用户名: 密码: 验证码:
东亚区域云和降水微物理特征及云微物理参数化方案构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在广泛地调研东亚地区和其他地区(含北美,欧洲和澳洲)云和降水的微物理特征,并将东亚地区云微物理特征与其他地区进行比较。在此基础上,提出了基于东亚地区云和降水微物理观测结果的云微物理参数化方案,并进行了初步试验。具体研究成果涵盖以下三个方面:
     (1)搜集整理了东亚地区和其他地区公开发表的期刊和书籍中关于云和降水微物理的直接观测结果,建立了包含气溶胶,冰核,云(雾)滴,雨滴,冰晶,雪晶,冰雹等粒子浓度和粒子谱分布,云(雾)滴和雨滴含水量,以及降水强度(R)和雷达反射率(Z)的关系等详细信息的数据库。其中东亚地区时间范围为1960-2010,其他地区为1940-2010年。基于该数据库统计分析了东亚云和降水微物理特征。结果表明:(1)东亚地区粒子浓度变化较大,但其变化介于一定的范围;(2)一般可利用Gamma (Γ)函数拟合云滴谱更接近观测谱,但不同观测拟合谱参数值差异较大;(3)可用指数函数和r函数来拟合层状云降水雨滴谱,但对于积云和层积混合云降水雨滴谱,以r函数拟合精度较高;和(4)冰晶、雪晶谱和冰雹谱通常用指数谱来描述。采用同样的方法统计分析了其他地区云和降水微物理特征,并将东亚统计结果与之进行比较。从整体上看,东亚地区云和降水粒子浓度、含水量、谱分布形式与其他地区观测结果大体上相似,但在具体量值上有一定差别。指数谱中,东亚地区雨滴谱平均截距(No)不到其他地区的三分之一,斜率(λ)也比其他地区小;r拟合谱雨滴谱中,东亚地区谱形参数μ负值出现的频率高,其他地区的μ正值出现频率高。东亚地区层状云平均云滴浓度比其他地区略小,平均液态含水量比其他地区的值低。与其他地区相比,东亚地区的冰核平均浓度(22.9L-1)明显高于其他地区的冰核平均浓度(2.7L-1)。东亚地区雪晶谱截距(No)的平均值约为其他地区的四分之一,斜率(λ)不到其他地区的一半,表明东亚地区雪晶小粒子少,而大粒子较多。Z-R关系统计表明,东亚地区层状云降水过程中,相同降水强度时,对应的雷达反射率比其他地区小;相反,积云降水过程中,相同降水率时对应的雷达反射率比其他地区大。
     (2)利用2006年6月至2011年4月CloudSat卫星观测结果统计分析了东亚地区云垂直结构特征。结果表明东亚地区降水云反射率通常接地,而非降水云则相反。降水云主要集中在8km以下,对应雷达反射率介于-20-15dBz之间;非降水云主要分布在4-12km高度层,对应雷达反射率主要介于-28-0dBz之间。对比发现液态降水云雷达反射率的分布及其廓线与降水云相似,说明东亚降水云中液相降水云更具优势。固态降水云中-15℃温度频数分布与雷达反射率分布在统计上有很好的对应关系,表明在-15℃附近的环境中冰相粒子凝华-碰冻是粒子增长的优势过程。深对流云和雨层云对形成降水粒子的贡献分别为58.41%和29.51%,是形成降水粒子的主要云型。云中液态含水量随高度的变化呈指数递减;在9.6km高度以上,云中几乎没有液态水存在。
     (3)从1960年代后期以来,云微物理参数化方案方面的研究取得了较大的进展。总体而言,Lin方案和Rutledge-Hobbs方案奠定了中尺度模式云微物理参数化方案的基础,其它方案均是直接或间接在这两个方案的基础上,从各方面加以改进而形成新的方案。最近十余年云微物理参数化方案在东亚地区的敏感性试验研究表明,不同的方案显示出不同的预报能力,各方案表现出不同的优劣。总体而言,WRF(Weather Research and Forecasting)模式中Lin方案的模拟效果较好,MM5(The PSU/NCAR Mesoscale Model)模式中Goddard和Reisner方案的模拟效果较好。本文基于东亚地区云和降水微物理的统计特征,结合当前中尺度模式中不同微物理参数化方案中的参数化改进点,构建了套新的云微物理参数化方案。新方案考虑了云水、雨水、冰晶、雪晶、霰和雹六种水凝物粒子。粒子谱分布采用r函数来描述,冰晶谱的谱形参数取为常数1,霰谱和冰雹谱的谱形参数取为0。云滴谱、雨滴谱和雪晶谱的谱形参数采用诊断给出,同时保留了云滴谱、雨滴谱和雪晶谱的谱形参数都取为0的选项。并且粒子下落末速度采用质量加权下落末速度。在以上的设定条件下,根据东亚地区云和降水微物理特征,新方案从粒子谱、粒子间相互转换、粒子活化、多物理选项等方面做了相应的改进。尤其是云滴、雨滴和雪晶粒子谱形参数的诊断,云水向雨水自动转换、云滴同质核化和冰晶活化等微物理过程参数化作了较大的改进。
     (4)新方案在成功耦合到WRFv3.4中尺度数值模式后,对华南一次强对流过程进行了模拟试验,结果表明新方案对华南局地强降水的模拟表现出较好的再现能力。通过对不同微物理方案降水的TS评分对比分析,新方案对大雨及以上量级降水的模拟结果较优。
A survey of the existing literature on in-situ measurements of cloud-precipitation microphysical properties has been undertaken over both East Asia and other regions. A database was established to contain microphysical properties for raindrop, cloud droplet, ice nuclei (IN), snow crystal, as well as the relationship between radar reflectivity (Z) and rainfall rate (R). From the datasets, dividing the data coverage into East Asia during the period of1960-2010and the other regions (which is defined as those include the Americas, Europe, Australia, and Africa) during the period of1940-2010. a statistical analysis has been performed. The results show that (1) various particles'total number concentrations vary greatly, but those occur only in certain scale distances;(2) the gamma-sized distribution has been widely used to describe the size distributions of cloud droplets in stratiform clouds, but fitted parameters have a wide range of variations;(3) both the exponential-and the gamma-sized distributions are suitable for representing the raindrops size distributions of the rains originated from stratiform clouds, and the gamma-sized distribution has been applied widely to describe RSDs of the rains originated from both convective and mixed (stratiform and cumuliform) clouds; and (4) the exponential-sized distribution is well adopted to represent the size distributions of ice crystals, snow crystals, and hailstones sampled at several locations.
     The properties over East Asia have been compared with those over the other regions. Both exponential-and gamma-size distributions have been applied to fit raindrop-size distributions over the world. The average intercept (N0) of exponential-size distributions is much smaller over East Asia than that over the other regions, and slope (λ) is slightly smaller. As for gamma-size distributions,the overall average value of intercept is much smaller over East Asia than that in the other regions, and the variation scope of parameters is narrower in East Asia than that in the other regions. Additionally, Most of the shape parameter (μ) are negative over East Asia, while positive μ appears frequently in the other regions. There is a higher total mean IN concentration (22.9L-1) in East Asia, compared with that (of2.7L-1) in the other regions. The average value of the intercept (N0) for snow-crystal size distributions over East Asia is much smaller than that in the other regions, and slope (λ) is not half as large as that in the other regions. The relation between Z and R suggests that the average Z is slightly larger in East Asia than that in the other regions for the rains originating from stratiform clouds with a same R, while Z is smaller in East Asia than that in the other regions for the rains originating from cumuliform clouds.
     The CloudSat satellite data during the period from June2006to April2011,are used to investigate cloud vertical profiles over the region of East Asia (20-50°N.80-120°E). with particular emphasis on comparing the profile of precipitative clouds with that of non-precipitative clouds, as well as the seasonal variations of these profiles. There are some obvious differences between the precipitative and non-precipitative cloud profiles. Generally, precipitative clouds mainly locate below8km with radar reflectivity in the range of-20-15dBz, and usually the clouds reach the ground; while non-precipitative clouds locate in the layers of4-12km with radar reflectivity between-28and0dBz. There are some different features among the liquid precipitative, solid precipitative, and possible drizzle precipitative cloud profiles. In precipitative clouds, radar reflectivity increases rapidly from11to7km in vertical, implying that condensation and collision-coalescence processes play a crucial role in the formation of large-size drops. The frequency distribution of temperature at-15℃is consistent with the highest frequency of radar reflectivity in solid precipitative clouds, which suggests that the temperatures near-15℃are conductive to deposition and accretion processes. The vertical distributions of liquid precipitative clouds differ from season to season with almost the same distributions in spring, summer and autumn as each other but the difference in winter mainly in the lower levels. However, the vertical distributions of solid precipitative clouds change from spring to winter with an alternate double and single high-frequency core, which is consistent with variations of the frequency distribution of temperature at-15℃. The vertical distributions of non-precipitative clouds show a little change with season. The observations also show that the precipitation events over East Asia are mostly related to deep convective clouds and nimbostratus clouds. These results are expected to be useful for future weather and climate model evaluation and improving microphysical parameterizations in a numerical model.
     Much progress of cloud microphysical parameterizaiton has been made since1970s. Generally, most microphysical parameterizaitons have been developed on the basis of Lin scheme and Rutledge-Hobbs scheme. A statistical analysis of the sensitivity tests results on microphysical parameterization over East Asia have been performed, and the results show that Lin scheme in the Weather Research and Forecasting (WRF) model performed well in simulations, and Goddard and Reisner schemes in the PSU/NCAR Mesoscale Model (MM5) simulated reasonably well on the whole.
