用户名: 密码: 验证码:
侵彻半无限厚靶的理论模型与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对侵彻半无限厚靶问题,将其划分成刚性弹侵彻、长杆弹高速侵彻、大范围着速的侵彻问题等方面,系统地开展了理论分析和数值模拟研究。内容涉及理论分析模型、数值模拟方法、侵彻性能的影响因素和参数敏感性分析等。本文的研究工作对于侵彻毁伤评估、动能武器研制和防护工程设计,都有重要的理论和实际指导意义。研究内容主要有以下几个方面:
     (1)系统分析了刚性弹侵彻半无限厚靶的相关理论,包括空腔膨胀理论、速度势和速度场理论,以及主要的半经验、经验公式。分别针对金属材料和混凝土类材料,讨论了常用的侵彻深度计算公式的优缺点和适用性,分析了屈服强度对计算结果的影响,以及弹头形状对侵彻深度的影响。研究表明,弹头形状对侵彻深度有较大的影响。
     (2)总结了长杆弹高速侵彻半无限厚靶的理论模型,将6个主要的模型统一写成A-T模型的形式,编制了计算程序,研究了靶板阻力项随侵彻速度和撞击速度的变化关系,讨论了各模型的差异。系统分析了弹靶材料的动态屈服强度、杆弹的长径比对侵彻性能的影响。研究表明,靶的动态屈服强度比长杆弹的动态屈服强度对侵彻深度的影响更明显。
     (3)对于大范围着速的侵彻问题,首先,基于对刚性弹到侵蚀弹过渡区间侵彻行为的分析,构造了过渡区靶板阻力的唯象模型和侵彻深度的计算公式,确定了过渡区边界速度的求解方法。其次,在分析三个响应区特征的基础上,构建了三段组合式的理论分析模型,组合模型的预测侵深与试验数据符合较好。
     (4)针对钨合金杆高速侵彻半无限厚铝合金靶问题,使用Lagrange方法,开展了数值模拟研究,分析了钨合金杆的材料参数(失效应变、屈服强度和剪切模量)的敏感性,以及弹头形状和长径比对侵深的影响。研究结果表明,失效应变是影响侵彻深度的主要参数,而屈服强度和剪切模量对侵深的影响很小;在较低的撞击速度下,头部形状对侵彻深度的影响较大,而在高着速的情况下,影响很小;以杆长无量纲化的侵彻深度随长径比的增大而降低,表明采用增大长径比提高长杆弹侵彻能力的方式将随着长径比的不断增大,侵彻效率逐渐降低。
     另外,对大范围着速的钨杆侵彻铝靶问题,划分成中低速和高速两个区间,选用不同的本构关系,分别建立计算模型进行了数值模拟。在低着速(<600m/s)与高着速(800-2000m/s)情况下,计算结果和试验数据较好地符合,同时,过渡区侵彻深度突然大幅下降的现象也有所反映。
     (5)讨论了钢筋混凝土靶的建模问题,分析了三种钢筋和混凝土耦合建模方法的优缺点,以及材料失效判据对计算结果的影响。通过数值模拟研究了含筋率和弹着点对钢筋混凝土靶抗侵彻性能的影响。研究表明,钢筋越粗或者钢筋编织越密,即含筋率越高,钢筋混凝土靶板的抗侵彻能力越强,尤其对于动能弹直径大于靶板中钢筋间距的情况;同时,弹着点对动能弹侵彻能力有较大的影响。
     针对均匀规则的靶网结构,构造了任意着靶位置的剩余速度或侵彻深度的预估公式。利用这个公式,只需得到三个典型位置动能弹穿靶后的剩余速度或侵彻深度,就可以有效地求解任意着靶位置的剩余速度或侵彻深度。
     (6)对于动能弹侵彻多介质组合靶问题,通过数值模拟得到侵彻轨迹、弹体速度、减加速度以及侵彻深度的变化曲线,着重分析了入射倾角和攻角对侵彻毁伤的影响规律。对大倾角斜侵彻问题有了新的认识,弹体在侵彻过程中可能发生反向偏转,深入分析后得到,弹道偏转是由于弹体周围靶板的损伤程度不同引起。
In this paper, the problem of penetrating into semi-infinite thick target is divided into rigid projectiles penetration, high-speed long rods penetration, and penetration problems that impact speed changes in large range. Theoretical analysis and numerical simulations are carried out systematically to study these problems. The study involves theoretical analysis models, numerical simulation methods, and the factors affecting the performance of the penetration and parameter sensitivity analysis, etc. This research has important theoretical and practical significance for penetration damage assessment, kinetic energy weapon development and protection engineering design. The research focus mainly in the following areas:
     (1) The theory of rigid projectile penetration of semi-infinite thick target was systematically analyzed, including the cavity expansion theory, the theory of velocity potential and velocity field, and the major semi-empirical and empirical formula. Respectively for metal materials and concrete materials, the common formulae for penetration depth calculation were comparatively analyzed, the advantages and disadvantages and the applicability of each formula were discussed. The effect of the yield strength on calculated results, and the effect of nose shape on the penetration depth were also analyzed. Studies have shown that the nose shape of rigid projectile has a great influence on the penetration depth.
