用户名: 密码: 验证码:
基于经验正交函数分解的声速剖面重构及软件实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声速剖面对水下声传播有着重要影响,对于一个声纳系统的设计而言,更需要知道其水域内声速分布。总之,声速剖面在水声学研究中起着至关重要的作用。
     本文对大量已有的历史水文数据进行了归纳、整理,形成不同海域的历史水文数据库,并对这些历史数据进行经验正交分解,得到特征值对应的特征向量,然后算出经验正交函数(EOF:Empirical Orthogonal Function)的系数,最后结合实测深度及声速重构出声速剖面。
     论文着重研究了如何选取实测深度及其对应的声速来重构声速剖面的问题,论证了使得均方根误差最小的选取深度的原则,对不同环境下的声速剖面重构结果进行了系统的分析。论文中采用的重构声速剖面的方法经大量的仿真实验进行了验证,并且具有计算速度快,精度高,性能稳定等优点。
     算法采用C语言编程,通过VC++实现声速剖面重构软件,软件中包括传播损失计算,电子海图,海底参数反演等功能,形成完整的声场计算软件。
Sound speed profile has an important influence on the propagation of underwater acoustics and determines characteristics of the propagation of underwater acoustics. It's more necessary to know the sound speed profile in the vicinity water area of sonar system for its design. In a word, sound speed profile plays an essential role in the investigation of underwater acoustics.
     A great number of collected and historical hydrologic data is summarized and arranged to form hydrologic data base for different sea area in this paper. And the data is empirically orthogonally decomposed to obtain the eigen vectors corresponding to eigen values. Then calculate the coefficient of empirical orthogonal function. At last the sound speed profile is rebuilt according to the depth of measurement in practice and corresponding sound speed.
     The problem associated with how to select depth and its corresponding sound speed to rebuild sound speed profile is studied. And demonstrate the principle of choosing depth to minimize the RMS error. The results of sound speed profile reconstruction under different circumstances are also analyzed systematically in this paper. The method of sound speed profile reconstruction used in this paper has been verified by lots of simulation experiments, which has many advantages such as fast computing speed, high precision and stable performance.
     The algorithm is written by C language and a piece of software for sound speed profile reconstruction is accomplished in the use of VC++. The software is a full sound filed calculation program, which contains the calculation of propagation loss, the electronic sea map, the function of seafloor parameters inversion and so on.
引文
[1]Jensen J B, Kuperman W A,porter M B et al. Computational Ocean Acoustiscs. New York:AIP press,1994
    [2]Munk W H and C.Ocean acoustic tomography:A scheme for large scalemonitoring. D-eep Sea Res,1979,26A:123-161
    [3]Muneh W H and WUnseh C. Ocean Acoustic Tomagraphay. NewYor Cambridge University Press.1995.
    [4]Comuelle B C,Wunseh D, Behringer T, Birdsall M, Brown R, Heinmiller R, Knox K, Metzger W,Munk J, Spiesberger R, Spindel, Webb, D and Worcester, P, Tomographic maps of the ocean mesoseale,Part 1:Pureacousties J. Phys, Oeeanogr.1985,15,133-152
    [5]Spiesberger J L. Remote sensing of westen boundary currents using acousic Tomography. J. Acoust soc.Am.89,346-351
    [6]DeFerrari H A and Nguyen H B. Acoustic Reciprocal Transmission Experiments FloridaStraits. J. Acoust. Soe. Am.1986,79(2):299-315
    [7]Tolstoy A, Diachok O, Frazer L N. Acoustic tomography vismatched field processing[J]. Acoust Soc Am.1991,89(3),1119-1127
    [8]杨坤德.水声阵列信号匹的配场处理[M].西安:西北工业大学出版社,2008.2:124-164
    [9]Taroudakis M I, Markaki M G. On the ues of matched-field processing And hybird algorithms for vertical slice tomography[J]. Acoust Soc Am.1997,102(2):885-895
    [10]Goncharov V V and Voronovich A G. An experiment on matehed-field Acoustic tomography with eoniinuous wave signals in the Norway Sea. J. Acoust. Soe. Am. 1993,93(4):1873-1881
    [11]沈远海,马远良等.浅水声速剖面的反演方法与实验验证[J].西北工业大学学报,2008.5,18(2)
    [12]Davis G R.Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean,Phys Ocean,1976,6:249-266
    [13]沈远海,马远良等.浅水声速剖面用经验正交函数(EOF)表示的可行性研究[J].应用声学:18(2):1999:20-25.
