy in excess oxygen. Chemical Communications, 1997, (1):37-38
    [58]Lee J H , Kim J G, Lee J K, et al. NO removal by CH4 on Co-NaX-CO and Ag-NaX catalysts in a dual-bed system. Catalysis Today, 2003, 87(1-4):35-42
    [59]Rapp KG, Hoard J W, Aardahl C L, et al. Combination of low and high temperature catalytic materials to obtain broad temperature coverage for plasma-facilitated NOx reduction, Catalysis Today, 2004, 89(1-2):143-150
    [60]Miyadera T. Selective reduction of NOx by ethanol on catalysts composed of Ag/Al_2O_3 and Cu/TiO_2 without formation of harmful by-products. Applied Catalysis B: Environmental, 1998, 16(2):155-164
    [61]Seker E, Gulari E. Activity and N_2 selectivity of sol-gel prepared Pt/alumina catalysts for selective NOx reduction. Journal of Catalysis, 2000, 194(1):4-13
    [62]Walker A P. Mechanistic studies of the selective reduction of NOx over Cu/ZSM-5 and related systems. Catalysis Today, 1995, 26(2):107-128
    [63]Xin M, Hwang I C, Woo S I. In situ FTIR study of the selective catalytic reduction of NO on Pt/ZSM-5. Catalysis Today, 1997, 38(2):187-192
    [64]Burch R, Scire S. Selective reduction of nitric oxide with ethane and methane on some metal exchanged ZSM-5 zeolites. Applied Catalysis B: Environmental, 1994, 3(4): 295-318
    [65]Burch R, Sullivan J A. A transient kinetic study of the mechanism of the NO/ C_3H_6/O_2 reaction over Pt-SiO_2 catalysts: Part I: non-steady-state transient switching experiments, Journal of Catalysis, 1999, 182(2):489-496
    [66]Burch R, Shestov A A, Sullivan J A. A transient kinetic study of the mechanism of the NO/C_3H_6/O_2 reaction over Pt-SiO_2 catalysts: part 2: steady-state isotopic transient kinetic analysis. Journal of Catalysis, 1997, 182(2):497-506
    [67]Burch R, Shestov A A, Sullivan J A. A transient kinetic study of the mechanism of the NO+H_2 reaction over Pt/SiO_2 catalysts: 1. isotopic transient kinetic and temperature programmed analysis. Journal of Catalysis, 1999, 186(2): 353-361
    [68]Meunier F C, Zuzaniuk V, Breen J P, et al. Olsson M, Mechanistic differences in the selective reduction of NO by propene over cobalt- and silver-promoted alumina catalysts: kinetic and in situ DRIFTS Study. Catalysis Today, 2000, 59(3-4):287-304
    [69]Haneda M, Kintaichi Y, Bion N, et al. Mechanistic study of the effect of coexisting H_2O on the selective reduction of NO with propene over sol-gel prepared In2O_3-Al_2O_3 catalyst. Applied Catalysis B: Environmental, 2003, 42(1):57-68
    [70]Lee, J H, Yezerets A, Kung M C, et al. Hydrocarbon reaction pathway in selective NO reduction over a bifunctional SnO_2/Al_2O_3 catalyst. 2001, Chemical Communications, 2001,(15):1404-1405
    [71]Shimizu K, kawabata H, Satsuma A, et al. Role of acetate and nitrates in the selective catalytic reduction of NO by propene over alumina catalyst as investigated by FTIR. The Journal of Physical Chemistry B, 1999, 103(25): 5240-5245
    [72]Lobree L J, Aylor A W, Reimer J A, et al. Role of cyanide species in the reduction of NO by CH_4 over Co-ZSM-5. Journal of Catalysis, 1997, 169(1):188-193
    [73]Aylor A W, Lobree L J, Reimer J A, et al. NO adsorption , desorption and reduction by CH_4 over Mn-ZSM-5, Journal of Catalysis, 1997, 170(2):390-401
