用户名: 密码: 验证码:
恩洪向斜煤层重烃浓度异常及其成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对恩洪向斜上二叠统煤层重烃浓度异常原因这一长期争议纷纭的科学问题,从煤层气成藏条件、气体同位素、生烃母质、流体活动、孔隙特征等方面开展研究,取得某些新的认识:
     1)发现恩洪向斜部分地区煤层重烃浓度高度异常,在垂向上具有“半旋回”特征,在区域上成片集中分布,地下水头高度与重烃浓度异常区分布一致,认为重烃浓度垂向分布特征受沉积序列控制,向斜构造对煤层重烃起到了强烈的封闭作用,地下水活动是控制煤层重烃浓度高低的一个重要地质因素。
     2)根据煤层自然解吸气烃类、二氧化碳的碳同位素和氦同位素组成分析,认为恩洪煤层重烃气形成于有机热成因,煤层重烃浓度差异的主要原因在于受地下水活跃程度影响的微生物作用强弱,微生物降解重烃的过程具有选择性,使得所产生的甲烷富集12C,碳同位素较重的母质能产生较多的重烃和二氧化碳。
     3)基于生烃热模拟实验和煤岩学分析,发现无论煤层重烃浓度正常区还是异常区,煤样的生烃母质组成和类型、生烃量、烃类组成没有实质性差别,均能够产生大量重烃;重烃气的产生贯穿于整个热模拟过程,直到模拟末期(热解温度500℃)重烃气产出量仍大于甲烷产出量。
     4)煤及其脉体流体包裹体观测揭示,恩洪向斜煤层发育大量生油标志,指示该区煤生油能力较强,并发生过显著的生油历史,说明煤层重烃气浓度异常与生油能力之间存在必然联系。重烃浓度正常区与异常区煤中树皮体含量差别显著,渗出沥青体与树皮体在产状上存在成因联系,指示煤层重烃气主要来源于树皮体。
     5)发现煤及含煤地层方解石脉体油气包裹体极为发育,重烃浓度正常区流体包裹体均一温度集中在130~150℃之间,异常区包裹体均一温度集中在80~90℃和100~110℃两个区间,即异常区煤中有机质经历了完整的“生油窗”,这可能是其煤层重烃气浓度显著较高的一个重要地质原因。
To solve the longstanding controversy scientific problems of abnormal concentrationand origin of heavy hydrocarbon gas in Late Permian coal seams of enhong syncline, theresearch work have carried out from the following aspects: coalbed methane reservoiringconditions, gas isotopes, hydrocarbon generation parent material, fluid activities andporosity characters. Innovative understandings are present as followings:
     (1) The phenomenon of abnormal high concentration of heavy hydrocarbon in coalseams in some areas of the Enhong syncline was discovered. The distribution of heavyhydrocarbon concentration across the stratigraphic sequence shows characteristic ofhalf-cycle fluctuating vary, which matches well with the sedimentary sequence. Highgroundwater head value areas are consistent with the abnormal heavy hydrocarbonconcentration areas. Syncline structures have good seal capacity for heavy hydrocarbonconcentration in shallow coal seam. Groundwater activity is also an important geologicalfactor to control the amount of heavy hydrocarbon concentration of coal seam.
     (2) The origin of heavy hydrocarbon in Enhong syncline is determined as thermogenicgas of coal seam based on the composition analysis of the carbon isotope of hydrocarbonand carbon dioxide and the helium isotope of coal natural desorbed gas. The difference ofheavy hydrocarbon concentration is mainly caused by the different microbial actionintensity. The process of microbial degradation of heavy hydrocarbon is selective to makethe generated methane rich in12C. Parent material with heavier carbon isotopes cangenerate more heavy hydrocarbon and carbon dioxide.