     (2) The theoretical model of high-speed long rods penetrating into semi-infinite thick target was summarized. Six major models were unified in the form of the A-T model, and the calculation procedures were compiled. The relations between target resistance item and penetration speed, between target resistance item and impact speed were analyzed, and the differences of each model were discussed. The effects of dynamic yield strength of the rods and target material, the ratio of length to diameter of the projectile on penetration performance were analyzed. Studies have shown that the dynamic yield strength of the target has a greater influence on the penetration depth than the dynamic yield strength of the rods.
     (3) For penetration problems that impact speed changes in large range, based on the analysis of penetration behavior in rigid to erosion transition interval, phenomenological model of target resistance and formula of penetration depth calculation in the transition area were constructed, and the solving method for transition interval boundary were determined. After a detailed analysis of the three response region characteristics, three sections combined theoretical analysis model was built. Predictions of the penetration depth by combined model are in good agreement with the experimental data.
     (4) Numerical simulations were carried out, using Lagrange method, to study the problem of tungsten alloy rods penetrating into semi-infinite aluminum alloy target with high velocity. This paper analyzes the sensitivity of tungsten alloy rod material parameters (failure strain, yield strength and shear modulus), as well as the effect of the nose shape and the ratio of length to diameter of the rod on penetration depth. The results show that the failure strain is the main parameter affecting the penetration depth, while the yield strength and the shear modulus are insensitive; in low impact velocity, the nose shape of the rod has a great influence on penetration depth, while in high impact velocity, the effect is negligible; the dimensionless penetration depth reduces with increasing the ratio of length to diameter. In addition, penetration problem that impact speed changes in large range, is divided into low-speed section and high-speed section, with different constitutive relationship, respective simulation is carried out.. In the low-speed (<600m/s) and high-speed (800-2000m/s) case, the calculated results agree well with experimental data, what's more, the phenomenon that penetration depth in the transition area declines suddenly is also reflected.
     (5) After the modeling issue of reinforced concrete target was discussed, the advantages and disadvantages of three rebar and concrete coupling models, the influence of material failure criteria on the calculation results, as well as effects of reinforcement ratio and impact position on anti-penetration properties of reinforced concrete were analyzed by numerical simulations. Research shows that, increasing reinforcement ratio can enhance the anti-penetration property of reinforced concrete, especially in the case, where the diameter of projectile exceeds the distance of rebar. In addition, the influence of impact position is obvious. For concrete target with uniform-distributed rebars, estimate formula of the residual velocity or penetration depth in random impact position was built. Using this formula, just need to get the residual velocities or penetration depths of three typical position, then the residual velocity or penetration depth in random impact position can be solved effectively.
     (6) For the problem of kinetic energy projectile penetrating into multi-media combination target, through the simulations, the penetration tracks, the history curves of velocity, acceleration and penetration depth were obtained. The influence laws of the incident angle and the attack angle on penetration damage were analyzed. For oblique penetration problem at a large incident angle, a new understanding is obtained that the projectile may occur reverse deflection, and after the deep analysis it is found that ballistic deflection is caused by different degree of damage of the target around the projectile.
引文
[1]王凤英,刘天生.毁伤理论与技术[M].北京:北京理工大学出版社,2009.
    [2]林晓,查宏振,魏惠之.撞击与侵彻力学[M].北京:兵器工业出版社,1992.
    [3]Backman ME, Goldsmith W. The mechanics of Penetration of Projectiles into targets[J]. Int J Engng Sci,1978,16:1-99.
    [4]Goldsmith W. Non-ideal projectile impact on targets[J]. Int J Impact Eng,1999, 22:95-395.
    [5]钱伟长.穿甲力学[M].北京:国防工业出版社,1984.