    [74]Lobree L, Hwang I C, Reimer J A, et al. An in situ infrared study of NO reduction by C_3H_8 over Fe-ZSM-5. Catalysis Letters, 1999, 63(3-4):233-240
    [75]Lobree L J, Aylor A W, Reimer J A, et al. NO reduction by CH_4 in the presence of O_2 over Pd-H-ZSM-5. Journal of Catalysis, 1998, 181(2):189-204
    [76]Cant N W, Liu I O Y. The mechanism of the selective reduction of nitrogen oxides by hydrocarbons on zeolite catalysts. Catalysis Today, 2000, 63(2-4),133-146
    [77]Poignant F, Freysz J L, Daturi M, et al. Mechanism of the selective catalytic reduction of NO in oxygen excess by propane on H-Cu-ZSM-5: Formation of isocyanide species via acrylonitrile intermediate. Catalysis Today, 2001,70(1-3): 197-211
    [78]Mosqueda-Jiménez B I, Jentys A, Seshan K, et al. On the surface reactions during NO reduction with propene and propane on Ni-exchanged mordenite. Applied Catalysis B: Environmental, 2003, 46(1):189-202
    [79]Haneda M, Kintaichi Y, Shimada H, et al. Selective reduction of NO with propene over Ga2O_3-Al_2O_3: Effect of sol-gel method on the catalytic performance. Journal of Catalysis, 2000, 192(1):137-148
    [80]Burch R, Breen J P, Meunier F C. A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Applied Catalysis B: Environmental, 2002, 39(4): 283-303
    [81]Br?er S, Hammer T. Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a V_2O_5-WO_3/TiO_2 catalyst. Applied Catalysis B: Environmental, 2000, 28(2):101-111
    [82]Yoon S, Panov A G, Tonkyn R G, et al. An examination of the role of plasma treatment for lean NOx reduction over sodium zeolite Y and gamma alumina: Part 1. Plasma assisted NOx reduction over NaY and Al_2O_3. Catalysis Today, 2002, 72(3-4):243-250
    [83]Yoon S, Panov A G, Tonkyn R G, et al. An examination of the role of plasma treatment for lean NOx reduction over sodium zeolite Y and gamma alumina Part 2: Formation of nitrogen. Catalysis Today, 2002, 72(3-4): 251-257
    [84]Patterson M J, Angove D E, Cant N W. The effect of metal order on the oxidation of a hydrocarbon mixture over alumina-supported combined platinum/rhodium catalysts. Applied Catalysis B: Environmental, 2002 ,35(1):53-58
    [85]Kwak J H, Szanyi J, Peden C H F. Nonthermal plasma-assisted catalytic NOx reduction over Ba-Y,FAU: the effect of catalyst preparation. Journal of Catalysis, 2003, 220 (2): 291-298
    [86]Orlando T M, Alexandrov A, Lebsack A, et al. The reactions of NO_2 and CH_3CHO with Na-Y zeolite and the relevance to plasma-activated lean NOx catalysis. Catalysis Today, 2004, 89(1-2):151-157
    [87]Hoard J, Balmer L. Analysis of plasma-catalysis for diesel NOx remediation, SAE paper, 1998, No 982429
    [88]Hammer T, Broer S. Plasma Enhanced Selective Catalytic Reduction of NoDx for Diesel Cars. SAE paper, 1998, No 982428
    [89]Penetrante B M, Balko E, Voss K E, et al. Plasma-Assisted Catalytic Reduction of NoDx. SAE paper, 1998, No982508
    [90]Fuji K, Higashi M, Suuzuki N. Simultaneous removal of NOx, COx, SOx and soot in disel engine exhaust. NATO AST series, 1993, 34: part B 257-279
    [91]Balmer M L, Tonkyn R, Hoard J. Diesel NOx reduction on surfaces in plasma, 1998, SAE paper, No 982511
    [92]Wang X D, Zhang T, Xu C H, et al. Microwave effects on the selective reduction of NO by CH4 over an In-Fe_2O_3/HZSM-5 catalyst . Chemical Communications, 2000, (4):279-280