     (3) Based on the hydrocarbon generation thermal simulation experiment and coalpetrography analysis, the parent material types, amount and composition of hydrocarbongeneration are nearly the same between the normal or abnormal areas coal samples, whichare both have good hydrocarbon-generating potential. The heavy hydrocarbon gas generatethroughout the whole thermal simulation experiment process. The output of heavyhydrocarbon is much higher than that of methane even at the end of the last phase ofthermal simulation experiment with the pyrolysis temperature of500℃.
     (4) Inclusions in coals and veins proved that there are a large number of oil generationmarkers in coals of Enhong syncline which indicate that coals in study area have strongability of oil generation and had significantly generated oil in geologic history. There isnecessary connection between generation capacities of oil and heavy hydrocarbon in coalseam. The barkinite contents are different in normal and abnormal area. There are origin collections between barkinite and exsudatinite, which indicate that heavy hydrocarbon aremainly come from barkinite.
     (5) Hydrocarbon inclusions are very well developed in calcite veins body of coal andcoal-bearing strata. The inclusions homogenization temperature ranges from130to130℃in normal area,, while the inclusions homogenization temperature are80~90℃and100~110℃respectively in abnormal area. The organic matter of abnormal area coal seamgo through complete “oil generation window”, which could be an important geologicalfactor for the high concentration of heavy hydrocarbon in coal seam.
引文
Ahmed M, Smith J W. Biogenic methane generation in the degradation of eastern Australian Permiancoals. Organic Geochemistry,2001,32(6):809-816.
    Alsaab D, Eliea M, Izarta A. Comparison of hydrocarbon gases (C1-C5) production from CarboniferousDonets (Ukraine) and Cretaceous Sabinas (Mexico) coals [J]. International Journal of CoalGeology,2008,74:154-162.
    Bertrand P. Geochemical and petrographic characterization of humic coals considered as possible oilsource rocks [J]. Organic Geochemistry,1984,6:481-488.
    Bodnar R J. Petroleum migration in the Miocene Monterey Formation, California, USA: Constraintsfrom fluid-inclusion studies[J]. Mineral Magazine,1990,54:295-304.
    Boreham C, Powell T G. Petroleum source rock potential of coal and associated sediments: qualitativeand quantitative aspects. In: Law B E, Rice D D, eds. Hydrocarbons from Coal. AAPG Studies inGeology No.38,1993.133-158.
    Butland C I, Moore T A. Secondary biogenic coal seam gas reservoirs in New Zealand: A preliminaryassessment of gas contents. International Journal of Coal Geology,2008,76:151-165.
    Clark R C, Blumer M. Distribution ofn-poraffints in marine organisms and sediment[J]. LimnolOceanogr,1967,12:79-87.
    Clayton J L. Composition of crude oils generated from coals and coaly organic matter in shales. In: LawB E, Rice D D, eds. Hydrocarbons from Coal. AAPG Studies in Geology No.38,1993.185-202.
    Connan J. Time-temperature relation in oil genesis[J].AAPG Bulletin,1974,58:2516-2521.
    Dariusz Stapoc. Arndt Shimmelmann, Mria Mastalerz, et al. Carbon isotopic fractionation of CH4andCO2during canister desorption of coal [J]. Organic Geochemistry,2006,37(2):152-164.
    Derbyshire F, Marzec A, Schulten H R, Wilson M A, Davis A, Tekely P, Delpuech J J, Jurkiewicz A,Bronnimann C E, Wind R A, Maciel G E, Narayan R, Bartle K, Snape C.Molecular structure ofcoals:adebate [J]. Fuel,1989,68:1091-1106.
    Devon Rowe, Atis Muehlenbachs. Low-temperature thermal generation of hydrocarbon gases inshallow shales [J]. Nature,1999,398:61-63.
    Devon Rowe, karlis Muehlenbachs. Isotopic fingerprints of shallow gases in the Western Canadiansedimentary basin: tools for remediation of leaking heavy oil wells [J]. Organic Geochemistry,1999,30:861-871.
    Erdmann M, Horsfield B. Enhanced late gas generation potential of petroleum source rocks viarecombination reactions:evidence from the Norwegian North Sea[J]. Geochimica et CosmochimicaActa,2006,70:3943-3956.