     East Asia experiences the influence of the Asian monsoon, which has a significant impact on the regional weather and climate. Since the1960s, many numerical models have been used for operational weather forecasting and understanding the climate in East Asia (including developed locally and abroad). However, the microphysical processes used in these models were almost all copied from the numerical models developed abroad. As a result, the simulations show a general "degradation", that is, the results are poorer than those when they are used for the regions other than East Asia. One of the major reasons for the poor results is that the data collected over other regions do not represent conditions for the East Asia. To overcome the shortcoming, it is necessary to develop new parameterization schemes based on the microphysical properties over East Asia.
     A new double-moment bulk microphysics scheme predicting the number concentrations and mixing ratios of six hydrometeor species (cloud droplets, rain, cloud ice, snow, graupel, and hail) has developed and coupled with the Weather Research and Forecasting model (WRFv3.4). The gamma distribution function of the form N(D)=No11exp(-λD) is applied to represnet the size spectra of each hydrometeor category. In the new scheme, the shape parameter μ for cloud drop, rain and snow is a diagnostic variable, which is held constant in most schemes. To better understand cloud-precipitation microphysical properties over East Asia, we have carried out a statistical analysis for cloud-precipitation based on the in-situ measurement data during the period from1958to2010over East Asia, and the cloud-precipitation properties over East Asia have been compared with those over the other regions. As a result, new statistically based parameterizations are developed for parameters of particle-size distributions. Additionally, a new way to predict cloud droplet concentration (Nc) is developed based on the relationship between cloud liquid water content (LWC) and Nc, which is obtained from in situ measurements of135flights with2803records. Besides, the homogenous freezing of cloud droplets has been improved based on the statistical results of cloud vertical profile properties, which are obtained from the CloudSat satellite data during the period from June2006to April2011.
     The local heavy rain event occurring on24-25June2010in southern China was simulated using the new scheme and five sophisticated microphysics schemes in the WRF model. Results showed that the simulated24-h accumulated precipitations were generally agreed with observations.
引文
Ackerman, A. S., O. B. Toon, J. P. Taylor, D. W. Johnson, P. V. Hobbs, R. J. Ferek.2000:Effects of Aerosols on Cloud Albedo:Evaluation of Twomey's Parameterization of Cloud Susceptibility Using Measurements of Ship Tracks. J. Atmos. Sci.,57(16),2684-2695.
    Aligo, E. A., W. A. Gallus Jr., M. Segal.2009:On the Impact of WRF Model Vertical Grid Resolution on Midwest Summer Rainfall Forecasts. Weather and Forecasting,24,575-594.
    Auer, A. H.1972:Distribution of graupel and hail with size. Mon. Wea. Rev.,100(5),325-328.
    Austin, R. T., A. J. Heymsfield, G. L. Stephens.2009:Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res.,114(D8), D00A23. doi:10.1029/2008jd010049
    Baker, M. B.1997:Cloud microphysics and climate. Science,276(5315),1072-1078. doi:10.1126/science.276.5315.1072
    Barker, D. M., W. Huang, Y. R. Guo, A. J. Bourgeois, Q. N. Xiao.2004:A Three-Dimensional Variational Data Assimilation System for MM5:Implementation and Initial Results. Mon. Wea. Rev.,132(4),897-914. doi:10.1175/1520-0493(2004)132<0897:atvdas>2.0.co;2
    Barker, H. W., A. V. Korolev, D. R. Hudak, J. W. Strapp, K. B. Strawbridge, M. Wolde.2008:A comparison between CloudSat and aircraft data for a multilayer, mixed phase cloud system during the Canadian CloudSat-CALIPSO Validation Project. J. Geophys. Res.,113(D8), D00A16. doi:10.1029/2008jd009971
    Battan, L. J..1973:Radar observations of the atmosphere. University of Chicago Press, pp324.
    Beheng, K. D.1994:A parameterization of warm cloud microphysical conversion processes. Atmos. Res., 33(1-4),193-206.
    Bergeron, T.1935:On the physics of cloud and precipitation, U. G. G. I. Lisbon, pp156.
    Berry, E. X.,1967:Cloud Droplet Growth by Collection. J. Atmos. Sci.,24(6),688-701. doi:10.1175/1520-0469(1967)024<0688:CDGBC>2.0.CO;2
    Berry, E. X.,1968:Modification of the warm rain process Amer. Meteor. Soc, Albany, NY, pp81-88.
    Berry, E. X., R. L. Reinhardt.1974:An Analysis of Cloud Drop Growth by Collection Part Ⅱ. Single Initial Distributions. J. Atmos. Sci.,31 (7),1825-1831. doi:10.1175/1520-0469(1974)031<1825:aaocdg>2.0.co;2
    Bigg, E. K.,1953:The supercooling of water, Proc. Phys. Soc., London, pp668-694
    Bodas-Salcedo, A., M. J. Webb, M. E. Brooks, M. A. Ringer, K. D. Williams, S. F. Milton, D. R. Wilson.2008: Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities. J. Geophys. Res.,113(D8), D00A13. doi:10.1029/2007jd009620
    Bony, S., R. Colman, V. M. Kattsov, R. P. Allan, C. S. Bretherton, J.-L. Dufresne, A. Hall, S. Hallegatte, M. M. Holland, W. Ingram, D. A. Randall, B. J. Soden, G. Tselioudis. M. J. Webb.2006:How well do we understand and evaluate climate change feedback processes? J. Clim.,19(15),3445-3482.
    Botton, L. J.,1960:Radar Meteorology., University of Chicago Press, Chicago, pp79-84.
    Bower, K. N., T. W. Choularton.1992:A parameterisation of the effective radius of ice free clouds for use in global climate models. Atmos. Res.,27(4),305-339
    Brandes, E. A., K. Ikeda, G. Zhang, M. Schonhuber, R. M. Rasmussen.2007:A Statistical and Physical Description of Hydrometeor Distributions in Colorado Snowstorms Using a Video Disdrometer. J. Appl. Meteorol. Clim.,46(5),634-650. doi:10.1175/jam2489.1
    Brandes, E. A., G. Zhang, J. Vivekanandan.2003:An Evaluation of a Drop Distribution Based Polarimetric Radar Rainfall Estimator. J. Appl. Meteorol. Clim.,42(5),652-660. doi:10.1175/1520-0450(2003)042<0652:aeoadd>2.0.co;2
    Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, K. Ikeda.2008:Analysis of Video Disdrometer and Polarimetric Radar Data to Characterize Rain Microphysics in Oklahoma. J. Appl. Meteorol. Clim.,47(8), 2238-2255. doi:10.1175/2008jamc 1732.1
    Chen, S.-H., W.-Y. Sun.2002:A One-dimensional Time Dependent Cloud Model. J. Meteor. Soc. Japan,80(1), 99-118.
    Chu, Y.-H., C.-L. Su.2008:An Investigation of the Slope-Shape Relation for Gamma Raindrop Size Distribution. J. Appl. Meteorol. Clim.,47(10),2531-2544. doi:10.1175/2008jamc 1755.1
    Cohard, J.-M., J.-P. Pinty.2000:A comprehensive two-moment warm microphysical bulk scheme. Ⅰ:Description and tests. Quart. J. Roy. Meteor. Soc.,126(566).1815-1842. doi:10.1002/qj.49712656613
    Cooper, W. A.1986:Ice initiation in natural clouds. Precipitation Enhancement-A Scientific Challenge. Meteor. Monogr.,21,29-32.
    Cotton, W. R., M. A. Stephens, T. Nehrkorn, G. J. Tripoli.1982:Colorado State University three-dimensional cloud/mesoscale model-1982. Part Ⅱ:An ice phase parameterization. J. Rech. Atmos.,16(4),295-320.
    Cotton, W. R., G. J. Tripoli, R. M. Rauber, E. A. Mulvihill.1986:Numerical Simulation of the Effects of Varying Ice Crystal Nucleation Rates and Aggregation Processes on Orographic Snowfall. Journal of Climate and Applied Meteorology,25(11),1658-1680. doi:10.1175/1520-0450(1986)025< 1658:nsoteo>2.0.co;2
    Danielsen, E. F., R. Bleck, D. A. Morris.1972:Hail Growth by Stochastic Collection in a Cumulus Model. J. Atmos. Sci.,29(1),135-155. doi:10.1175/1520-0469(1972)029<0135:HGBSCI>2.0.CO;2
    Deirmendjian, D., (1969). Electromagnetic scattering on spherical polydispersions, Elsevier, New,75-80pp.
    DeMott, P. J., M. P. Meyers, W. R. Cotton.1994:Parameterization and Impact of Ice initiation Processes Relevant to Numerical Model Simulations of Cirrus Clouds. Journal of the Atmospheric Sciences,51(1), 77-90. doi:10.1175/1520-0469(1994)051<0077:paioii>2.0.co;2
    DeMott, P. J., A. J. Prenni, X. Liu, S. M. Kreidenweis, M. D. Petters, C. H. Twohy, M. S. Richardson, T. Eidhammer, D. C. Rogers.2010:Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences,107(25),11217-11222. doi:10.1073/pnas.0910818107
    Deshpande, M. S., S. Pattnaik, P. S. Salvekar.2012:Impact of cloud parameterization on the numerical simulation of a super cyclone. Ann. Geophys.,30(5),775-795. doi:10.5194/angeo-30-775-2012
    Donaldson, R. J.1961:Radar reflectivity profiles in thunderstorms. J. Meteorol.,18(3),292-305. doi:10.1175/1520-0469(1961)018<0292:rrpit>2.0.co;2
    Douglas, R. H., (1964). Hail size distribution, Boston,Massachusetts, pp146-149.