    [6]赵国志.穿甲工程力学[M].北京:兵器工业出版社,1992.
    [7]Ben-Dor G, Dubinsky A, Elperin T. Ballistic impact:recent advances in analytical modeling of plate penetration dynamics-areview[J]. Applied Mechanics Reviews,2005, 58:355-371.
    [8]Poncelet JV. Cours de Mecanique Industrielle. Paris.1829/1835.
    [9]Teland JA. A Review of empirical equations for missile impact effects on concrete[R]. NDRE:Norway, FFI/RAPPORT-97/05856,1997.
    [10]Young CW. Penetration Equations[R]. SNL:USA, SAND97-2426/UC-705,1997.
    [11]NDRC. Effects of impact and explosion[R]. National Deffence Research Committee, Vol 1, Summarry Technical Report of Division 2, Washington DC.1946.
    [12]Forrestal MJ, Altman BS, Cargile JD, et al. An empirical equation for penetration of ogive-nose projectiles into concrete target[J]. Int J Impact Eng,1994,15:395-405.
    [13]Forrestal MJ, Okajima K, Luk VK. Penetration of 6061-T651 aluminum targets with rigid long rods [J]. J App Mech,1988,55(4):755-760.
    [14]Forrestal MJ, Brar N S, Luk VK. Penetration of strain-hardening targets with rigid spherical-nose rods[J]. J App Mech,1991,58(1):7-10.
    [15]Forrestal MJ, Luk VK, Rosenberg Z, et al. Penetration of 7075-T651 aluminum targets with ogival-nose rods[J]. Int J Solids Struct,1992,29(14-15):1729-1736.
    [16]Forrestal MJ, Piekutowski AJ. Penetration experiments with 6061-T6511 aluminum targets and spherical-nose steel projectiles at striking velocities between 0.5 and 3 km/s[J]. Int J Impact Eng,2000,24:57-67.
    [17]Piekutowski AJ, Forrestal MJ, Poormon KL, et al. Penetration of 6061-T6511 aluminum targets by ogive-nose steel projectiles with striking velocities between 0.5 and 3.0 km/s[J]. Int J Impact Eng,1999,23(1):723-34.
    [18]Forrestal MJ. Penetration into dry porous rock[J]. Int J Solids Struct,1986, 22(12):1485-1500.
    [19]Forrestal MJ, Luk VK. Penetration into soil [J]. Int J Impact Eng,1992,12(3):427-444.
    [20]Forrestal MJ, Frew DJ. Penetration of grout and concrete targets with ogive-nose steel ProjectilesLJ]. Int J Impact Eng,1996,18:465-476.
    [21]Forrestal MJ, Frew DJ, Hickerson JP, Rohwer TA. Penetration of concrete targets with deceleration-time measurements[J]. Int J Impact Eng,2003,28:479-497.
    [22]Frew DJ, Hanchak SJ, Green ML, Forrestal MJ. Penetration of concrete targets with ogive-nose steel rods[J]. Int J Impact Eng,1998,21:489-497.
    [23]Frew DJ, Forrestal MJ, Hanchak SJ. Penetration experiments with limestone targets and ogive-nose steel projectiles[J]. ASME J Appl Mech,2000,67:841-855.
    [24]Frew DJ, Forrestal MJ, Cargile JD. The effect of concrete target diameter on projectile deceleration and penetration depth[J]. Int J Impact Eng,2006,32:1584-1594.
    [25]Hohler V, Stilp AJ. Penetration of steel and high density rods in semi-infinite steel targets[A]. Proc 3rd Int Symp Ballistics[C], H3, Karlsruhe, German,1977.
    [26]Silsby GF. Penetration of semi-infinite steel targets by tungsten rods at 1.3 to 4.5 km/s[A]. Proc 8th Int Symp Ballistics[C], TB/31-35, Orlando, Florida,1984.
    [27]Hohler V, Stilp AJ. Hypervelocity impact of rod projectiles with L/D from 1 to 32[J]. Int J Impact Eng,1987,5:323-331.
    [28]Anderson Jr CE, Morris BL, Littlefield DL. A penetration mechanics database[R]. SwRI Report 3593/001, Southwest Research Institute, San Antonio, TX.1992.
    [29]Hohler V, Stilp AJ, Weber K. Hypervelocity penetration of tungsten sinter-alloy rods into aluminum[J]. Int J Impact Eng,1995,17:409-418.