    Gentzis T, Goodarzi F, Cheung F K, Laggoun-Défarge F. Coalbed methane producibility from theMannville coals in Alberta, Canada: A comparison of two areas [J]. International Journal of CoalGeology,2008,74:237-249.
    George S C, Ahmed M, Liu Keyu, et al. The analysis of oil trapped during secondary migration[J].Organic Geochemistry,2004c,35(11/12):1489-1511.
    George S C, Lisk M, Eadingtion P J. Fluid inclusion evidence for an early, marine-sourced oil chargeprior to gascondensate migration, Bayu-1, Timor Sea, Australia[J].Marine and Petroleum Geology,2004b,21(9):1107-1128.
    George S C, Ruble T E, Dutkiewicz A, et al. Assessing the maturity of oil trapped in fluid inclusionsusing molecular geochemistry data and visually-determined fluorescence colours[J]. AppliedGeochemistry,2001,16(4):451-473.
    George S C, Volk H, Ahmed M. Oil-bearing fluid inclusions: geochemical analysis and geologicalapplication[J]. ActaPetrologica Sinica,2004a,20(6):1319-1332.
    Given P. An essay on the organic geochemistry of coal [J]. Coal Science,1984,3:65-252.
    Gould K W, Hargrares A J, Smith W J.1987. Variation in the composition of seam gases issuing fromthe coal [J]. Australasian Institute of Mining and Metallurgy Bulletin,292(5):69-73.
    Greenwood P F, George S C, HALL K. Applications of laser micropyrolysis-gas chromatography-massspectrometry[J]. Organic Geochemistry,1998,29(5/7):1075-1089.
    Guo YT, Renton J J, Pern J H. FTIR microspectroscopy of particular liptinite (lopinite-) rich, LatePermian coals from Southern China.1996, International Journal of Coal Geology,29(123):187-197.
    Hunt J M. Petroleum Geochemistry and Geology,2nd edition. Freeman, New York,1996.
    James A T. Correlation of natural gas by use of carbon isotopic distribution between hydrocarboncomponents [J]. AAPGBulletin,1983,67(7):1176~1191.
    Katz B J, Narimanov A, Huseinzadeh R. Signifieance of microbial processes in gases of the SouthCaspian basin[J]. Marine and Petroleum Geology,2002,19(6):783-796.
    Killops S D, Funnell R H, Suggate R P, Sykes R, Peters K E, Walters C, Woolhouse A D, Weston R J,Boudou, J P. Predicting generation and expulsion of paraffinic oil from vitrinite-rich coals[J].Organic Geochemistry,1998,29:1-21.
    Killops S D. Woolhouse A D. Weston R J. Cook R A. A geochemical appraisal of oil generation in theTaranaki Basin, New Zealand [J]. American Association of Petroleum Geology Bulletin,1994,78:1560-1585.
    Killops S, Walker P, Wavrek D. Maturity-related variations in the bitumen compositions of coals fromTara-1and Toko-1wells [J]. New Zealand Journal of Geology and Geophysics,2001,44:157-169.
    Kotarba M J, Rice D D. Composition and origin of coalbed gases in the Lower Silesian, southwestPoland [J].Applied Geochemistry,2001,16:895-910.
    Kotarba M J. Composition and origin of coalbed gases in the Upper Silesian and Lublin basins, Poland[J]. Organic Geochemistry,2001,32:163-180.
    Lewis S D. Isotope compositions of gases in sediments from the Chile Continental margin[C].Proceedings of the Ocean Drilling ProgramScientific Results,1995,141:307-312.
    Mamyin BA, Tolstikhin LN. Helium IsotoPes in Nature. Elsevier,1984,273.
    Mango F D. The light hydrocarbons in petroleum: a critical review[J]. Organic Geochemistry,1997,26(7/8):417-440.
    Mattavelli L, Martinenghic. Deep isotopic light methane in northern Italy [J]. Bacterial Gas,1992,121-132.