    Dudhia, J.1989:Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci.,46(20),3077-3107. doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO 2
    Engholm, C. D. K., S. W. Troxel.1990:Beam filling loss adjustments for ASR-9 weather channel reflectivity estimates. Project report, pp 4-33.
    Ferrier, B.1994:A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I:Description. J. Atmos. Sci.,51 (2),249-280. doi:10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2
    Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, R. J. Cotton.2005:Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc.,131(609), 1997-2017. doi:10.1256/qj.04.134
    Fletcher, N. H.,1962, The physics of rain clouds. Cambridge University Press. London, pp386.
    Franklin, C. N.2008:A Warm Rain Microphysics Parameterization that Includes the Effect of Turbulence. J. Atmos. Sci.,65(6),1795-1816. doi:10.1175/2007JAS2556.1
    Fu, Y., G. Liu.2003:Precipitation Characteristics in Mid-Latitude East Asia as Observed by TRMM PR and TMI. J. Meteor. Soc. Japan,81(6),1353-1369.
    Fujiwara, M.1965:Raindrop-size Distribution from Individual Storms. J. Atmos. Sci.,22(5),585-591.
    Gao, W., F. Zhao, Z. Hu, X. Feng.2011:A two-moment bulk microphysics coupled with a mesoscale model WRF:Model description and first results. Adv. Atoms. Sci.,28(5),1184-1200. doi:10.1007/s00376-010-0087-z
    Gilmore, M. S., J. M. Straka, E. N. Rasmussen.2004:Precipitation Uncertainty Due to Variations in Precipitation Particle Parameters within a Simple Microphysics Scheme. Mon. Wea. Rev.,132(11), 2610-2627. doi:10.1175/MWR2810.1
    Gordon, G. L., J. D. Marwitz, M. Bradford.1982:Hydrometer distributions in California rainbands,
    Greenwald, T. J., Y.-K. Lee. J. A. Otkin. T. L'Ecuyer.2010:Evaluation of midlatitude clouds in a large-scale high-resolution simulation using CloudSat observations. J. Geophys. Res.,115(D19), D19203. doi:10.1029/2009jd013552
    Gultepe,1., G. A. Isaac.1997:Liquid Water Content and Temperature Relationship from Aircraft Observations and Its Applicability to GCMs. J. Climate,10(3),446-452. doi:10.1175/1520-0442(1997)010<0446:LWC ATR>2.0.CO;2
    Gunn, K. L. S., J. S. Marshall.1958:The distribution with size of aggregate snowflakes. J. Atmos. Sci.,15(5), 452-461.
    Hallett, J., S. C. Mossop.1974:Production of secondary ice particles during the riming process. Nature, 249(5452),26-28.
    Haywood, J., O. Boucher.2000:Estimates of the Direct and Indirect Radiative Forcing Due to Tropospheric Aerosols:A Review. Rev. Geophys.,38(4),513-543. doi:10.1029/1999rg000078
    Heymsfield, J. Andrew, C. M. R. Platt.1984:A Parameterization of the Particle Size Spectrum of Ice Clouds in Terms of the Ambient Temperature and the Ice Water Content. J. Atmos. Sci.,41(5),846-855.
    Hobbs, P. V., J. D. Locatelli.1970:Ice Nucleus Measurements at Three Sites in Western Washington. J. Atmos. Sci..27(1),90-100. doi:10.1175/1520-0469(1970)027<0090:inmats>2.0.co;2
    Hong, S.-Y., J. Dudhia, S.-H. Chen.2004:A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Anglais,132(1),103-120. doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
    Hong, S.-Y., H.-M. H. Juang, Q. Zhao.1998:Implementation of Prognostic Cloud Scheme for a Regional Spectral Model. Mon. Wea. Rev.,126(10),2621-2639. doi:10.1175/1520-0493(1998) 126<2621:IOPCSF>2.0.CO;2
    Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. v. d. Linden, X. Dai, K.Maskell, C. A. Johnson.2001: Climate Change 2001:The Scientific Basis. Cambridge University Press, Cambridge,United Kingdom and New York, NY, USA, pp49
    Hu, Y. X.,1994, A study of the link between cloud microphysics and climate change:a thesis. University of Alaska Fairbanks.
    Iguchi, T., T. Matsui, J. J. Shi, W.-K. Tao, A. P. Khain, A. Hou, R. Cifelli, A. Heymsfield, A. Tokay.2012: Numerical analysis using WRF-SBM for the cloud microphysical structures in the C3VP field campaign: Impacts of supercooled droplets and resultant riming on snow microphysics. J. Geophys. Res.,117(D23), n/a-n/a. doi:10.1029/2012jd018101
    IPCC.2007. Climate Change 2007:The Physical Science Basis. Summary for Poli cymakers, pp
    Jakob, C., S. A. Klein.1999:The role of vertically varying cloud fraction in the parametrization of microphysical processes in the ECMWF model. Quart. J. R. Meteorol. Soc.,125,941-965
    Janjic, Z. I., J. P. Gerrity, J. a. S. Nickovic.2001:An Alternative Approach to Nonhydrostatic Modeling. Mon. Wea. Rev.,129,1164-1178.
    Ju, Y., H. Wang, Z. Zhong, S. Song.2009:A Simulation Study on the Characteristics of Cloud Microphsics of Heavy Rainfall in the Meiyu Front. Acta Meteorol. Sin.,23(2),206-222.
    Kessler, E.,1969, On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Circulations. Meteorological Monographs,10. American Meteorological Society, Boston, pp84.
    Khain, A., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, H. Krugliak.2000:Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res.,55(3-4),159-224.
    Khain, A. P.2009:Notes on state-of-the-art investigations of aerosol effects on precipitation:a critical review. Environ. Res. Lett,4(015004). doi:10.1088/1748-9326/4/1/015004
    Khairoutdinov, M., Y. Kogan,2000, A new cloud physics parameterization in a large-Eddy simulation model of marine stratocumulus. American Meteorological Society, Boston, MA, ETATS-UNIS,
    Khvorostyanov, V. I., J. A. Curry.1999:Toward the Theory of Stochastic Condensation in Clouds. Part Ⅰ:A General Kinetic Equation. J. Atmos. Sci.,56(23),3985-3996. doi:10.1175/1520-0469(1999)056<3985:tttosc>2.0.co;2
    Koenig, L. R.1971:Numerical Modeling of Ice Deposition. J. Atmos. Sci.,28(2),226-237. doi:10.1175/1520-0469(1971)028<0226:nmoid>2.0.co;2
    Koenig, L. R., F. W. Murray.1976:Ice-Bearing Cumulus Cloud Evolution:Numerical Simulation and General Comparison Against Observations. J. Appl. Meteor.,15(7),141-162. doi:10.1175/1520-0450(1976)015<0747:ibccen>2.0.co:2
    Kong, F., M. K. Yau.1997:An explicit approach to microphysics in MC2. Atmosphere-Ocean,35(3),257-291. doi:10.1080/07055900.1997.9649594
    Lane, T. P., J. C. Knievel.2005:Some Effects of Model Resolution on Simulated Gravity Waves Generated by Deep, Mesoscale Convection. J. Atmos. Sci.,62(9),3408-3419. doi:10.1175/jas3513.1
    Li, X., S. Gao.2012:Microphysical and Radiative Effects of Ice Clouds, in Precipitation Modeling and Quantitative Analysis edited by Springer Netherlands, pp 137-173.
    Li, X., X. Guo, J. Zhu.2008:Climatic Features of Cloud Water Distribution and Cycle over China. Adv. Atmos. Sci.,25(3),437-446.
    Lim, K.-S. S., S.-Y. Hong.2010:Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models. Anglais,138(5), 1587-1612. doi:10.1175/2009MWR2968.1
    Lin, W., B. Cholaw.2006:The Cloud Proeesses of a Simulated Moderate Snowfall Event in North China. ADV. ATOMS. SCI.,23(2),235-242.
    Lin, Y.-L., R. D. Farley, H. D. Orville.1983:Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor.,22(6),1065-1092.
    Lin, Y, B. A. Colle.2011:A New Bulk Microphysical Scheme That Includes Riming Intensity and Temperature-Dependent Ice Characteristics. Mon. Wea. Rev.,139(3).1013-1035. doi:10.1175/2010MWR3293.1
    Liu, Y., T. T. Warner, J. F. Bowers, L. P. Carson, F. Chen, C. A. Clough, C. A. Davis, C. H. Egeland, S. F. Halvorson, T. W. Huck, L. Lacharpelle, R. E. Malone, D. L. Rife, R.-S. Sheu, S. P. Swerdlin, D. S. Weingarten.2008:The Operational Mesogamma-Scale Analysis and Forecast System of the U.S. Army Test and Evaluation Command. Part Ⅰ. Overview of the Modeling System, the Forecast Products, and How the Products Are Used. J. Appl. Meteorol. Clim.,47(4),1077-1092.
    Luo, Y, R. Zhang, H. Wang.2009:Comparing Occurrences and Vertical Structures of Hydrometeors between Eastern China and the Indian Monsoon Region Using CloudSat/CALlPSO Data. J. Climate,22(4), 1052-1064.