    [93]Fridell E, Skoglundh M, Westerberg B. NOx Storage in Barium-Containing Catalysts. Journal of Catalysis, 1999, 183(2):196-209
    [94]Prinetto F, Ghiotti G, Nova I, et al. FT-IR and TPD Investigation of the NOx Storage Properties of BaO/Al_2O_3 and Pt-BaO/Al_2O_3 Catalysts. The Journal of Physical Chemistry B, 2001, 105(51):12732-12745
    [95]Lietti L, Forzatti P, Nova I, et al. NOx storage reduction over Pt-Ba/gamma-Al_2O_3 catalyst. Journal of Catalysis, 2001, 204(1):175-191
    [96]Mahzoul H, Brilhac J F, Gilot P. Experimental and mechanistic study of NOx adsorption over NOx trap catalysts. Applied Catalysis B: Environmental,1999, 20(1):47-55
    [97]Takahashi N, Shinjoh H, Iijima T. The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst. Catalysis Today, 1996, 27(1-2):63-69
    [98]William S, Epling W S, Campbell Greg C, et al. The effects of CO_2 and H_2O on the NOx destruction performance of a model NOx storage/reduction catalyst. Catalysis Letters, 2003, 909 (1-2):45-56
    [99]Li Y, Roth S, Dettling J, et al. Effects of lean/rich timing and nature of reductant on the performance of a NOx trap catalyst. Topics in Catalysis, 2001, 16(1-4):139-144
    [100]Lietti L, Forzatti P, Nova I, Tronconi E. NOx storage reduction over Pt-Ba/γ- Al_2O_3 catalyst. Journal of Catalysis, 2001, 204(2): 175-191
    [101]Li X, Meng M, Lin P,et al. Study on the properties and mechanisms for NOx storage over Pt/BaAl_2O_4-Al_2O_3 catalyst, Topics in Catalysis, 2003, 22(1-2): 111-115
    [102]Nova I, Castoldi L, Lietti L, et al. On the dynamic behavior of NOx storage/ reduction Pt-Ba/Al_2O_3 catalyst, Catalysis Today, 2002, 75(1-4): 431-437
    [103]Rodrigues F, Juste L, Potvin C, et al, NOx storage on barium-containing three-way catalyst in the presence of CO_2. Catalysis Letters, 2001,72(1):59-64
    [104]Amberntsson A, Persson H, Engstrom P, NOx release from a noble metal/BaO catalyst: dependence on gas composition. Applied Catalysis B: Environmental, 2001, 31(1):27-38
    [105]Abdulhamid H, Fridell E, Skoglundh M. Influence of the type of reducing agent (H_2, CO, C_3H_6 and C_3H_8) on the reduction of stored NOx in a Pt/BaO/Al_2O_3 model catalyst, Topics in Catalysis, 2004, 30/31(1): 161-168
    [106]Salasc S, Skoglundh M, Fridell E. A comparison between Pt and Pd in NOx storage catalysts. Applied Catalysis B: Environmental, 2002, 36(2): 145-160
    [107]Su Y, Kabin K, Harold M, Amiridis M, et al. Reactor and in situ FTIR studies of Pt/BaO/Al_2O_3 and Pd/BaO/Al_2O_3 NOx storage and reduction (NSR) catalysts. Applied Catalysis B: Environmental, 2007, 71(3-4): 207-215
    [108]Huang H, Long R,Yang R. The promoting role of noble metals on NOx storage catalyst and mechanistic study of NOx storage under lean-burn conditions. Energy & Fuels, 2001, 15(1): 205-213
    [109]Huang H, Long R, Yang R. A highly sulfur resistant Pt-Rh/TiO_2/Al_2O_3 storage catalyst for NOx reduction under lean-rich cycles. Applied Catalysis B: Environmental 2001, 33(2): 127-136
    [110]Amberntsson A, Fridell E, Skoglundh M. Influence of platinum and rhodium composition on the NOx storage and sulphur tolerance of a barium based NOx storage catalyst. Applied Catalysis B: Environmental, 2003, 46(3): 429-439