    [14]张镇迈,李整林等.利用有限深度声速数据重构全海深声速剖面[J].声学技术2008.10,27(5)
    [15]张忠兵,马远良等.基于声线到达时差的浅海声速剖面反演[J].西北工业大学学报.2002.2,20(1)
    [16]Vavccaro R J. The Past, Present, and Future of Underwater Acoustic Signal Processing Magazine.1988,7
    [17]Skarsoulis E K,Athanssoulis G A,Send U. Ocean Acoustic Tomography Based On Peak Arrivals. J Acoust Soc Am.1996,100(2)
    [18]唐俊峰,杨士莪.由传播时间反演海水中的声速剖面[J].哈尔滨工程大学学报.2002.2,20(1)
    [19]阚光明,刘保华.基于多波束声线传播的声速剖面反演法[J].海洋科学进展.2006.7,24(3)
    [20]周丰年,赵建虎,周才扬.多波束测深系统最优化声速公式的确定[J].台湾海峡2001,20(4):411-419
    [21]何高文.多波束测深系统声速校正[J].海洋技术,2000,19(4):14-21
    [22]吴开明,任云.由CDT数据拟合S-T关系用于温度链产生声速剖面[J].声学技术.2007.10,26(5)
    [23]刘伯胜,雷家煜.水声学原理[M].哈尔滨:哈尔滨工程大学出版社,1993:59-155.
    [24]卢姁,张东凌.热带太平洋10月份海气联合复EOF分析[J].海洋通报.2009.10,28(5)
    [25]龚文平,吴家信,莫李帅.用EOF方法分析海口湾东部浅滩区的泥沙来源与泥沙运动[J].泥沙研究.2004.2
    [26]徐桂玉,杨修群.中国南方冰雹气候特征的三维EOF分析[J].热带气象报.2002.11,18(4)
    [27]周后福,陈晓红.基于EOF和REOF分析江淮梅雨量的时空分布[J].安徽师范大学学报.2006.2,29(1)
    [28]徐群.近46年江淮下游梅雨期的划分和演变特征[J].气象科学,1998,18(4)
    [29]李云芳,郭佩芳,李广云.东海海域海表温度场的EOF分析[J].海洋湖沼通报,2007
    [30]李跃清,汪宝山,廖崇明.多时次EOF迭代方法在川渝伏旱预测中的应用[J].四川气象.2000,4
    [31]王玲玲.大连地区伏期旱涝指数EOF分析和预测.辽宁气象.2001.12
    [32]丁继胜,周兴华.多波束勘测声速剖面场的EOF表示方法[J].武汉大学学报·信息科学版.2007.5,32(5)
    [33]沈远海,马远良.浅水声速剖面用经验正交函(EOF)数表示的可行性研究[J].应用声学.1999.04
    [34]唐俊峰,杨士莪.海水中的声速剖面反演研究.哈尔滨工程大学博士论文.2006.4
    [35]张旭,张永刚等.经验正交函数与广义数值环境模式重构声速剖面的比较[J].应用声学,2010,29(2)
    [36]孙鑫,孙余萍.VC++深入详解[M].北京:电子工业出版社.2006.8,63
    [37]贾伟.数据库技术及应用[M].北京:高等教育出版社.2010,10-50
    [38]李建华,王占全.Visual C++编程从基础到实践[M].北京:电子工业出版社.2009,375-376
    [39]付金山.海底参数反演技术研究.哈尔滨工程大学硕士论文.2006
    [40]徐波.OpenGL权威编程指南[M].北京:中国电力出版社.2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700