    Ma, Z., J. Fei, X. Huang, X. Cheng.2012:Sensitivity of tropical cyclone intensity and structure to vertical resolution in WRF. Asia-Pacific Journal of Atmospheric Sciences,48(1),67-81. doi:10.1007/s 13143-012-0007-5
    Mace, G. G., C. Jakob, K. P. Moran.1998:Validation of hydrometeor occurrence predicted by the ECMWF model using millimeter wave radar data. Geophys. Res. Lett.,25,1645-1648.
    Markowski, P., Y. Richardson,2010, Mesoscale Meteorology in Midlatitudes. pp232.
    Marshall, J. S., W. M. Palmer.1948:The distribution of raindrops with size. J. Atmos. Sci.,5(4),165-166.
    McCumber, M., W.-K. Tao, J. Simpson, R. Penc, S.-T. Soong.1991:Comparison of Ice-Phase Microphysical Parameterization Schemes Using Numerical Simulations of Tropical Convection. J. Appl. Meteor.,30(7), 985-1004. doi:10.1175/1520-0450-30.7.985
    Meyers, M. P., P. J. DeMott, W. R. Cotton.1992:New Primary Ice-Nucleation Parameterizations in an Explicit Cloud Model. J. Appl. Meteor.,31(7),708-721. doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2
    Meyers, M. P., R. L. Walko, J. Y. Harrington, W. R. Cotton.1997:New RAMS cloud microphysics parameterization. Part II:The two-moment scheme. Atmos. Res.,45(1),3-39. doi:10.1016/SO169-8095(97)00018-5
    Milbrandt, J. A., M. K. Yau.2005a:A Multimoment Bulk Microphysics Parameterization. Part Ⅰ:Analysis of the Role of the Spectral Shape Parameter. J. Atmos. Sci.,62(9),3051-3064. doi:10.1175/JAS3534.1
    Milbrandt, J. A., M. K. Yau.2005b:A Multimoment Bulk Microphysics Parameterization. Part II:A Proposed Three-Moment Closure and Scheme Description. J. Atmos. Sci.,62,3065-3081.
    Miles, N. L., J. Verlinde, E. E. Clothiaux.2000:Cloud Droplet Size Distributions in Low-Level Stratiform Clouds. J. Atmos. Sci.,57(2),295-311.
    Mitchell, D. L.1994:A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds, part I:microphysics. J. Atmos. Sci.,51 (6),797-816.
    Molders, N., G. Kramm, M. Laube.1995:The role of parameterized ice microphysics on cloud structures, dynamics and sulfate distribution. Trans. A&WMA,108-127.
    Morrison, H., J. A. Curry, V. I. Khvorostyanov.2005a:A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part Ⅰ:Description. J. Atmos. Sci.,62(6),1665-1677. doi:10.1175/JAS3446.1
    Morrison, H., J. O. Pinto.2005:Mesoscale Modeling of Springtime Arctic Mixed-Phase Stratiform Clouds Using a New Two-Moment Bulk Microphysics Scheme. J. Atmos. Sci.,62(10),3683-3704. doi:10.1175/jas3564.1
    Morrison, H., G. Thompson, V. Tatarskii.2009:Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line:Comparison of One-and Two-Moment Schemes. Mon. Wea. Rev.,137(3),991-1007.
    Murakami, M.1990:Numerical Modeling of Dynamical and Microphysical Evolution of an Isolated Convective Cloud. J. Meteor. Soc. Japan. Ser. 1168(2),107-128.
    Murray, F. W.1967:On the Computation of Saturation Vapor Pressure. J. Appl. Meteor.,6(1),203-204. doi:10.1175/1520-0450(1967)006<0203:otcosv>2.0.co;2
    Musil, D. J.1970:Computer Modeling of Hailstone Growth in Feeder Clouds. Journal of the Atmospheric Sciences,27(3),474-482. doi:10.1175/1520-0469(1970)027<0474:cmohgi>2.0.co;2
    Nelson, L. D., (1979). observations and numerical simulations of precipitation mechanisms in natural and seeded converctive clouds. University of Chicago, Chicago,188pp
    Ogura, Y., T. Takahashi.1971:Numerical simulation of the life cycle of a thunderstorm cell. Anglais,99(12). 895-911. doi:10.1175/1520-0493(1971)099<0895:nsotlc>2.3.co;2
    Orville, H. D., F. J. Kopp.1977:Numerical Simulation of the Life History of a Hailstorm. J. Atmos. Sci..34(10), 1596-1618. doi:10.1175/1520-0469(1977)034< 1596:nsotlh>2.0.co;2
    Paquita, Z., M. Brian.2008:Cloud Vertical Structure Observed from Space and Ship over the Bay of Bengal and the Eastern Tropical Pacific. J. Meteor. Soc. Japan, Ser. 11,86A,205-218.
    Peng, Y, U. Lohmann, R. Leaitch, M. Kulmala.2007:An investigation into the aerosol dispersion effect through the activation process in marine stratus clouds. J. Geophys. Res.,112(D11). D11117. doi:10.1029/2006jd007401
    Pilieacute, R. J., E. J. Mack, W. C. Kocmond, C. W. Rogers, W. J. Eadie.1975:The life cycle of valley fog. part I: micrometeorological characteristics. J. Appl. Meteor.,14(3),347-363.
    Platt, C. M. R.1997:A parameterization of the visible extinction coefficient of ice clouds in terms of the ice/water content. J. Atmos. Sci.,54(16),2083-2098.
    Poore, K. D., J. WANG, W. B. ROSSOW.1995:Cloud layer thicknesses from a combination of surface and upper-air observations. J. Climate,8,550-568.
    Protat, A., D. Bouniol, J. Delanoe, E. O'Connor, P. T. May, A. Plana-Fattori, A. Hasson, U. Gorsdorf, A. J. Heymsfield.2009:Assessment of Cloudsat Reflectivity Measurements and Ice Cloud Properties Using Ground-Based and Airborne Cloud Radar Observations. J. Atmo. Ocean. Tech..26(9),1717-1741. doi:10.1175/2009jtechal246.1
    Pruppacher, H. R., J. D. Klett,1997, Microphysics of Clouds and Precipitation. Kluwer Academic, MOSCOW.
    Quante, M.2004:The role of clouds in the climate system. J. Phys. IV France,121,61-86.
    Ramanathan, V., P. J. Crutzen, J. T. Kiehl, D. Rosenfeld.2001:Aerosols, Climate, and the Hydrological Cycle. Science,294(5549),2119-2124.
    Randall, D. A., Harshvardhan, D. A. Dazlich, T. G. Corsetti.1989:Interactions among Radiation, Convection, and Large-Scale Dynamics in a General Circulation Model. J. Atmos. Sci.,46(13),1943-1970. doi:10.1175/1520-0469(1989)046<1943:1ARCAL>2.0.CO;2
    Rasmussen, R. M., I. Geresdi. G. Thompson, K. Manning, E. Karplus.2002:Freezing Drizzle Formation in Stably Stratified Layer Clouds:The Role of Radiative Cooling of Cloud Droplets, Cloud Condensation Nuclei, and Ice Initiation. J. Atmos. Sci.,59(4),837-860. doi:10.1175/1520-0469(2002)059<0837:fdfiss>2.0.co;2
    Reisner, J., R. M. Rasmussen, R. T. Bruintjes.1998:Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc.,124(548),1071-1107.
    Roach, W. T., R. Brown, S. J. Caughey, J. A. Garland, C. J. Readings.1976:The physics of radiation fog:I-a field study. Quart. J. Roy. Meteor. Soc.,102(432),313-333.
    Rogers, R., M. Yau,1989, A short course in Cloud Physics. Pergamon, Tarrytown, NY,
    Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O'Dowd, M. Kulmala, S. Fuzzi, A. Reissell, M. O. Andreae.2008: Flood or Drought:How Do Aerosols Affect Precipitation? Science,321(5894),1309-1313. doi:10.1126/science.1160606
    Rosenfeld, D., C. W. Ulbrich.2003:Cloud Microphysical Properties, Processes, and Rainfall Estimation Opportunities. Meteorological Monographs,30(52),237-237. doi:10.1175/0065-9401 (2003)030<0237:cmppar>2.0.co;2
    Rutledge, S. A., P. Hobbs.1983:The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones.Ⅷ:A Model for the "Seeder-Feeder" Process in Warm-Frontal Rainbands. J. Atmos. Sci.,40(5),1185-1206. doi:10.1175/1520-0469(1983)040< 1185:TMAMSA>2.0.CO;2
    Rutledge, S. A., P. V. Hobbs.1984:The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. Ⅻ:A Diagnostic Modeling Study of Precipitation Development in Narrow Cold-Frontal Rainbands. J. Atmos. Sci.,41(20),2949-2972. doi:10.1175/1520-0469(1984)041<2949:TM AMSA>2.0.CO;2
    Ryan, B. F.2000:A bulk parameterization of the ice particle size distribution and the optical properties in ice clouds. J. Atmos. Sci.,57(9),1436-1451.