    [111]Amberntsson A, Skoglundh M, Ljungstrom S, Fridell E, et al. Sulfur deactivation of NOx storage catalysts: influence of exposure conditions and noble metal. Journal of Catalysis, 2003, 217(2): 253-263
    [112]Abdulhamid H, Fridell E, Skoglundh M. The reduction phase in NOx storage catalysis: Effect of type of precious metal and reducing agent. Applied Catalysis B: Environmental, 2006, 62(3-4): 319-328
    [103]Abdulhamid H, Dawody J, Fridell E, et al. A combined transient in situ FTIR and flow reactor study of NOx storage and reduction over M/BaCO_3/Al_2O_3 (M = Pt, Pd or Rh) catalysts. Journal of Catalysis, 2006, 244(2): 169
    [114]Vijay R, Hendershot R J, Rivera-Jime′nez S M, et al. Noble metal free NOx storage catalysts using cobalt discovered via high-throughput experimentation. Catalysis Communications, 2005, 6 (2): 167-171
    [115]Vijay R, Snively C M, Lauterbach J. Performance of co-containing NOx storage and reduction catalysts as a function of cycling condition. Journal of Catalysis. 2006, 243(2): 368-375
    [116]Vijay R, Dellamorte J C, Snively C M, et al. Optimization of Co containing NSR catalysts using high throughput experimentation. Chimica Oggi-Chemistry Today, 2007, 25(2): 14-16
    [117]李新刚,孟明,林培炎等,Co助剂对稀燃NOx阱Pt/Ba-Al-O结构和性能的影,催化学报, 2002, 23(5): 417-420
    [118]Yamazaki K, Suzuki T, Takahashi N, et al. Effect of the addition of transition metals to Pt/Ba/Al_2O_3 catalyst on the NOx storage-reduction catalysis under oxidizing conditions in the presence of SO_2. Applied Catalysis B: Environmental, 2001, 30(3-4): 459-468
    [119]Yamazaki K, Takahashi N, Shinjoh H, Sugiura M. The performance of NOx storage-reduction catalyst containing Fe-compound after thermal aging. Applied Catalysis B: Environmental, 2004,53(1): 1-12
    [120]Luo J Y, Meng M, Zha Y Q, et al. A comparative study of Pt/Ba/Al_2O_3 and Pt/Fe-Ba/Al_2O_3 NSR catalysts: New insights into the interaction of Pt-Ba and thefunction of Fe. Applied Catalysis B: Environmental, 2008, 78(1-2): 38-52
    [121]Szailer T, Kwak J H, Kim D H, et al. Effects of Ba loading and calcination temperature on BaAl_2O_4 formation for BaO/Al_2O_3 NOx storage and reduction catalysts. Catalysis Today, 2006, 114(1): 86-93
    [122]Szanyi J, Kwak J H, Hanson J, et al. Changing morphology of BaO/Al_2O_3 during NO_2 uptake and release. Journal of Physical Chemistry B, 2005, 109(15): 7339-7344
    [123]Szanyi J, Kwak J H, Kim D H, et al. NO_2 adsorption on BaO/Al_2O_3: The nature of nitrate species. Journal of Physical Chemistry B, 2005, 109(1): 27-29
    [124]Kwak J H, Kim D H, Szailer T, et al. NOx uptake mechanism on Pt/BaO/Al_2O_3 Catalysts. Catalysis Letters, 2006, 111(3-4): 119-126
    [125]Piacentini M, Maciejewski M, Baiker A. Pt-Ba/alumina NOx storage-reduction catalysts: Influence of Ba loading on NOx storage behavior. Applied Catalysis B: Environmental, 2005, 60(3-4): 265-275
    [126]Piacentini M, Maciejewski M, Baiker A. Pt-Ba/alumina NOx storage-reduction catalysts: Effect of Ba-loading on build-up, stability and reactivity of Ba- containing phases. Applied Catalysis B: Environmental, 2005, 59(3-4): 187-195
    [127]Piacentini M, Maciejewski M, Baiker A. Supported Pt-BaNOx storage-reduction catalysts: Influence of support and Ba loading on stability and storage efficiency of Ba-containing species. Applied Catalysis B: Environmental., 2006, 66(1-2): 126-136.