    R.Teichmüller et al. Das Kohlenstoff-Lsotopen-Verhaltnis im methan von grubengas and flozgas andseine abhangigkeit von den geologischen verhgltnissea,9th Geol. Mitt,1970,181-206.
    Radke M, Rulk Tter J, Wriend S P. Distribution of naphthalenes in crude oils from the Jave Sea: sourceand maturation effects[J]. Geochim CosmochimActa,1994,58:3675-3689.
    Rice D D, Clayton J L, Pawlewicz M J. Characterization of coal-derived hydrocarbons and source rockpotential of coal beds, San Juan basin, New Mexico and Colorado, U.S.A. International Journal ofCoal Geology.1989,(13):597–626.
    Rice D D. Composition and Origins of Coalbed gas [M]. Law B E, Rice D D eds.Hydrocarbons fromCoal. Halifax N1S Canada: AAPGSpecial Publication,1993:159-184.
    Ritter U, Gr?ver A. Adsorption of petroleum compounds in vitrinite: implications for petroleumexpulsion from coal[J]. International Journal of Coal Geology,2005,62:183-191.
    Scalan R S, Smith J E. An improved measure of the old-even predominance in the normal alkanes ofsediment extracts and prtroleum[J]. Geochimica et Cosmochimical Acta,1970,34:611-620.
    Schoell M. Genetic characterisation of natural gases. American Association Petroleum GeologistsBulletin.1983,67:2225-2238.
    Scott AR, Kaiser W R, Ayers W B, et al. Thermogenic and secondary biogenic gases, San Juan Basin[J].AAPG Bulletin,1994,78(8):1186-1209.
    Scott A R. Composition and origin of coalbed gases from selected basins in the United States[A].International coalbed methane symposium proceedings[C],1993,207-222.
    Smith J W, Pallasser R J. Microbial origin of Australian coalbed methane. AAPGBulletin,1996,80(6):891-897.
    Stach E. Stach’s textbook of coal petrology. Berlin: Stuttgart,1982.1-481.
    Suggate R P. Application of Rank (Sr), a maturity index based on chemical analyses of coals. Marineand Petroleum Geology,2002,19:929-950.
    Sun X G. The optical features and hydrocarbon-generating model of “barkinite”from Late Permian coalsin South China. International Journal of Coal Geology,2002,51(4):251-261.
    Tao M. X., Shi B. G., Li J. Y. Secondary biological coalbed gas in the Xinji area, Anhui province, China:Evidence from the geochemical features and secondary changes[J]. International Journal of CoalGeology,2007,(71):358–370.
    Teichmüller M, Teichmüller R, Colombo U, et al.1968. Iso-topen-Verhaltnis im Methan von Grubengasund Flozgasund seine Abhangigkeit von den geologischen Verhaltnissen[J]. GeologischeMitteilungen,9,181-206.
    Tissot B P, Welte D H. Petroleum Formation and Occurrence.2nd ed.Berlin: Springer-Verlag,1978,1-699.
    Tissot B. P., Welte D.H. Petroleum Formation and Occurrence (Second Revised Revised and EnlargedEdition)[M]. Berlin: Springer Verlag,1984:160-198.
    Volkman J K, Maxwell J R. Acyclic isoprenoids as biological makers[A]. Jonts R B.Biological Makersin the Sedimentary Record[M]. NewYork: Elsevier Publishers,1986.1-42.
    Whiticar M J. Ageochemial perspective of natural gas and atmospheric methane[J]. Orgmk Geedaeeltry,1990,16(1-3):531-547.
    Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation ofmethane[J]. Chemical Geology,1999,161:291–314.
    Wilki Powell T G, Boreham C J, Smyth M, Russell N, Cook A C. Petroleum source rock assessment innon-marine sequences: pyrolysis and petrographic analysis of Australian coals and carbonaceousshales [J]. Organic Geochemistry,1991,17:375-394.