    Schultz, P.1995:An Explicit Cloud Physics Parameterization for Operational Numerical Weather Prediction. Mon. Wea. Rev.,123(11),3331-3343. doi:10.1175/1520-0493(1995) 123<3331:AECPPF>2.0.CO;2
    Seifert, A.2005:On the Shape-Slope Relation of Drop Size Distributions in Convective Rain. J. Appl. Meteor., 44(7),1146-1151. doi:10.1175/jam2254.1
    Sekhon, R. S., R. C. Srivastava.1970:Snow Size Spectra and Radar Reflectivity. J. Atmos. Sci.,27(2),299-307. doi:10.1175/1520-0469(1970)027<0299:sssarr>2.0.co;2
    Sekhon, R. S., R. C. Srivastava.1971:Doppler Radar Observations of Drop-Size Distributions in a Thunderstorm. J. Atmos. Sci.,28(6),983-994. doi:10.1175/1520-0469(1971)028<0983:droods>2.0.co;2
    Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, J. G. Powers.2008:A Description of the Advanced Research WRF Version. NCAR TECHNICAL NOTES.
    Slingo, J. M., A. Slingo.1991:The response of a general circulation model to cloud longwave radiative forcing. 11:Further studies. Quart. J. R. Meteorol. Soc.,117(498),333-364. doi:10.1002/qj.49711749805
    Smedsmo, J. L., E. Foufoula-Georgiou, V. Vuruputur, F. Kong, K. Droegemeier.2005:On the Vertical Structure of Modeled and Observed Deep Convective Storms:Insights for Precipitation Retrieval and Microphysical Parameterization. J. Appl. Meteorology,44(12),1866-1884. doi:10.1175/jam2306.1
    Soong, S.-T.1974:Numerical Simulation of Warm Rain Development in an Axisymmetric Cloud Model. J. Atmos. Sci.,31(5),1262-1285. doi:10.1175/1520-0469(1974)031<1262:nsowrd>2.0.co;2
    Squires, P.1958:The Microstructure and Colloidal Stability of Warm Clouds. Tellus,10(2),256-261. doi:10.1111/j.2153-3490.1958.tb02011.x
    Srivastava, R. C.1978:Parameterization of Raindrop Size Distributions. J. Atmos. Sci.,35(1),108-117. doi:10.1175/1520-0469(1978)035<0108:PORSD>2.0.CO;2
    Straka, J. M.,2009, Cloud and Precipitation Microphysics:Principles and Parameterizations. Cambridge University Press.
    Stephens, G. L.2005:Cloud Feedbacks in the Climate System:A Critical Review. J. Climate,18(2),237-273. doi:10.1175/jcli-3243.1
    Stephens, G. L., D. G. Vane, R. J. Boain, G. G. Mace, K. Sassen, Z. Wang, A. J. Illingworth. E. J. O'Connor, W. B. Rossow, S. L. Durden, S. D. Miller, R. T. Austin, A. Benedetti, C. Mitrescu, and T. CloudSat Science Team,2002:The cloudsat mission and the a-train. Bulletin of the American Meteorological Society,83(12), 1771-1790. doi:10.1175/bams-83-12-1771
    Stephens, G. L., D. G. Vane, S. Tanelli, E. Im, S. Durden, M. Rokey, D. Reinke, P. Partain, G. G. Mace, R. Austin, T. L'Ecuyer, J. Haynes, M. Lebsock, K. Suzuki, D. Waliser, D. Wu, J. Kay, A. Gettelman, Z. Wang, R. Marchand.2008:CloudSat mission:Performance and early science after the first year of operation. J. Geophys. Res.,113(D8), D00A18. doi:10.1029/2008jd009982
    Straka, J. M., E. R. Mansell.2005:A Bulk Microphysics Parameterization with Multiple Ice Precipitation Categories. J.Appl. Meteor.,44(4),445-466. doi:10.1175/jam2211.1
    Takeuchi.1978:Characterization of raindrop size distributions. Preprints of Conf. Cloud Physicsand Atmospheric Electricity, Issaquah, Amer. Meteor. Soc.,154-161pp.
    Tao, W.-K., J. Shi, S. Chen, S. Lang, P.-L. Lin, S.-Y. Hong, C. Petcrs-Lidard, A. Hou.2011:The impact of microphysical schemes on hurricane intensity and track. Asia-Pacific J. Atmos. Sci.,47(1),1-16. doi:10.1007/s13143-011-1001-z
    Tao, W.-K., J. Simpson.1993:Goddard Cumulus Ensemble Model. Part I:Model Description. Terr. Atmos. Oceanic Sci.,4(1),35-72.
    Tao, W.-K., J. Simpson, M. McCumber.1989:An Ice-Water Saturation Adjustment. Anglais,117(1),231-235. doi:10.1175/1520-0493(1989) 117<0231:AIWSA>2.0.CO;2
    Taylor, G. I.1917:The formation of fog and mist. Quart. J. Roy. Meteor. Soc.,43(183),241-268.
    Team, G. C. S. S.1993:The GEWEX Cloud System Study (GCSS). Bull. Amer. Meteor. Soc.,74(3),387-399. doi:10.1175/1520-0477(1993)0740387:tgcss>2.0.co;2
    Thompson, G.2006:A New Bulk Microphysical Parameterization for WRF ( & MM5). (1994),1-11.
    Thompson, G, P. R. Field, R. M. Rasmussen, W. D. Hall.2008:Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part Ⅱ:Implementation of a New Snow Parameterization. Mon. Wea. Rev.,136(12),5095-5115. doi:10.1175/2008MWR2387.1
    Thompson, G., R. M. Rasmussen, K. Manning.2004:Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part Ⅰ:Description and Sensitivity Analysis. Anglais,132(2),519-542. doi:10.1175/1520-0493(2004) 132<0519:EFOWPU>2.0.CO;2
    Tripoli, G. J., W. R. Cotton.1980:A Numerical Investigation of Several Factors Contributing to the Observed Variable Intensity of Deep Convection over South Florida. J. Appl. Meteor.,19(9),1037-1063. doi:10.1175/1520-0450(1980)019<1037:ANIOSF>2.0.CO;2
    Ulbrich, (1981). Effect of size distribution variations on precipitation parameters determinied by dual-measurement techiniques. Preprints of 20th Conf. Radar Meteoroloy, Boston, Amer. Meteor. Soc. 276-281pp.
    Verlinde, J., P. J. Flatau, W. R. Cotton.1990:Analytical Solutions to the Collection Growth Equation: Comparison with Approximate Methods and Application to Cloud Microphysics Parameterization Schemes. J.Atmos. Sci.,47(24),2871-2880. doi:10.1175/1520-0469(1990)047<2871:asttcg>2.0.co;2
    Vivekanandan, J., G. Zhang, E. Brandes.2004:Polarimetric Radar Estimators Based on a Constrained Gamma Drop Size Distribution Model. J. Appl. Meteor.,43(2),217-230. doi:10.1175/1520-0450(2004)0430217:preboa>2.0.co;2
    Waldvogel, A.1974:The No jump of raindrop spectra. J. Atmos. Sci.,31(4),1067-1078.
    Waliser, D. E., J.-L. F. Li, C. P. Woods, R. T. Austin, J. Bacmeister, J. Chern, A. Del Genio, J. H. Jiang, Z. Kuang, H. Meng, P. Minnis, S. Platnick, W. B. Rossow, G. L. Stephens, S. Sun-Mack, W.-K. Tao, A. M. Tompkins, D. G. Vane, C. Walker, D. Wu.2009:Cloud ice:A climate model challenge with signs and expectations of progress. J. Geophys. Res.,114(D8), D00A21. doi:10.1029/2008jd010015
    Walko, R. L., W. R. Cotton, M. P. Meyers, J. Y. Harrington.1995:New RAMS cloud microphysics parameterization part I:the single-moment scheme. Atmos. Res.,38(1-4),29-62.
    Wang, D.. X. Li, W.-K. Tao.2010:Torrential rainfall responses to radiative and microphysical processes of ice clouds during a landfall of severe tropical storm Bilis (2006). Meteorology and Atmospheric Physics,109(3), 107-114. doi:10.1007/s00703-010-0097-5
    Wang, D., X. Li. W.-K. Tao.2011:Cloud radiative effects on responses of rainfall to large-scale forcing during a landfall of severe tropical storm Bilis (2006). Atmos. Res.,98(2-4),512-525.
    Wang, J., W. B. Rossow.1998:Effects of Cloud Vertical Structure on Atmospheric Circulation in the GISS GCM. J. Climate,11(11),3010-3029. doi:10.1175/1520-0442(1998)011<3010:EOCVSO>2.0.CO;2
    Wang, P. Y., J. Yang.2003:Observation and numerical simulation of cloud physical processes associated with torrential rain of the meiyu front. Adv. Atmos. Sci.20(1),77-96.
    Wang, W.-C., W. Gong, W.-S. Kau, C.-T. Chen, H.-H. Hsu, C.-H. Tu.2004:Characteristics of Cloud Radiation Forcing over East China. Journal of Climate,17(4),845-853. doi:10.1175/1520-0442(2004)017<0845:cocrfo>2.0.co;2
    Wang, Z., K. Sassen.2001:Cloud Type and Macrophysical Property Retrieval Using Multiple Remote Sensors. J. Appl. Meteor.,40(10),1665-1682. doi:10.1175/1520-0450(2001)040<1665:ctampr>2.0.co;2
    Willis.1984:Functional fits to some observed dropsize distributions and parameterization of rain. J. Atmos. Sci., 41,1648-1661.
    Wisner, C., H. D. Orville, C. Myers.1972:A Numerical Model of a Hail-Bearing Cloud. J. Atmos. Sci.,29(6), 1160-1181. doi:10.1175/1520-0469(1972)029<1160:anmoah>2.0.co;2
    Wong, Chidambaram.1985:Gamma Size Distribution and Stochastic Sampling Errors J. Appl. Meteor.,24(6), 568-579.