    [128]Piacentini M, Maciejewski M, Baiker A. Role and distribution of different Ba-containing phases in supported Pt-BaNSR catalysts. Topics in Catalysis, 2007, 42-43(1-4): 55-59
    [129]Luo J Y, Meng M, Li X G, Zha Y Q. Highly thermo-stable mesoporous catalyst Pt/BaCO_3-Al_2O_3 used for efficient NOx storage and desulfation: Comparison with conventional impregnated catalyst. Microporous and Mesoporous Materials., 2008, 113(1-3):277-285
    [130]Hodjati S, Bernhardt P, Petit C, et al. Removal of NOx: PartⅠ.sorption/ desorption processes on barium aluminate. Applied Catalysis B: Environmental, 1998, 19(3-4): 209-219
    [131]Hodjati S, Bernhardt P, Petit C, et al. Removal of NOx: PartⅡ. Species formed during the sorption/desorption processes on barium aluminates. Applied Catalysis B: Environmental., 1998, 19(3-4): 221-232
    [132]Takeuchi M, Matsumoto S. NOx storage-reduction catalysts for gasoline engines Topics in Catalysis. 2004, 28(1-4): 151-156
    [133]Basile F, Fomasari G. Effect of Mg, Ca and Ba on the Pt-catalyst for NOx storage reduction. Applied Catalysis B: Environmental, 2006, 69(1-2): 58-64
    [134]Basile F, Fomasari G. Reactivity of Mg-Ba catalyst in NOx storage/reduction. Catalysis Today, 2007, 119(1-4): 59-63
    [135]Dou D, Balland J. Impact of alkali metals on the performance and mechanicalproperties of NOx adsorber catalysts. SAE Paper, 2002, No 2002-01-0734
    [136]Hori M, Taniquchi S, Noda N, et al. Development of the NOx adsorber catalyst for use with high-temperature condition. SAE Paper, 2001, No 2001-01-1298
    [137]Piacentini M, Maciejewski, Baiker A. NOx storage-reduction behavior of Pt-Ba/MO_2 (MO_2 = SiO_2, CeO_2, ZrO_2) catalysts. Applied Catalysis B: Environmental, 2007, 72 (1-2):105-117
    [138]Ito K, Kakino Sh, Ikeue K. NO adsorption/desorption property of TiO_2-ZrO_2 having tolerance to SO_2 poisoning. Applied Catalysis B: Environmental, 2007, 74(1-2): 137-143
    [139]Takahashi N, Suda A, Hachisuka I, et al. Sulfur durability of NOx storage and reduction catalyst with supports of TiO_2, ZrO_2 and ZrO_2-TiO_2 mixed oxides. Applied Catalysis B: Environmental, 2007, 72(1-2): 187-195
    [140]Imagawa H, Tanaka T, Takahashi N, et al. Synthesis and characterization of Al_2O_3 and ZrO_2-TiO_2 nano-composite as a support for NO, storage-reduction catalyst.Journal of Catalysis, 2007, 51(2): 315-320
    [141]刘咏,孟明,郭丽红等,载体焙烧温度对NOx储存还原催化剂K/Pt/TiO_2-ZrO_2结构与性能的影响,催化学报, 2007, 28(10): 850-856
    [142]Liu Y, Meng M, Li X G, et al. NOx storage behavior and sulfur-resisting performance of the third-generation NSR catalysts Pt/K/TiO_2-ZrO_2. Chemical Engineering Research and Design, 2008, 86(3):932-940
    [143]Tanaka H, Misono M, Advance in designing perovskite catalysts, Current Opinion in Solid Stste and Materials Science, 2001,5(5):381-387
    [144]Pe?a M A, Fierro J L G, Chemical structures and performances of perovskite oxides. Chemistry Reviews, 2001, 101:1981-2017
    [145]Tannaka H, Misono M, Advances in designing perovskites catalysts. Current Opinion in Solid State and Materials Science, 2001, 5:381-387
    [146]Tabat K, Misono M, Elimination of pollutant gases-oxidation of CO, reduction and decomposition of NO. Catalysis Today, 1990, 8(2):249-261
    [147]Nitadori T, Ichiki T, Misono M. Catalytic Properties of Perovskite-Type Mixed Oxides (ABO_3) Consisting of Rare Earth and 3d Transition Metals. The Roles of the A- and B-Site Ions. Bulletin of the Chemical Society of Japan, 1988, 61(3):621-626