    Zhong N N, Smyth M. Striking liptinitic bark remain speculiar to some Late Permian Chinese coals.International Journal of Coal Geology,1997,33:333-349.
    Багринцева,К. И. и др., Геодосця кефтц ц саэа,1968,6:7-11.
    阿特拉斯B A.石油微生物学[M].黄弟藩,谭实,杨文宽等译.北京:石油工业出版社,1991.1-37.
    曹代勇,李小明,魏迎春.构造煤与原生结构煤的热解成烃特征研究[J].煤田地质与勘探,2005,33(4):39-41.
    曹代勇,李小明,张守仁.构造应力对煤化作用的影响--应力降解机制与应力缩聚机制[J].中国科学(D辑),2006,36(1):59-68.
    陈家良,邵震杰,秦勇.能源地质学[M].徐州:中国矿业大学出版社.2004:31-57.
    陈孟晋,胡国艺.流体包裹体中气体碳同位素测定新方法及其应用[J].石油与天质地质,2002,23(4):339-342.
    陈中凯,胡社荣.煤中的惰性组分与煤成油[J].石油勘探与开发,1996,23(4):25-26.
    程克明,张朝富,赵长毅,等.吐哈盆地油气生成[M].北京:石油工业出版社,1994.5-169.
    戴金星,倪云燕,李剑.塔里木盆地和准噶尔盆地烷烃气碳同位素类型及其意义[J].新疆石油地质,2008,29(4):403-410.
    戴金星,戚厚发,宋岩等.我国煤层气组分、碳同位素类型及其成因和意义[J].中国科学(B辑),1986,16(12):1317-1326.
    戴金星,夏新宇,洪峰等.天然气地学研究促进了中国储量大幅度增长[J].新疆石油地质,2002,23(5):357-365.
    戴金星.成煤作用中形成的天然气和石油[J].石油勘探与开发,1979,(03):10-17.
    戴金星.裴锡古,戚厚发.中国天然气地质学(卷一),石油工业出版社,1993年
    戴金星.天然气碳氢同位素特征和各类天然气鉴别[J].天然气地球科学,1993,(2~3):1-40.
    戴金星.我国煤系地层含气性的初步研究[J].石油学报,1980,1(4):27-37.
    单强,牛贺才.扫描电镜-能谱在单个包裹体物质组成研究中的应用[J].岩石学报,2000,16(04):711-714.
    段利江,唐书恒,刘洪林,等.2008.煤储层物性对甲烷碳同位素分馏的影响[J].地质学报,82(10):1330-1334.
    范璞,孟仟祥,程学慧,等.指示沉积古环境的生物标记化合物.中国科学院兰州地质研究所,生物气体地球化学开放研究实验室研究年报,1987:48-78.
    傅雪海,秦勇,等.沁水盆地中—南部煤储层渗透率主控因素分析.煤田地质与勘探,2001,29(3):16-19.
    傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007,17-18,13.
    高波,陶明信等.煤层气甲烷碳同位素的分布特征与控制因素[J].煤田地质与勘探,2002,30(3):14-17.
    高福红,于均民.流体包裹体在成岩作用研究中的应用[J].世界地质,2000,19(4):320-323.
    葛云锦,陈勇,周瑶琪,等.流体包裹体成分测定的低温相变和显微拉曼光谱分析技术研究进展[J].岩矿测试,2008,27(3):207-210.
    桂宝林.恩洪-老厂地区煤层气成藏条件研究[J].云南地质,2004,23(4):421-433.
    郭占谦,杨海博.中国陆壳是富烃陆壳[J].新疆石油地质,2005,26(3):326-330.
    郭占谦,杨兴科.中国含油气盆地的多种生烃机制[J].石油与天然气地质,2000,21(1):50-64.
    韩德馨,任德贻,王延斌等.中国煤岩学[M].徐州:中国矿业大学出版社,1996,261-263.
    韩喜球,马维林,金翔龙.冲绳海槽南部玄武岩中的流体包裹体成分及其意义[J].海洋与湖沼,2002,33(1):42-46.