    [30]Subramanian R, Bless SJ, Cazamias J, et al. Reverse impact experiments against tungsten rods and results for aluminum penetration between 1.5 and 4.2 km/s[J]. Int J Impact Eng,1995,17:817-824.
    [31]Orphal DL, Anderson Jr CE. The dependence of penetration velocity on impact velocity[J]. Int J Impact Eng,2006,33:546-554.
    [32]Wickert M. Penetration data for a medium caliber tungsten sinter alloy penetrator into aluminum alloy 7020 in the velocity regime from 250 m/s to 1900 m/s [A]. Proc 23rd Int Symp Ballistics[C]. Tarragona, Spain,2007, pp.1437-1444.
    [33]Mellgard I, Holmberg L and Olsson LG. An experimental method to compare the ballistic efficiencies of different ceramics against long rod projectiles [A]. Proc 11th Int Symp Ballistics[C], Brussels, Belgium,1989.
    [34]Anderson CE, Hohler V, Walker JD and Stilp AJ. Penetration of long rods into steel and glass target:Experiments and computations [A]. Proc 11th Int Symp Ballistics[C], Quebec, Canada,1993.
    [35]Subramanian R, Bless SJ. Penetration of semi-infinite AD995 alumina targets by tungsten long rod penetrators from 1.5 to 3.5 km/s[J]. Int J Impact Eng,1995, 17:807-816.
    [36]Lundberg P, WesterlingL, Lundberg B. Influence of scale on the penetration of tungsten rods into steel-backed alumina targets[J]. Int J Impact Eng,1996,18(4):403-416.
    [37]Gold VM, Vradis GC, Pearson JC. Concrete penetration by eroding projectiles: experiments and analysis[J]. Int J Impact Eng,1996,2:145-152.
    [38]Orphal DL, Franzen RR, Piekutowski AJ, et al. Penetration of confined aluminum nitride targets by tungsten long rods at 1.5-4.5 km/s[J]. Int J Impact Eng,1996, 18(4):355-368.
    [39]Orphal DL, Franzen RR, Charters AC, et al. Penetration of confined boron carbide targets by tungsten long rods at impact velocities from 1.5 to 5.0 km/s[J]. Int J Impact Eng,1997,19(1):15-29.
    [40]Orphal DL, Franzen RR. Penetration of confined silicon carbide targets by tungsten long rods at impact velocities from 1.5 to 4.6 km/s[J]. Int J Impact Eng,1997, 19(1):1-13.
    [41]Westerling L, Lundberg P, Lundberg B. Tungsten long-rod penetration into confined cylinders of boron carbide at and above ordnance velocities[J]. Int J Impact Eng,2001, 25:703-714.
    [42]Lundberg P, Lundberg B. Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials[J]. Int J Impact Eng,2005, 31:781-792.
    [43]Bishop RF, Hill R, Mott NF. The theory of indentation and hardness[A]. Proceedings of the Royal Society[C],1945,57(3):147-159.
    [44]Hill R. The mathematical theory of plasticity[M]. London:Oxford University Press, 1950.
    [45]Hopkins HG. Dynamic expansion of spherical cavities in metals[A]. In:Sneddon IN, Hill R, editors. Progress in solid mechanics[C], vol.1. North-Holland Pub. Co., 1960(Chapter 3).
    [46]Goodier JN, On the mechanics of indentation and cratering in the solid targets of strain hardening metal by impact of hard and soft spheres[A]. Proceedings of the 7th Symposium on Hypervelocity Impact III[C],1965:215-259.
    [47]Hanagud S, Ross B. Large deformation, deep penetration theory for a compressible strain-hardening target material[J]. A1AA J,1971,19(5):905-911.
    [48]Norwood FR. Cylindrical cavity expansion in a locking soil[J]. SLA-74-0201, Sandia Laboratories, July,1974.
    [49]Butler DK. An analytical study of projectile penetration in rock[R]. US Army Waterways Experiment Station, Vicksburg, Misc Paper 5-75-7 AD-A 012140,1975.
    [50]Rohani B. Analysis of projectile penetration into concrete and rock targets[R]. US Army Waterways Experiment Station, Vicksburg, Misc Paper 5-75-25 AD-A 016909,1975.
    [51]Forrestal MJ, Luk VK, Watts HA. Penetration of reinforced concrete with ogive-nose penetrators[J]. Int J Solids Struct,1988,24(1):77-87.
    [52]Forrestal MJ, Luk VK. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid. J Appl Mech,1988,55:275-279.