    [148]Yasuda H, Fujiwara Y, Mizuno N, et al. Oxidation of carbon monoxide on LaMn_(1-x)Cu_xO_3 perovskite-type mixed oxide, Journal of the Chemical Society, Faraday Transactions, 1994, 90(8):1183-1189
    [149]Tofan C, Klvana D, Kirchinerova J. Direct decomposition of nitric oxide over perovskite-type catalysts: Part I. Activity when no oxygen is added to the feed. Applied Catalysis A: General, 2002, 223(1-2):275-286
    [150]Ferri D, Forni L. Methane combustion on some perovskite-like mixed oxides. Applied Catalysis B: Environmental, 1998, 16(2):119-126
    [151]Zwinkels M F M, J?r?s S G,Menon P G,et al. High temperature combustion.Catalysis Reviews-Science and Engineering, 1993, 35(3):319-326
    [152]Wiswanathan B. CO oxidation and NO reduction on perovskite oxides. Catalysis Reviews-Science and Engineering, 1992, 34 (4):337-354
    [153]Rao C N R, Gopalak rishnan J, V idyasagar K. Superstructures, ordered defects and nonstoichiometry in metal oxides of perovskite and related structures. Indian Journal of Chemistry Sec A , 1984, 23A(4):265-284
    [154]Nakamura T, Misono M, Uchijima T, et al. Lead isotope ratios of ancient Chinese and Japanese glasses, Nippon Kagaku Kaishi, 1980, (6):1679-1682
    [155]Buciuman F C, Patcas F, Zsak J. TPR-study of substitution effects on reducibility and oxidative non-stoichiometry of La0.8A0.2MnO_3+δperovskites. Journal of Thermal Analysis and Calorimetry, 2000, 61(3):819-825
    [156]Guilhaume N , Peter S D, Primet M. Palladium-substituted lanthanum cuprates: application to automotive exhaust purification. Applied Catalysis B: Environmental, 1996, 10(4) : 325-344
    [157]Teraoka Y, Nii H, Kagawa S. Influence of the simultaneous substitution of Cu and Ru in the perovskite-type (La,Sr)MO_3 (M=Al, Mn, Fe, Co) on the catalytic activity for CO oxidation and CO-NO reactions. Applied Catalysis A: General, 2000, 195-195:35-41
    [158]Zhou K, Chen H, Tian Q, et al, Pd-containing perovskite-type oxides used for three-way catalysts. Journal of Molecular Catalysis A: Chemical, 2002, 189(2): 225-232
    [159]NishihataY, Mizuki J, Akao T. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control, Nature, 2002, 418(6894):164-167
    [160]NishihataY, Mizuki J, Tanaka H. Self-regeneration of palladium-perovskite catalysts in modern automobiles. Journal of Physics and Chemistry of Solids, 2005, 66 (2-4):274-282
    [161]Tanaka H. An intelligent catalyst: the self-regenerative palladium-perovskite catalyst for automotive emissions control. Catalysis Surveys from Asia, 2005, 9(2):63-74
    [162]Kim W Y, Hanaoka T, Kishida M. Hydrogenation of carbon monoxide over zirconia-supported palladium catalysts prepared using water-in-oil microemulsion. Applied Catalysis A: General.1997, 155(2) : 283- 291
    [163]Shu J, Kaliaguine S. Well-dispersed perovskite-type oxidation catalysts. Applied Catalysis B: Environmental, 1998, 16 (4) : L303-L308
    [164]Bradow R,Jovanovic D, Petrovic S,Ruthenium Perovskite Catalysts for Lean NOx Automotive Emission ControlIndustrial & Engineering Chemistry Research 1995, 34(6): 1929-1932
    [165]Meadowcroft D B. Low-cost Oxygen Electrode Material. Nature, 1970, 226 (5248) :847-848
    [166]Carroll B J, Sharp P T. Rubidium and Lithium: Opposite Effects on Amine-Mediated Excitement. Science, 1971, 172(3990):1355-1357
    [167]Voorhoeve R J H, Remeika J P, Freeland P E,et al. Rare-Earth Oxides of Manganese and Cobalt Rival Platinum for the Treatment of Carbon Monoxide in Auto Exhaust. Science, 177(4046):353-354
    [168]Voorhoeve R J H , Remeika J P , Johnson D W, Rare-Earth Manganites: catalysts with low ammonia yield in the reduction of nitrogen oxides, Science, 1973, 180(4081): 62-64