    郝石生,陈章明,高耀斌,等.天然气藏的形成与保存[M].北京:石油工业出版社.1995.
    赫英,朱兴国.胜利油田火山岩单个包裹体碳同位素[J].地质科学,1998,33(3):381-383.
    胡国艺,李谨,马成华,等.沁水煤层气田高阶煤解吸气碳同位素分馏特征及其意义[J].地学前缘,2007,14(6):267-272.
    胡社荣,方家虎,潘响亮,等.煤和煤系中微生物量对煤成油的影响和作用――研究现状与进展[J].煤田地质与勘探,1997,25(4):16-20.
    黄第藩,卢双舫.煤成油地球化学研究的最新进展[J].见:黄第藩,等编.煤成油地球化学新进展.北京:石油工业出版社,1992.1-25.
    霍多特.煤与瓦斯突出[M].宋世钊,王佑安译.北京:中国工业出版社.1966.
    金之钧,杨雷,曾溅辉,等.东营凹陷深部流体活动及其生烃效应初探[J].石油勘探与开发,2002,29(2):42-44.
    李昌存,等.栾木场金矿石英流体包裹体及成矿预测[J].矿物岩石,1999,19(1):55-57.
    李纯泉,陈红汉,陈汉林.塔河油田奥陶系热流体活动期次的流体包裹体证据[J].浙江大学学报(理学版),2005,32(2):231-240.
    李纯泉,陈红汉,刘惠民.利用油包裹体微束荧光光谱判识油气充注期次[J].2010,35(4):657-662.
    李明,姜波,兰凤娟等.黔西—滇东地区不同变形程度煤的孔隙结构及其构造控制效应[J].高校地质学报,2012,18(3):533-538.
    李明潮,张五侪.中国主要煤田的浅层煤成气[M].北京:科学出版社,1990,138-143.
    李桥贵,付登文,高超.浅淡滇东恩洪矿区沉煤环境及聚煤规律[J].科技情报开发与经济,2011,21(19):206-209.
    李善鹏,邱楠生,尹长河.利用流体包裹体研究沉积盆地古压力[J].矿产与地质,2003,17(95):161-165.
    林红,琚宜文,侯泉林,等.脆、韧性变形构造煤的激光拉曼光谱特征结构成分响应[J].自然科学进展,2009,19(10):1117-1125.
    刘斌,段光贤. NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987,7(4):345-351.
    刘斌.利用不混溶流体包裹体作为地质温度计和地质压力计[J].科学通报,1986,31(18):1432-1436.
    刘文汇,陈孟晋,关平,等.天然气成藏过程的三元地球化学示踪体系[J].中国科学D辑,2007,37(7):908-915.
    卢冰,潘建明,王自磐.北极沉积物中正构烷烃的组合特征及古沉积环境的研究[J].海洋学报,2002,24(6):35-48.
    卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004.172-268.
    卢双舫,陈听,付晓泰.台北凹陷煤中有机质的成烃动力学模型及其初步应用[J].沉积学报,1997,15(2):126-129.
    卢双舫,王子文,黄第落,等.煤岩显微组分的成烃动力学[J].中国科学(B辑),1995,25(1):101-107.
    卢双舫,张敏.油气地球化学[M].北京:石油工业出版社,2008,171-191.
    罗彦,林守麟.激光剥蚀电感耦合等离子体质谱微区分析新进展[J].分析化学,2001,29(11):1345-1352.
    马锦龙,陶明信.稀有气体同位素地球化学研究进展[J].地球学报,2002,23(5):471-476.
    《煤成气译文专辑》编辑组.煤盆地和煤田里天然气的成份和成因.石油地质论文集煤成气译文专辑,中国石油学会石油地质学会等,1983.23-32.
    欧光习.油气包裹体的分类[A].卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮,编.流体包裹体[M].北京:科学出版社,2004.137-143,374-377.