    [53]Luk VK, Forrestal MJ, Amos DE. Dynamic spherical cavity expansion of strain-hardening matericals[J]. J App Mech,1991,58:1-6.
    [54]Luk VK, Amos DE. Dynamic cylindrical cavity expansion of compressible strain-hardening matericals[J]. J App Mech,1991,58:334-340.
    [55]Forrestal MJ, Tzou DY, Askari E, et al. Penetration into ductile metal targets with rigid spherical-nose rods[J]. Int J Impact Eng,1995,16:699-710.
    [56]Forrestal MJ, Tzou DY, A spherical cavity-expansion penetration model for concrete targets[J]. Int J Solids Struct,1997,34:4127-4146.
    [57]Warren TL, Forrestal MJ. Effects of strain hardening and strain-rate sensitivity on the penetration of aluminum targets with spherical-nosed rods[J]. Int J Solids Struct, 1998,35:3737-3753.
    [58]Forrestal MJ, Warren TL. Penetration equations for ogive-nose rods into aluminum targets[J]. Int J Impact Eng,2008,35(8):727-730.
    [59]Forrestal MJ, Warren TL. Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates[J]. Int J Impact Eng,2009,36(2):220-225.
    [60]Chen XW, Li QM. Deep penetration of a non-deformable projectile with different geometrical characteristics[J]. Int J Impact Eng,2002,27:619-37.
    [61]Li QM, Chen XW. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile[J]. Int J Impact Eng,2003,28(1):93-116.
    [62]陈小伟,李小笠,陈裕泽,武海军,黄风雷.刚性弹侵彻力学中的第三无量纲数[J].力学学报,2007,39(1):77-84.
    [63]Rosenberg Z, Dekel E. The penetration of rigid long rods-revisited[J]. Int J Impact Eng,2009,36(4):551-564.
    [64]Yarin AL, Rubin MB, Roisman IV. Penetration of a rigid projectile into an elastic-plastic target of finite thickness[J]. Int J Impact Eng,1995,16:801-831.
    [65]Rubin MB, Yarin AL. On the relationship between phenomenological models for elastic-viscoplastic metals and polymeric liquids[J]. J Non-Newtonian Fluid Mech, 1993,50:79-88 and 1995,57:321.
    [66]Yossifon G, Rubin MB, Yarin AL. Penetration of a rigid projectile into a finite thickness elastic-plastic target-comparison between theory and numerical computations[J]. Int J Impact Eng,2001,25:265-290.
    [67]Rubin MB. Analytical formulas for penetration of a long rigid projectile including the effect of cavitation[J]. Int J Impact Eng,2012,41:1-9.
    [68]Tate A. A theory for the deceleration of long rods after impact[J]. J Mech Phys Solids, 1967,15:387-399.
    [69]Tate A. Further results in the theory of long rods penetration[J]. J Mech Phys Solids, 1969,17:141-150.
    [70]Alekseevskii VP. Penetration of a rod into a target at high velocity[J]. Comb Expl Shock Wave,1966:3-66.
    [71]Tate A. A simple hydrodynamic model for the strain field produced in a target by the penetration of a high speed long rod projectile [J]. Int J Engng Sci,1978,16:845-858.
    [72]Tate A. A comment on a paper by Awerbuch and Bodner concerning the mechanics of plate perforation by a projectile[J]. Int J Engng Sci,1979,17:341-344.
    [73]Tate A. Long rod penetration models-part I. A flow field model for high speed long rod penetration[J]. Int J Engng Sci,1986,28:535-548.
    [74]Tate A. Long rod penetration models-part II. Extensions to the hydrodynamic theory of penetration[J]. Int J Engng Sci,1986,28:599-612.
    [75]Walters WP, Segletes SB. An exact solution of the long rod penetration equations[J]. Int J Impact Eng,1991,11 (2):225-31.
    [76]Segletes SB, Walters WP. A note on the application of the extended Bernoulli equation[J]. Int J Impact Eng,2002,27(5):561-576.
    [77]Segletes SB, Walters WP. Extensions to the exact solution of the long-rod penetration /erosion equations[J]. Int J Impact Eng,2003,28(4):363-376.
    [78]Rosenberg Z, Marmor E, Mayseless M. On the hydrodynamic theory of long-rod penetration[J]. Int J Impact Eng,1990,10:483-486.
    [79]Anderson CE, Walker JD. A examination of long-rod penetration[J]. Int J Impact Engng, 1991,11(4):481-501.