    [169]Yamazoe N, Teraoka Y. Oxidation catalysis of perovskites relationships to bulk structure and composition (valency, defect, etc.). Catalysis Today, 1990, 8(2): 175-199
    [170]Seiyama T. Oxidation of Hydrocarbons. Catalysis Reviews-Science and Engineering. 1992 ,34 (4) :281-300
    [171]Hodjati S, Vaezzadeh K, Petit C, Pitchon V, et al. Absorption/desorption of NOx process on perovskites: performances to remove NOx from a lean exhaust gas. Applied Catalysis B: Environmental, 2000, 26 (1):5-16
    [172]Hodjati S, Petit C, Pitchon V, Kiennemann A. Absorption/desorption of NOx process on perovskites - Nature and stability of the species formed on BaSnO_3. Applied Catalysis B: Environmental, 2000, 27 (2):117-126
    [173]陈加福,孟明,林培琰等, BaFeO_3和BaCeO_3钙铁矿型氧化物的储氮性能催化学报, 2003, 24(6): 419-422
    [174]Li X G, Chen J F, Lin P Y, et al. A study of the NOx storage catalyst of Ba-Fe-O complex oxide. Catalysis Communications, 2004, 5(1): 25-28
    [175]Milt V G, Querini C A, Miro E E, et al. Abatement of diesel exhaust pollutants: NOx adsorption on Co,Ba,K/CeO_2 catalysts. Journal of Catalysis, 2003, 220(2): 424-432
    [176]Casapu M, Grunwaldt J D. Enhancement of activity and self-reactivation of NSR-catalysts by temporary formation of BaPtO_3-perovskite Catalysis Letters, 2008, 120(1): 1-7
    [177]Centi G, Arena G E, Perathoner S. Nanostructured catalysts for NOx storage-reduction and N2O decomposition. Journal of Catalysis, 2003, 216(1-2): 443-454
    [178]Centi G, Fornasari G, Gobbi C, et al. NOx storage-reduction catalysts based on hydrotalcite - Effect of Cu in promoting resistance to deactivation. Catalysis Today, 2002, 73(3-4): 287-296
    [179]Yu J B, Jiang Z, Zhu L, et al. Adsorption/desorption studies of NOx on well-mixed oxides derived from Co-Mg/Al hydrotalcite-like compounds. Journal of Physical Chemisrty B, 2006, 110(9): 4291-4300
    [180]Yu J J, Tao Y X, Liu C C, et al. Novel NO trapping catalysts derived from Co-Mg/X-Al (X = Fe, Mn, Zr, La) hydrotalcite-like compounds. Environmental Science & Technology , 2007, 41(4): 1399-1404
    [181]Crocoll M, Kureti S, Weisweiler W. Mean field modeling of NO oxidation over Pt/Al_2O_3 catalyst under oxygen-rich conditions. Journal of Catalysis 2005,229(2): 480-489
    [182]Epling W S, Parks J E, Campbell G C. Further evidence of multiple NOx sorption sites on NOx storage/reduction catalysts. Catalysis Today, 2004, 96(1-2): 21-30
    [183]Mahzoul H, Brilhac J F, Gilot P. Experimental and mechanistic study of NOx adsorption over NOx trap catalysts Applied Catalysis B: Environmental, 1999, 20(1): 47-55
    [184]Nova I, Castoldi L, Lietti L, et al. NOx adsorption study over Pt-Ba/alumina catalysts: FT-IR and pulse experiments. Journal of Catalysis, 2004, 222(2): 377-388
    [185]James D, Fourre E, Ishii M, Bowker M. Catalytic decomposition/regeneration of Pt/Ba(NO_3)2 catalysts: NOx storage and reduction. Applied Catalysis B: Environmental, 2003, 45 (2): 147-159
    [186]Abdulhamid H, Fridell E, SkoglundhM. Influence of the type of reducing agent (H_2, CO, C_3H_6 and C_3H_8) on the reduction of stored NOx in a Pt/BaO/Al_2O_3 model catalyst. Topics in Catalysis, 2004, 30/31(1):161-168
    [187]Lesage T, Verrier C, Bazin P, et al. Studying the NOx-trap mechanism over a Pt-Rh/Ba/Al_2O_3 catalyst by operando FT-IR spectroscopy . Physical Chemistry Chemical Physics, 2003, 5 (20): 4435-4440
    [188]Castoldi L, Nova I, Lietti L, et al The NOx reduction mechanism by H_2 under near isothermal conditions over Pt-Ba/Al_2O_3 Lean NOx Trap systems. Topics in Catalysis, 2007, 42-43(1-4): 189-193