    Xu, W., E. J. Zipser, C. Liu.2009:Rainfall Characteristics and Conveclive Properties of Mei-Yu Precipitation Systems over South China, Taiwan, and the South China Sea. Part I:TRMM Observations. Mon. Wea. Rev., 137(12),4261-4275. doi:10.1175/2009mwr2982.1
    Xue, M., D. Wang, J. Gao, K. Brewater, K. K. Droegemeier.2003:The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteorol. Atmos. Phys.,82, 139-170.
    Yano, J. I., and V. T. J. Phillips.2010:lce-lce Collisions:An Ice Multiplication Process in Atmospheric Clouds. J. Atmos. Sci.,68(2),322-333. doi:10.1175/2010jas3607.1
    Yau, M. K., P. M. Austin.1979:A Model for Hydrometer Growth and Evolution of Raindrop Size Spectra in Cumulus Cells. J. Atmos. Sci.,36(4),655-668. doi:10.1175/1520-0469(1979)036<0655:amfhga>2.0.co;2
    Yin, J., D. Wang, G. Zhai.2011:Long-term in situ measurements of the cloud-precipitation microphysical properties over East Asia. Atmos. Res.,102(1-2),206-217.
    Yin, J., D. Wang, G. Zhai.2013:A Comparison Study of Cloud-Precipitation Microphysics over East Asia. J. Meteor. Soc. Japan. (Accepted)
    Yin, J., D. Wang, G. Zhai.2012:An evaluation of ice nuclei characteristics from the long-term measurement data over North China. Asia-Pacific J. Atmos. Sci.,48(2),197-204. doi:10.1007/s13143-012-0020-8
    Yin, J., D. Wang, G. Zhai.2012:Liquid Water Content Versus Cloud Number Concentration over North China in Warm Season. (To be submitted)
    You, L. G., Y. G. Liu.1995:Some microphysical characteristics of cloud and precipitation over China. Atmos. Res.,35(2-4),271-281.
    Young, K. C.1974:The Role of Contact Nucleation in Ice Phase Initiation in Clouds. Journal of the Atmospheric Sciences,31 (3),768-776. doi:10.1175/1520-0469(1974)031<0768:trocni>2.0.co;2
    Yu, R., B. Wang, T. Zhou.2004:Climate Effects of the Deep Continental Stratus Clouds Generated by the Tibetan Plateau. Journal of Climate.17(13),2702-2713. doi:10.1175/1520-0442(2004)017<2702:ceotdc>2.0.co;2
    Yuan, J., R. A. Houze, A. J. Heymsfield.2011:Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat. J. Atmos. Sci.,68(8),1653-1674. doi:10.1175/2011jas3687.1
    Yuter, S. E., R. A. Houze.1995:Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part II:Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity. Mon. Wea. Rev.,123(7),1941-1963. doi:10.1175/1520-0493(1995)123<1941:tdkame>2.0.co;2
    Zeng, X., W.-K. Tao, M. Zhang, A. Y. Hou, S. Xie, S. Lang, X. Li, D. O. Starr, C., X. Li, J. Simpson.2009a:An Indirect Effect of Ice Nuclei on Atmospheric Radiation. J. Atmos. Sci.,66(1),41-61.
    Zeng, X., W.-K. Tao, M. Zhang, A. Y. Hou, S. Xie, S. Lang, X. Li, D. O. c. Starr, X. Li.2009b:A contribution by ice nuclei to global warming. Quart. J. Roy. Meteor. Soc.,135,1614-1629.
    Zhang, G., J. Vivekanandan, E. Brandes.2001:A method for estimating rain rate and drop size distribution from polarimetric radar measurements. Geoscience and Remote Sensing, IEEE Transactions on,39(4),830-841. doi:10.1109/36.917906
    Zhang, G., J. Vivekanandan, E. A. Brandes, R. Meneghini, T. Kozu.2003:The shape-slope relation in observed gamma raindrop size distributions:Statistical error or useful information? Journal of atmospheric and oceanic technology,20(8),1106-1119. doi:10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2
    Zhang, M., W. Lin, S. A. Klein, J. T. Bacmeister, S. Bony, R. T. Cederwall, A. D. Del Genio, J. J. Hack, N. G. Loeb, U. Lohmann, P. Minnis, I. Musat, R. Pincus, P. Stier, M. J. Suarez, M. J. Webb, J. B. Wu, S. C. Xie, M. S. Yao, J. H. Zhang.2005:Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res.,110,1-18. doi:10.1029/2004jd005021
    Zhang, R. H., X. S. Shen.2008:On the development of the GRAPES——A new generation of the national operational NWP system in China. Chinese Science Bulletin,53(22),3429-3432.
    Ziegler, C. L.1985:Retrieval of Thermal and Microphysical Variables in Observed Convective Storms. Part 1: Model Development and Preliminary Testing. J. Atmos. Sci.,42(14),1487-1509. doi:10.1175/1520-0469(1985)042< 1487:ROTAM V>2.0.CO;2
    Zipser, E. J.1977:Mesoscale and Convective—Scale Downdrafts as Distinct Components of Squall-Line Structure. Anglais,105(12),1568-1589. doi:10.1175/1520-0493(1977) 105< 1568:macdad>2.0.co;2
    万日金,吴国雄.2006:江南春雨的气候成因机制研究.中国科学D辑,36,936-950.
    卞礼智,邢克溥,蒋年冲,周文贤,章澄昌,李子华.1984:一次梅雨锋降水的雨滴谱分析.南京气象学院学报,1,36-46.
    孔凡铀,黄美元,徐华英.1990:对流云中冰相过程的三维数值模拟1:模式建立及冷云参数化.大气科学,14(4),442-453.
    牛生杰.1992:宁夏夏季降水性层状云微结构观测分析.高原气象,11(3),241-248.
    牛生杰,安夏兰,桑建人.2002:不同天气系统宁夏夏季降雨谱分布参量特征的观测研究.高原气象,21(1),37-44.
    牛俊丽,闫之辉.2007:WRF模式微物理方案对强降水预报的影响.科技信息,23,17-20.
    王成恕.1994:山东省春秋季降水系统的云物理概念特征.山东气象,57(4),8-12.
    王明星,任丽新,吕位秀,曾伟,游荣高.1984:大气气溶胶的粒度谱分布函数及其随高度的变化.大气科学,8(4),435-442.
    王明康.1983:过滤法测量冰晶核浓度.南京大学学报(自然科学版),1,171-180.
    王雨,闫之辉.2006:2004年汛期(5-9月)主客观降水预报检验.热带气象学报,22(4),331-339.
    王雨曾,魏新尧.1981:两次冰雹过程的观测分析.气象,8,37-39.
    王俊.1997:山东省秋季冷锋云系中冰雪晶的分布特征.山东气象,17(4),49-53.
    王俊,张连云,陈金敏,王庆,龚佃利.1999:秋季层状云中高值过冷水区的微物理特征.气象,25(12),24-27.
    王建捷,胡欣,郭肖容.2001:MM5模式中不同对流参数化方案的比较试验.应用气象学报,12(1),41-53.
    王慧娟,牛生杰,雷恒池,吴玉霞.2010:降水性层云含水量跃变对应的微结构观测研究.大气科学,33(2),212-219.
    王扬锋,雷恒池,吴玉霞.2005:延安层状云暖层中水凝物粒子的谱分布.南京气象学院学报,28(6),787-793.
    王标.2011:气候变化研究中的大气垂直结构探测述评.大气与环境光学学报,6(1),2-10.
    王灵色,郭继恒.1989:关于冰雹谱谱型的进一步探讨.防雹及雹云物理文集.北京:气象出版社,119-121pp
    付炜,王东海,殷红,李俊.2012:青藏高原与东亚地区暖季MCSs统计特征的对比研究.高原气象.(已录用)
    北方层状云人工降水试验课题组.1991:北方层状云人工降水试验研究(主要成果摘要),国家重点课题,气科院80-3X-2,pp
    石安英,孙玉稳,田志熙.1989:冰雹谱分布特征的探讨.高原气象,8,279-283.
    石爱丽,郑国光,游来光.2006:2003年秋季青海省河南县地面大气冰核观测分析.应用气象学报,17,245-249.
    伍华平,束炯,顾莹,胡少立.2009:暴雨模拟中积云对流参数化方案的对比试验.热带气象学报,25(2),175-180.
    伍红雨,陈德辉,徐国强.2007:不同物理过程参数化方案对贵州降水的敏感性试验.气象,33(4),23-28.
    宇如聪,2004,AREMS中尺度暴雨数值预报模式系统.气象出版社,北京.
    朱文琴.1982:气溶胶粒子谱的观测分析.大气科学,6(2),217-223.
    朱珍华,石可昭,黄美元.1965:南岳锋面云系和降水(1962年4-5月)的微结构特征.我国云雾降水微物理特征的研究,北京:科学出版社,1-17pp.
    江祖凡.1988:庐山暴雨雨滴谱分析.应用气象学报,3(1),105-108.
    何光碧.2009:MM5模式中积云参数化方案在西南地区适应性的进一步试验分析.高原山地气象研究,29(3),12-19.
    何绍钦.1987:西安市一次晴空气溶胶粒子的观测分析.气象,13(5),19-22.