    [80]Anderson CE, Littlefield DL, Walker JD. Long-rod penetration, target resistence and hypervelocity impact[J]. Int J Impact Eng,1993,14(4):1-12.
    [81]Walker JD, Anderson CE. A time-dependent model for long-rod penetration[J]. Int J Impact Eng,1995,16(1):19-48.
    [82]Anderson CE, Walker JD, Bless SJ, et al. On the L/D effect for long-rod penetration [J]. Int J Impact Eng,1996,18(3):247-264.
    [83]Anderson CE, Walker JD, Sharron TR. The influence of edge effects on penetration [A]. Proc 17th Int Symp Ballistics[C], Midrand, South Africa,1998,3:33-40.
    [84]Anderson CE, Hohler V, Walker JD, et al. The influence of projectile hardness on ballistic performance[J]. Int J Impact Eng,1999,22:619-630.
    [85]Anderson CE, Orphal DL, Franzen RR, et al. On the hydrodynamic approximation for long-rod penetration[J]. Int J Impact Eng,1999,22:23-43.
    [86]孙庚辰,吴锦云,赵国志,史骏.长杆弹垂直侵彻半无限厚靶的简化模型[J].兵工学报,1981,4:1-8.
    [87]Zhang LS, Huang FL. Model for long-rod penetration into semi-infinite targets[J]. Journal of Beijing Institute of Technology,2004,13:285-289.
    [88]兰彬.长杆弹侵彻半无限靶的数值模拟和理论研究[R].中国科学技术大学博士学位论文,2008,5.
    [89]Hirt CW, Amsden AA, Cook JL. An arbitrary Lagrangian-Eulerian computing method for flow speeds[J]. J Comput Phys,1974,14:227-253.
    [90]Randies PW and Libersky LD. Smoothed particl hydrodynamics:some recent improvements and applications[J]. Comput Mech Engng,1996:375-408.
    [91]Rosenberg Z, Dekel E. On the deep penetration and plate perforation by rigid projectiles[J]. Int J Solids Struct,2009,46(1):4169-4180.
    [92]Warren TL, Tabbara MR. Spherical cavity-expansion forcing function in PRONTO 3D for application to penetration problems[R]. SAND97-1174, Sandia National Laboratories, Albuquerque, NM.1997.
    [93]Warren TL, Tabbara MR. Simulations of the penetration of 6061-T6511 aluminum targets by spherical-nosed VAR 4340 steel projectiles [J]. Int J Solids Struct,2000, 37:4419-4435.
    [94]Warren TL, Poormon KL. Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles:experiments and simulations. Int J Impact Eng 2001,25(10):993-1022.
    [95]Warren TL. Simulations of the penetration of limestone targets by ogive-nose 4340 steel projectiles [J]. Int J Impact Eng,2002,27:475-96.
    [96]Warren TL, Fossum AF, Frew DJ. Penetration into low-strength (23 MPa) concrete:target characterization and simulations[J]. Int J Impact Eng,2004,30:477-503.
    [97]Warren TL, Hanchak SJ, Poormon KL. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles:experiments and simulations[J]. Int J Impact Eng,2004,30:1307-1331.
    [98]张凤国,李恩征.弹体对半无限厚混凝土靶侵彻的数值分析[J].工程力学,2001,增刊:336-340.
    [99]Li QM, Reid SR, Wen HM, et al. Local impact effects of hard missiles on concrete targets[J]. Int J Impact Eng,2005,32:224-284.
    [100]冯国忠.基于ANSYS/LS-DYNA的混凝土靶板侵彻问题的数值模拟与分析[D].硕士学位论文.哈尔滨:中国地震局工程力学研究所,2006.
    [101]刘士践.动能弹垂直侵彻混凝土的实验研究及其数值模拟[D].硕士学位论文.成都:西南交通大学,2007
    [102]郑振华,余文力,王涛.钻地弹侵彻高强度混凝士靶的数值模拟[J].弹箭与制导学报,2008,28(3):143-146.
    [103]李永池,袁福平,胡秀章,朱林法,王道荣.卵形头部弹丸对混凝土靶板侵彻的二维数值模拟[J].弹道学报,2002,14(1):14-19.
    [104]武海军,黄风雷,金乾坤,张庆明.弹体贯穿钢筋混凝土数值模拟[J].爆炸与冲击,2003,23(6):545-550.