    潘立银,倪培,欧光习等.油气包裹体在油气地质研究中的应用—概念、分类、形成机制及研究意义[J].矿物岩石地球化学通报,2006,25(1):19-25.
    秦勇,宋全友,傅雪海等.煤层气与常规油气共采的可行性探讨-深部煤储层平衡水条件下的吸附效应.天然气地球科学,2005,16(4):492-498.
    秦勇,唐修义,叶建平,等.2000.中国煤层甲烷稳定碳同位素分布与成因探讨[J].中国矿业大学学报,29(2):113-119.
    秦勇,唐修义,叶建平.1998.华北上古生界煤层甲烷稳定碳同位素组成与煤层气解吸—扩散效应[J].高校地质学报,4(2):127-132.
    秦勇,叶建平,林大杨,焦思红,李贵中.煤储层度与其渗透性及含气性关系初步探讨.煤田地质与勘探,2000,28(1):24-27.
    秦勇,张德民,傅雪海等.山西沁水盆地中~南部现代构造应力场与煤储层物性关系之探讨.地质论评,1999,45(6):576~583.
    饶丹,秦建中,张志荣.单体烃包裹体成分分析[J].石油实验地质,2010,32(1):67-70.
    施继锡,李本超.包裹体作为天然气运移判别标志的研究[J].石油与天然气地质,1991,122:185-194.
    斯塔赫.斯塔赫煤岩学教程[M].杨起,译.北京:煤炭工业出版社,1990:51-59.
    舒歌平,史士东,李克健.煤炭液化技术[M].北京:煤炭工业出版社,2003,53.
    唐修义.有关煤成烃的基本认识[J].地学前缘,1999,6(增刊):204-208.
    陶明信,李晓斌,史宝光,王万春.次生生物气特征、形成条件与资源潜力[J].云南地质,2006,(04):407-408.
    陶明信,王万春,解光新,等.中国部分煤田发现的次生生物成因煤层气[J].科学通报,2005b,50卷(增刊Ⅰ):14-18.
    陶明信.煤层气地球化学研究现状与发展趋势[J].自然科学进展,2005a,15(6):618-651.
    王民,卢双舫,王东良,等.不同热模拟实验煤热解产物特征及动力学分析[J].石油学报,2011,32(5):806-814.
    王世谦.四川盆地侏罗系-震旦系天然气的地球化学特征[J].天然气工业,1994,14(6):1-5.
    王万春,刘文汇,刘全有.浅层混源天然气判识的碳同位素地球化学分析[J].天然气地球科学,2003,4(6):469-472.
    王晓地,刘家齐,汪雄武.南岭某些钨锡铍矿床中单个流体包裹体成分初步研究[J].华南地质与矿产,2008,(3):40-45.
    王义凤,王东良,李志生,等.“MSSV”油气生成模拟实验技术[J].现代科学仪器,2009,(4):115-117.
    王治朝,米敬奎,李贤庆.生烃模拟实验方法现状与存在问题[J].天然气地球化学,2009,20(4):592-597.
    吴国强,林玉成,李一波.恩洪、老厂矿区煤层气资源及赋存特征[J].江苏煤炭,2003,(3):27.
    吴俊,刘明信,马正芳.四川龙潭煤系高含重烃气的地质成因及意义[J].天然气工业,1992,12(3):19-21.
    吴俊,应育浦.南桐矿区煤有机显微组分特征及与油气生成关系研究[J].地质科学,1993,28(3):262-271.
    吴俊,于良辰,李文馥.中国煤层烃类气体组份及地球化学特征的研究[J].中国科学B辑,1989,(9):971-981.
    吴俊.我国富烃煤层的有机岩石学研究[J].岩石学报,1993,9(3):277-287.
    吴俊.中国煤成烃基本理论与实践[M].北京:煤炭工业出版社,1994,62-64.
    吴艳艳,秦勇.煤中矿物/金属元素在生气过程中的催化作用[J].地球科学进展,2009,24(8):882-890.