    李大山,2004,人工影响天气现状与展望.气象出版社,北京,pp274.
    李子华.2001:中国近40年来雾的研究.气象学报,59(5),616-624.
    李子华,吴君.1995:重庆市区冬季雾滴谱特征.南京气象学院学报,18(1),46-51.
    李子华,黄建平,周毓荃,朱诗武.1999:1996年南京连续5天浓雾的物理结构特征.气象学报,57(5),622-63].
    李俊,王斌,王志斌,沈铁元.2008:不同参数化方案对长江中游汛期降水模式预报试验.气象科技,36(2),134-144.
    李娟,黄庚.2001:黄河上游地区大气冰核浓度的观测研究.气象,27,8-12.
    李崇银,屈昕.2000:伴随南海夏季风爆发的大尺度大气环流演变.大气科学,24(1),1-14.
    李淑日.2006:西北地区云和降水微物理特征个例分析.气象,32(8),59-63.
    李照荣,李荣庆,李宝梓.2003:兰州地区秋季层状云垂直微物理特征分析.高原气象,22(6),583-589.
    李照荣,李荣庆,陈添宇,李宝梓,杨增梓,庞朝云.2004:春季冷锋天气过程层状云微物理结构个例分析.干旱气象,22(4),40-55.
    李艳伟,杜秉玉.2003:新疆天山山区大气冰核浓度的测量及分析.南京气象学院学报,26,364-370.
    汪学林,张万钧,熊尚清.1965:白城地区春季的大气冰核.气象学报,35(3),273-279.
    肖辉,徐华英,黄美元.1988:积云中云滴谱形成的数值模拟研究(一)——盐核谱和浓度的作用.大气科学,12(2),121-130.
    阮忠家.1962:南岳阵雨雨滴谱连续取样观测(1961年8月)结果初步分析.我国云雾降水微物理特征问题,北京:科学出版社,58-63pp.
    周允华,项月琴,谢贤群.1978:呼伦贝尔草原大气浑浊度的测量和尘埃输送的初步探讨.大气科学,2(4),332-340.
    周非非,廖菲,苏爱芳,周毓荃.2008:河南省2002年秋季一次层状云降水过程的观测研究.南京气象学院学报,31(4),483-493.
    周祖刚,谈哲敏,张.熠,姜勇强.2011:模式湿物理过程的组合对一次南京大暴雨降水模拟的影响分析.南京大学学报(自然科学),47(4),481-492.
    周毓荃,刘晓天,周非非.2001:河南干旱地面雨滴谱特征.应用气象学报,12(增刊),39-47.
    周毓荃,欧建军.2010:利用探空数据分析云垂直结构的方法及其应用研究.气象,36(11),50-58.
    周晓平,王东海.1996:短时风暴数值预报模式研究Ⅰ.模式的理论框架.大气科学,20(1),1-11.
    孟英杰,吴洪宝,王丽,张萍萍.2008:2007年主汛期武汉区域四种数值模式定量降水预报评估.暴雨灾害,27(3),273-277.
    林文实,孟金平,蒙伟光,樊琦,李江南.2009:华北暴雪的云微物理参数化方案的比较模拟.气象科学,29(2),150-156.
    河北省气象科学研究所云雾物理研究实验室.1980:大气中的冰核与冰雪晶,河北人民出版社,石家庄,pp44-55.
    河惠卿,王振会,金正润,牛生杰,徐爱淑.2009:积云参数化和物理方案不同组合应用对台风路径模拟效果的影响.热带气象学报,25(4),435-441.
    施文全.1994:一次特大冰雹的雹谱分析.新疆气象,17(6),35-39.
    施文全,王昂生.1983:冰雹微结构的分析研究.气象学报,41,89-96.
    段旭,王曼,刘建宇,段玮.2006:低纬高原地区MM5v3不同参数化方案降水模拟试验.气象,32(4),16-23.
    段旭,王曼,陈新梅,刘建宇,符睿.2011:中尺度WRF数值模式系统本地化业务试验.气象,37(1),39-47.
    洪延超.1998:三维冰雹云催化数值模式.气象学报,56(6),641-653.
    洪钟祥,黄美元.1965:南岳云滴谱第二极大及其它重要特征.我国云雾降水微物理特征的研究,北京:科 学出版社,18-29pp.
    胡志晋,何观芳.1987:积雨云微物理过程的数值模拟(一)微物理模式.气象学报,45(4),467-484.
    胡志晋,何观芳.1988:积雨云中微物理过程的数值模拟(二)阵雨、冰雹、暴雨的个例研究.气象学报,46(1),28-40.
    胡志晋,严采蘩.1986:层状云微物理过程的数值模拟(一)——微物理模式.气象科学研究院院刊,1(1),37-52.
    胡志晋,楼小凤,包绍武,汪晓滨.1998:一个简单的混合相云降水显示方案.应用气象学报,9(3),257-264.
    胡亮,李耀东,何金海.2010:东亚热带季风与副热带季风降水特征研究的回顾和展望.热带气象学报,26(6),813-818.
    范烨,郭学良,付丹红,李宏宇.2007:北京及周边地区2004年8、9月间大气气溶胶分布特征观测分析.气候与环境研究,12(1),49-62.
    宴红明,任菊章,段玮.2006:中尺度模式中各种积云参数化方案的对比试验.南京气象学院学报,29(4),491-499.
    徐建军,万齐林.2011:物理参数化和资料初始化对中国东南部暴雨模拟的影响.大气科学学报,34(2),129-134.
    徐家骝,黄孟容,刘钟灵,段兆吉.1965:甘肃岷县地区1964年6-7月两次冰雹雹谱、雹切片的分析.气象学报,35(2),251-256.
    徐华英,李桂忱,郝京甫:1986:积云降水过程的数值模拟研究,中国南方云物理学和人工降水论文集.气象出版社.
    徐国强,梁旭东,余晖,黄丽萍,薛纪善.2007:不同云降水方案对一次登录台风的降水模拟.高原气象,26(5),891-900.
    徐国强,陈德辉,薛纪善,孙健,沈学顺,沈元芳,黄丽萍,伍湘君,张红亮,王世玉.2008:GRAPES物理过程的优化试验及程序结构设计.科学通报,53(20),2428-2434.
    徐静琦,张正,魏皓.1994:青岛海雾雾滴谱与含水量观测与分析.海洋湖沼通报,2,174-178.
    袁成,樊玲,李亚滨.2001:哈尔滨地区春夏季降水微结构特征.南京气象学院学报,24(2),250-257.
    高松影,刘天伟,李慧琳,樊希彬,宋丽丽.2011:日本数值产品对丹东暴雨预报的天气学检验与误差分析.暴雨灾害,30(3),234-240.
    康丽莉,雷恒池,肖稳安.2003:中尺度模式中各种湿物理过程的数值模拟.南京气象学院学报,26(1),76-83.
    郭恩铭,俞香仁,李炎辉.1989:双流机场雾宏微观结构研究.全国物理和人工影响天气会议文集,北京:气象出版社,pp35-38.
    郭学良,黄美元,洪延超,肖辉,周玲.2001:三维冰雹分档强对流云数值模式研究Ⅰ.模式建立及冰雹的循环增长机制.大气科学,25(5),707-720.
    游来光,王守荣,王鼎丰,迟玉明.1989:新疆冬季降雪微结构及其增长过程的初步研究.气象学报,47(1),73-81.
    游来光,石安英.1964:北京地区1963年春季冰核浓度变化特点的观测分析.气象学报,34,548-554.
    游来光,熊光莹,高明忍,陆煜钧,孙可富,任德福.1965:春季吉林地区层状冷云中冰晶的形成与雪晶增长特点.气象学报,35(4),423-433.
    游来光,杨绍忠,王祥国,皮家雄.2002:1995和1996年春季北京地区大气冰核浓度的观测与研究.气象学报,60(1),101-109.
    游荣高,任丽新.1990:北京采暖期间和采暖期前大气气溶胶物理特性的对比研究.大气科学,14(3),354-363.
    程麟生,冯伍虎.2001:“987”突发大暴雨及中尺度低涡结构的分析和数值模拟.大气科学,25(4),465-478.
    詹丽珊,陈文奎,黄美元.1965:南岳和泰山云中微结构起伏资料的初步分析.我国云雾降水微物理特征的研究,北京:科学出版社,pp30-40.
    廖飞佳,张建新,黄钢.1996:北疆冬季层状云微物理结构初探.新疆气象,19(5),31-34.
    翟国庆,高坤.2001:青藏高压东侧偏北大风对梅雨暴雨影响的合成分析.浙江大气学报(理学版),28(3),337-343.
    樊玲,袁成,张云峰.2001:哈尔滨地区层状云降水微物理特征.气象,27(12),42-46.
    樊玲,张新玲,张云峰,袁成,李子华.2001:哈尔滨地区积雨云降水微结构特征.气象科学,21(4),399-408.
    严采蘩,陈万奎.1990:层状云云滴尺度谱分布及其谱参数计算.应用气象学报,1(4),352-359.
    冯桂丽.1993:一次冷涡云系微物理结构及雪粒子增长机制的分析.山东气象,50(1),37-41.
    刘公波,胡志晋,游来光.1994:混合相层状云系模式和中尺度低涡云系的实例模拟.气象学报,52(1),78-89.
    刘玉宝,周秀骥,胡志晋.1993:三维弹性套网格中尺度(β-γ)大气模式.气象学报,51(3),369-380.