    [105]马爱娥,黄风雷,李金柱,武海军.钢筋混凝士抗贯穿数值模拟[J].北京理工大学学报,2007,27(2):103-107.
    [106]马爱娥,黄风雷,初哲,李金柱.弹体攻角侵彻混凝土数值模拟[J].爆炸与冲击,2008,28(1):33-37.
    [107]王峰,胡秀章,王肖钧,劳俊.卵形杆弹侵彻混凝土靶的有限元数值模拟[J].弹道学报,2008,20(2):1-4.
    [108]曹菊珍,李恩征,王政.高速碰撞中有关混凝士与沙岩的破损问题的数值研究[J].计算物理,2002,19(2):137-141.
    [109]王政.弹靶侵彻动态响应的理论与数值分析[D].博士学位论文.上海:复旦大学,2005.
    [110]曹德青.钢筋混凝士侵彻数值模拟研究[D].博士学位论文.北京:北京理工大学,2000.
    [111]陈龙伟,孙远翔,宁建国.动能弹对混凝土靶板侵彻三维数值模拟[J].北京理工大学学报,2003,23(5):536-539.
    [112]蒋荣峰.动能侵彻弹侵彻混凝土技术研究[D].硕士学位论文.成都:四川大学,2003.
    [113]崔伟峰.动能弹丸侵彻混凝土的数值模拟研究[D].硕士学位论文.长沙:中国人民解放军国防科学技术大学,2003.
    [114]建兵,隋树元,蒋建伟,鲁静.网格对混凝土侵彻数值模拟的影响[J].北京理工大学学报,2005,25(8):659-662.
    [115]屈明,陈小伟.钢筋混凝土穿甲的数值模拟[J].爆炸与冲击,2008,28(4):341-349.
    [116]杨冬梅,王晓鸣.反机场弹药斜侵彻多层介质靶的三维数值仿真[J].弹道学报,2004,16(3):83-87.
    [117]曾必强,姜春兰,李明,茶晓燕.侵彻弹斜侵彻多层介质的三维数值仿真[J].弹道学报,2008,20(2):9-12.
    [118]聂明飞,李玉龙.卵形头部弹侵彻单多层混凝土靶板有限元仿真[J].探测与控制学报,2009, 31(4):78-83.
    [119]Rosenberg Z, Dekel E. A critical examination of the modified bernoulli equation using two-dimensional simulations of long rod penetrators[J]. Int J Impact Eng,1994, 15(5):711-720.
    [120]Rosenberg Z, Dekel E. A computational study of the influence of projectile strength on the performance of long-rod penetrators[J]. Int J Impact Eng,1996,18(6):671-677.
    [121]Rosenberg Z, Dekel E. A computational study of the relations between material properties of long-rod penetrators and their ballistic performance[J]. Int J Impact Eng,1998,21(4):283-296.
    [122]Rosenberg Z, Dekel E. Further examination of long rod penetration:the role of penetrator strength at hypervelocity impacts[J]. Int J Impact Eng,2000,24:85-102.
    [123]Rosenberg Z, Dekel E. More on the secondary penetration of long rods[J]. Int J Impact Eng,2001,26:639-649.
    [124]Rosenberg Z, Dekel E. On the role of material properties in the terminal ballistics of long rods[J]. Int J Impact Eng,2004,30:835-851.
    [125]Rosenberg Z, Dekel E. A numerical study of the cavity expansion process and its application to long-rod penetration mechanics [J]. Int J Impact Eng,2008,35:147-154.
    [126]兰彬,文鹤鸣.钨合金长杆弹侵彻半无限钢靶的数值模拟及分析[J].高压物理学报,2008,22(3):245-252.
    [127]兰彬,文鹤鸣.半球形弹头钢长杆弹侵彻半无限铝合金靶的数值模拟[J].工程力学,2009,26(10):183-190.
    [128]汪庆桃,张庆明,金辉.钨杆超高速侵彻碳化硼陶瓷的数值模拟研究[J].北京理工大学学报,2010,30(6):631-634.
    [129]程兴旺,王富耻,李树奎,王鲁.不同头部形状长杆弹侵彻过程的数值模拟[J].兵工学报,2007,28(8):930-933.
    [130]冯兴民,晏簏晖,夏清波,李正超.金属材料空腔膨胀理论研究中的数值模拟方法[J].四川兵工学报,201 1,32(4):102-105.
    [131]练兵,蒋建伟,门建兵,王树有.高速长杆弹对混凝土靶侵彻规律的仿真分析[J].高压物理学报,2010,24(5):377-382.