    夏新宇,洪峰,赵林,等.鄂尔多斯盆地下奥陶统碳酸盐岩有机相类型及生烃潜力(J).沉积学报,1999,17(4):638-650.
    肖贤明,刘德汉,傅家漠.我国聚煤盆地煤系烃源岩生烃评价与成烃模式[J].沉积学报,1996,14(增刊):10-17.
    徐永昌,刘文汇,腾格尔,等.陆良、保山气藏碳、氢同位素特征及纯生物乙烷发现[J].中国科学:D辑,2005,35(8):758-764.
    徐永昌,沈平,刘文汇等.天然气中稀有气体地球化学[M].北京:科学出版社,1998,17-25.
    徐永昌.天然气中氦同位素分布及构造环境[J].地学前缘,1997,4(3-4):185-190.
    杨楚鹏,姚永坚,李学杰.南海南部曾母盆地新生界煤系烃源岩生油条件[J].石油学报,2010,31(6):920-926.
    杨丹,徐文艺,崔艳合.二维气相色谱法测定流体包裹体中气相成分[J].岩矿测试,2007,26(6):451-454.
    杨宜春.关于煤成气组分和甲烷碳同位素的几个问题[J].贵州地质,1992,9(1):99-108.
    姚艳斌,刘大锰,黄文辉,等.2006.两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究[J].煤炭学报,31(2):163-168.
    叶建平,秦勇,林大扬.中国煤层气资源[M].徐州:中国矿业大学出版社,1999.
    易同生.恩洪矿区煤层气富集的控制因素[J].矿物学报,2007,27(3/4):493-498.
    尹国勋,邓寅生,李栋臣等.煤矿环境地质灾害与防治[M].北京:煤炭工业出版社,1997,146-149.
    应育浦,吴俊,李任伟.我国煤层甲烷异常重碳同位素组成的发现及成因研究[J].科学通报,1990,(19):1491-1493.
    于介江,郭佳,崔培龙.延边海沟金矿床石英流体包裹体激光探针40Ar/39Ar测年与成矿背景[J].2010,40(4):835-844.
    于良臣,李文馥.煤与瓦斯突出煤层重烃组分的研究[J].煤炭学报,1981,(4):1-8.
    云南省地质矿产局.云南省区域地质志[M].北京:地质出版社,1990:1-634.
    云南省地质矿产局.云南岩相古地理图集[M].云南:云南科技出版社,1995:1-206.
    张登峰,崔永君,李松庚,宋文立,林伟刚.2011.甲烷及二氧化碳在不同煤阶煤内部的吸附扩散行为[J].煤炭学报,36(10):1693-1698.
    张景廉.中国侏罗系煤成油质疑[J].新疆石油地质,2001,22(1):1-9.
    张美珍,施伟军,张志荣.显微激光拉曼光谱仪的地质应用[J].石油实验地质,2008,30(3):307-310.
    张鹏飞,金奎励,吴涛,等.吐哈盆地含煤沉积与煤成油[M].北京:煤炭工业出版社,1997.1-253.
    张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社,2002,8-9.
    赵师庆著.实用煤岩学.北京:地质出版社,1991.
    赵志根,陈资平,杨陆武.浅析构造煤动力变质作用的生烃问题[J].焦作工学院学报,1998,17(1):26-29.
    郑有业,王思源,李小菊,黄高健,刘承红.有机包裹体研究在石油地质领域中的应用现状[J].地质地球化学,1998,26(2):72-76.
    周雯雯.珠三坳陷有机包裹体特征及其在油源和油气运移分析中的应用[J].中国海上油气地质,2000,14(5):324-331.
    朱和平,王莉娟,刘建明.不同成矿阶段流体包裹体气相成分的四极质谱测定[J].岩石学报,2003,19(02):314-318.
    邹育良,霍秋立,俞萱,等.油气包裹体的显微红外光谱测试技术及应用[J].矿物岩石地球化学通报,2006,25(1):105-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700