    [189]Nova I, Castoldi L, Lietti L. On the dynamic behavior of NOx-storage/reduction Pt-Ba/Al_2O_3 catalyst. Catalysis Today, 2002, 75(1-4):431-437
    [190]Epling W S, Campbell G, James E. The effects of CO_2 and H_2O on the NOx destruction performance of a model NOx storage/reduction catalyst. Catalysis Letters, 2003, 90(1-2): 45-56
    [191]Graham G W, Jen H W, Chun W, et al. Leaching of Ba~(2+) in NOx tras. Catalysis Letters, 2004, 93 (1–2): 3-6
    [192]Uy D, O′Neill AE, Li J, et al. UV and visible Raman study of thermal deactivation in a NOx storage catalyst. Catalysis Letters, 2004, 95 (3–4):191-201
    [193]Graham G W, Jen H W, Chun W, et al. Coarsening of Pt particles in a model NOx trap. Catalysis Letters, 2004, 93(3-4): 129-134
    [194]Casapu M, Grunwaldt J D, Maciejewski M, et al. The fate of platinum in Pt/Ba/CeO_2 and Pt/Ba/Al_2O_3 catalysts during thermal aging. Journal of Catalysis, 2007, 251(1): 28-38
    [195]Casapu M, Grunwaldt J D, Maciejewski M, et al. Thermal ageing phenomena and strategies towards reactivation of NOx-storage catalysts. Topics in Catalysis, 2007, 42-43(1-4): 3-7
    [196]Matsumoto S, Ikeda Y, Suzuki H, et al. NOx storage reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning. AppliedCatalysis B: Environmental, 2000, 25(2-3):115-124
    [197]Hachisuka I, Hirata H, Ikeda Y. Deactivation mechanism of NoDx storage-reduction catalyst and improvement of its performance. SAE Paper, 2000, No 2000-01-1196
    [198]Sedlmair C, Seshan K, Jentys A, et al. Studies on the deactivation of NOx storage-reduction catalysts by sulfur dioxide. Catalysis Today, 2002, 75(1-4):413-419
    [199]Clive C D, Roger C, Hampden-Smith M J. Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors. Chemical Reviews, 1993, 93(3): 1205-1241
    [200] Broqvist P, Gronbeck H, Fridell E, et al. Characterization of NOx Species Adsorbed on BaO: Experiment and Theory. The Journal of Physical Chemistry B, 2004, 108(11):3523-3530
    [201]Broqvist P, Panas I, Fridell E, Persson H. NOx Storage on BaO(100) Surface from First Principles: a Two Channel Scenario. The Journal of Physical Chemistry B, 2002, 106(1):137-145
    [202]Eguchi K, Watabe M, Ogata S, et al. Reversible sorption of nitrogen oxides in Mn-Zr oxide. Journal of Catalysis, 1996, 158(2):420-426
    [203]Matsumoto S, Ikeda Y, Suzuki H, Ogai M, Miyoshi N. NOx storage reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning. Applied Catalysis B: Environmental, 2000, 25(2-3):115-124
    [204]Kaneko E Y,Pulcinelli S H,Santilli C V. Sol-gel sythesis of titania-alumina catalyst supports. Applied Catalysis A: General, 2002, 235(1):71-78
    [205]Subramanian V, Seebauer Z N, Masel R I. Sythesis of high-temperature titania-alumina supports. Industrial & Engineering Chemistry Research. 2006, 45 (11):3815-3820
    [206]Castillo R, Koch B, Ruiz P, Delmon B. Influence of the amount of titania on the texture and structure of tatania supported on silica. Journal of Catalysis, 1996, 161(2):524-529
    [207]Galindo I R, Viveros T, Chadwick D. Sythesis and characterization of titania-based ternary and binary mixed oxides prepared by the sol-gel method and their activity in 2-propanol dehydration. Industrial & Engineering Chemistry Research. 2007, 46(4):1138-1147
    [208]Desikusumastuti A, Staudt T, Gronbeck H, Libuda J. Identifying surface species by vibrational spectroscopy: bridging vs monodentate nitrates. Journal of Catalysis, 2008, 255(1):127-133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700