    刘奇俊,胡志晋,周秀骥.2003:HLAFS显式云降水方案及其对暴雨和云的模拟(1)云降水显式方案.应用气象学报,14(增刊),60-66.
    刘卫国,刘奇俊.2007:祁连山夏季地形云结构和云微物理过程的模拟研究(Ⅰ):模式云物理方案和地形云结构.高原气象,26(1),1-15.
    刘红燕,雷恒池.2006:基于地面雨滴谱资料分析层状云和对流云降水的特征.大气科学,21,607-614.
    卢萍,肖玉华.2011:2010年AREM、GRAPES模式预报性能对比检验分析.高原山地气象研究,31(3),8-12.
    叶笃正,罗四维,朱报真.1957:西藏高原及其附件的流场结构和对流层大气的热量平衡.气象学报,28(2),]08-121.
    吴兑.1987:宁夏一次暴雨的地面雨滴谱和雷达反射因子的对比分析.高原气象,6(4),366-370.
    吴兑.1987:宁夏地区6-7月降水性层状云的云滴谱特征.气象,13(9),48-50.
    吴兑.1989:广州地区1984年6月小阵雨的微物理结构.气象,15(5),16-22.
    吴兑,何应昌,陈桂樵,陈汝珍,何绍钦,魏新尧,何观芳.1988:广东省新丰江流域4-5月暖云的微物理特征.热带气象学报,4(3),341-349.
    吴兑,邓雪娇,毛节泰,毛伟康,叶燕翔,毕雪岩,唐浩华,万齐林.2007:南岭大瑶山高速公路浓雾的宏 微观结构与能见度研究.气象学报,65,406-414.
    孙可富,游来光.1965:1963年4-6月吉林地区降水性层状冷云中的冰晶与雪晶.气象学报,35(3),265-272.
    孙玉稳,段英,吴志会.1996:石家庄秋季大气气溶胶物理特征分析.气象,22(2),40-43.
    孙建华,赵思雄.2000:一次罕见的华南大暴雨过程的诊断与数值模拟研究.大气科学,24(3),381-392.
    孙晶,王鹏云.2003:用MM5模式Reisner霰方案对华南暴雨的数值模拟.气象,29(4),10-14.
    孙晶,楼小凤,胡志晋,沈学顺.2008:CAMS复杂云物理方案与GRAPES模式耦合的数值试验.应用气象学报,19(3),315-325.
    宫福久,何友江,王吉宏,杨军.2007:东北冷涡天气系统的雨滴谱特征.气象科学,27(4),365-373.
    宫福久,李子华,陈宝君,李艳伟.1997a:一次北上台风降水微结构演变特征.气象科学,17(4),335-343.
    宫福久,刘吉成,李子华.1997b:三类降水云雨滴谱特征研究.大气科学,21(5),607-614.
    张大林.1998:各种非绝热物理过程在中尺度模式中的作用.大气科学,22(4),548-561.
    张云,雷恒池,潘晓滨,王春明,解妍琼.2009:一次梅雨锋上MCS云微物理过程及降水形成机制.气象科学,29(4),434-446.
    张昊,濮江平,李靖,顾锦荣.2011:庐山地区不同海拔高度降水雨滴谱特征分析.气象与减灾研究,34(2),43-50.
    张国庆,孙安平.2006:青海东部一次强冰雹的微结构及生长机制研究.青海气象,1,14-21.
    张维,邵德民,沈爱华,何珍珍,沈志来,吴玉霞,任丽新,黄美元.1990:上海夏季大气气溶胶观测和分析.大气科学,14(2),225-231.
    杨中秋,许绍祖,耿骠.1989:舟山地区春季海雾的形成和微物理结构.海洋学报(中文版),11(4),431-438.
    杨加艳,肖辉,肖稳安,秦元明.2010:基于SATP和SIFT方法分析雨滴谱特征及参数关系.高原气象,29(2),486-497.
    杨连素.1985:青岛近海海雾微物理结构的初步观测.海洋科学,9(4),49-50.
    杨颂禧,刘棠福,龚乃虎,徐家骝.1981:一次雹暴回波和雹块微结构分析.大气科学,5(2),157-165.
    楼小凤.2002:MM5模式的新显式云物理方案的建立和耦合及原来微物理方案的对比分析.北京大学,北京.
    楼小凤,周秀骥,胡志晋,王鹏云,史月琴.2004:MM5模式显式微物理方案的对比分析.气象科技,32(1),6-12.
    蒋年冲,卞礼智,邢克溥.1986:梅雨锋暴雨的雨滴谱分析.气象,12(5),6-10.
    许焕斌.1964:衡山云雾微结构起伏的初步观测试验.气象学报,34(4),539-547.
    许焕斌,2012,强对流云物理及其应用.气象出版社,北京,pp194.
    许焕斌,王思微.1985a:一维时变雹云模式研究(一)——反映雨和冰雹双参数演变.气象学报,43(1),13-25.
    许焕斌,王思微.1990:三维可压缩大气中的云尺度模式.气象学报,48(1),80-90.
    许焕斌,王思维.1985b:一维时变冰雹云模式研究(二)反映融化对雹谱双参数演变的影响.气象学报, 43(2),162-171.
    许焕斌,段英.1999:云粒子谱演化研究中的一些问题.气象学报,57(4),451-460.
    许焕斌,段英,刘海月,2004,雹云物理与防雹的原理和设计.气象出版社,北京,pp190.
    许绍祖,雷连科,张学儒,耿骠,谢菊英.1987:南京地区梅雨降水的微物理结构特征.南京大学学报数学半年刊,23(1),175-185.
    贾星灿,牛生杰.2008:空中、地面雨滴谱特征的观测分析.南京气象学院学报,31(6),865-870.
    赵仕雄.1982:高原东部地区雹谱时空分布特征的分析.高原气象,1(4),92-98.
    赵仕雄,陈文辉,杭洪宗.2002:青海东北部春季系统性降水高层云系微物理结构分析.高原气象,21(3),281-287.
    赵平,蒋品平,周秀骥,祝从文.2009:春季东亚海-陆热力差异对我国东部西南风降水影响数值试验.科学通报,54,2372-2378.
    赵平,陈龙勋.2001:35年来青藏高原大气热源气候特征及其中国降水的关系.中国科学D辑,31(4),327-332.
    赵震,雷恒池,吴玉霞.2005:MM5中新显式云物理方案的建立和数值模拟.大气科学,29(4),609-619.
    赵剑平,张滵,王玉玺,陈在华,赖德津.1965:我国北部地区大气冰核观测的分析研究.气象学报,35(4),416-422.
    邓雪娇,吴兑,史月琴,唐浩华,范绍佳,黄浩辉,毛伟康,叶燕翔.2007:南岭山地浓雾的宏微观物理特征综合分析.热带气象学报(05).
    邓雪娇,黄浩辉,吴兑.1996:广州地区汛期强降水的微物理特征.热带气象学报,12(2),167-173.
    邓华,薛纪善,徐海明,何金海.2008:GRAPES中尺度模式中不同对流参数化方案模拟对流激发的研究.热带气象学报,24(4),327-334.
    闫之辉,邓莲堂.2007:WRF模式中的微物理过程及其预报对比试验.沙漠与绿洲气象,1(6),1-6.
    陈万奎,严采蘩.1987:云中冰晶尺度谱特征与分布函数.气象,13(11),13-17.
    陈文选,王俊,刘文.1999:一次冷窝过程降水的微物理机制分析.应用气象学报,10(2),190-198.
    陈金荣.1994:大气冰核浓度的测量及特征.气象科学,14(2),155-160.
    陈金荣,周文贤,安强.1996:南京冬季大气气溶胶的物理特征.南京气象学院学报,19(3),374-378.
    陈德林,谷淑芳.1989:大暴雨雨滴平均谱的研究.气象学报,47(1),124-127.
    陈德林,谷淑芳.1990:暴雨微物理结构特征.大气科学,14(3),364-368.
    陈宝君,李子华,刘吉成,宫福久.1998:三类降水云雨滴谱分布模式.气象学报,56(4),506-512.
    项磊,牛生杰.2008:宁夏层状云宏观和微观物理特征综合分析.气象科学,28(3),258-263.
    顾震潮等.1962:南岳云雾降水微物理观测(1960年3-8月)结果的初步分析.我国云雾降水微物理特征问题,北京:科学出版社,pp2-21.
    饶纲伟,徐穗珊,李江南.2008:不同云微物理方案对粤北冻雨的敏感性试验.广东气象,30(6),20-23.
    鲍宝堂,束家鑫,朱炳权.1995:上海城市雾理化特性的研究.南京气象学院学报,18(1),114-118.
    黄文娟,程铁军,陈金荣,宗长才,吴明铃,刘俊.1986:福建石塔山冰核浓度的观测结果.南京气象学院 学报,1(1),62-69.
    黄玉生,李子华.1982:云南鹤庆弱单体雹云降雹雹谱分析.南京气象学院学报,2,233-237.
    黄玉生,许文荣,李子华,樊玲,黄文娟.1992:西双版纳地区冬季辐射雾的初步研究.气象学报,50(1),112-117.
    黄玉生,黄玉仁,李子华,陈宝君,黄建平,顾江新.2000:西双版纳冬季雾的微物理结构及演变过程.气象学报,58(6),715-725.
    黄海波,陈春艳,朱雯娜.2011:WRF模式不同云微物理参数化方案及水平分辨率对降水预报效果的影响.气象科技,39(5),529-536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700