    [132]郎林,陈小伟,雷劲松.长杆和分段杆侵彻的数值模拟[J].爆炸与冲击,2011,31(2):127-134.
    [133]高光发,李永池,黄瑞源,段士伟.长径比对长杆弹垂直侵彻能力影响机制的研究[J].高压物理学报,2011,25(4):327-332.
    [134]高光发,李永池,刘卫国,沈玲燕.长杆弹截面形状对垂直侵彻深度的影响[J].兵器材料科学与工程,2011,34(3):5-8.
    [135]张凤国,李维新,洪滔,王政.超高速钨合金长杆弹对混凝土侵彻及损伤破坏的数值分析[J].弹道学报,2008,20(3):64-74.
    [136]Eichelberger RJ, Gehring JW. Effects of meteoroid impact on space vehicles [J]. Am Rocket Soc J,1962,32:1583-1591.
    [137]Zhou H, Wen HM. Penetration of bilinear strain-hardening targets subjected to impact by ogival-nosed projectiles[A]. Proceeding of 2003 International Autum Seminar on International Autumn Seminar on Propellants, Explosives and Pyrotecnics, In:Theory And Practice Of Energetic Materials[C], Science Press, Beijing/New York.2003, 5:933-942.
    [138]Sorensen, BR, Kimsey KD, Silsby GF, et al. High velocity penetration of steel targets [J]. Int J Impact Eng,1991,11 (1):107-119.
    [139]Chen XW and Li QM. Transition from non-deformable projectile penetration to semi-hydrodynamic penetration[J]. ASCE J Engng Mech,2004,130(1):123-127.
    [140]Segletes SB. The erosion transition of tungsten-alloy long rods into aluminum targets[J]. Int J Solids Struct,2007,44:2168-2191.
    [141]Rosenberg Z, Dekel E. Numerical study of the transition from rigid to eroding-rod penetration[J]. J Phys IV,2003,110-681.
    [142]楼建锋,王政,洪滔,朱建士.钨合金杆侵彻半无限厚铝合金靶的数值研究[J].高压物理学报,2009,23(1):65-70.
    [143]Rosenberg Z, Dekel E. On the deep penetration of deforming long rods[J]. Int J Solids Struct,2010,47:238-250.
    [144]Wi jk AG. High-velocity projectile penetration into thick armor plates [J]. Int J Impact Eng,1999,22:45.
    [145]Tate A. A possible explanation for the hydrodynamic transition in high speed impact [J]. Int J Mech Sci,1977,19:121-123.
    [146]Anderson CE, Hohler V, Walker JD, Stilp AJ. Time-resolved penetration of long rods into steel targets[J]. Int J Impact Eng,1995,16:1.
    [147]Littlefield DL, Anderson CE, Partom Y, Bless SJ. The penetration of steel targets finite in radial extent[J]. Int J Impact Eng,1997,19(1):49-62.
    [148]Walker JD, Anderson CE. The influence of initial nose shape in eroding penetration[J]. Int J Impact Eng,1994,15(2):139-148.
    [149]Johnson GR and Cook WH. A constitutive model and data for metals subjected to large strains, high rates and high temperatures[A]. Proc 7th Int Symp Ballistics[C]. The Netherlands:The Hague,1983, pp.541-547.
    [150]Steinberg DJ. Equation of State and Strength Properties of Selected Materials[M]. LLNL,1991.
    [151]Livemore Software Technology Corporation. LS-DYNA 971 Keyword User's Manual[M]. 2007.
    [152]Holmquist TJ and Johnson GR. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[A]. Proc 14th Int Symp Ballistics[C]. Quebec, Canada,1993, pp.591-600.
    [153]Riedel W. Beton unter dynamischen lasten meso-und makromechanische modelle und ihre parameter[D]. Dissertation Universitat der Bundeswehr,2000,143-166.
    [154]Heider N, Hiermaier S. Numerical simulation of tandem warheads [A]. Proc 19th Int Symp Ballistics,2001, pp.1493-1499.
    [155]Malvar LJ, Crawford JE, Wesevich JW, et al. A plasticity concrete material model for DYNA3D[J]. Int J Impact Eng,1997,19(9):847-873.
    [156]Hanchak SJ, Forrestal MJ, Young ER, et al. Perforation of concrete slabs with 48 MPa and 140 MPa unconfined compressive strengths[J]. Int J Impact Eng,1992,12(1):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700