用户名: 密码: 验证码:
海参岩藻聚糖硫酸酯及其酶解产物的制备、结构与活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海参是一种传统海产珍品,营养价值高,生理活性丰富。目前我国海参加工产业虽发展迅速,但水平仍低。对海参活性物质的深入研究,是实现海参精深加工及低值海参高值化的关键科学问题,也是提高海参加工产业整体水平的必由之路。以此为背景,本文以低值参为原料,以海参活性物质中缺乏研究的海参岩藻聚糖硫酸酯(SC-FUC)为研究对象展开探究。
     选取四种低值参:海地瓜、白乳参、黑海参及蝶参,提取其体壁中的海参多糖,并以离子交换层析分离纯化出SC-FUC。通过对四种SC-FUC得率、蛋白含量、分子量、单糖组成的分析,确定得率最高(4.07%)的海地瓜SC-FUC作为深入研究的对象。利用凝胶柱层析继续纯化,得到高纯度海地瓜SC-FUC,该多糖仅由岩藻糖组成,分子量为1656.7kDa,硫酸根含量为26.79±3.8%。
     酶解法是降解多糖最为理想的方法,限于相应糖苷酶的缺乏,海地瓜SC-FUC之前无法实现酶解。本文以海地瓜SC-FUC为诱导底物,从胶州湾近海海域海水中筛选得到一株海洋细菌CZ1127,经生理生化鉴定及16s rDNA分析确定为黄杆菌科细菌,是首株可利用多种海参来源岩藻聚糖硫酸酯的微生物。CZ1127能够稳定产生海参岩藻聚糖硫酸酯酶(FUCase),该酶主要分泌于CZ1127胞内,经HPSEC、FACE及TLC确认系内切酶。酶学性质研究表示CZ1127 FUCase最适反应温度为28℃,最适反应pH为7.0,热稳定性较差,但4℃下稳定性良好,pH5.5-9.0环境下酶活稳定,Cd2+、Mn2+、Ni2+、Zn2+、Hg2+、Cu2+对酶活有抑制,Ca2+、Mg2+对酶活的影响不大。CZ1127FUCase的获取,首次实现了海地瓜SC-FUC的酶解。同时,该酶对于其他多种海参如白乳参、黑海参、仿刺参的SC-FUC亦有降解作用,为国内外首次发现。
     以CZ1127 FUCase降解海地瓜SC-FUC,建立海地瓜SC-FUC的可控酶解模型,通过数据拟合,得到一以分子量对数为应变量以加酶量及反应时间为自变量的二元二次方程,回归系数良好。酶解制备寡糖混合物,进而以凝胶柱层析进行纯化,得到六个寡糖纯品,包括三糖、四糖、七糖及八糖。以ESI-MS及ESI-MS/MS解析寡糖片段结构,以1H NMR、COSY、TOCSY、NOESY解析低分子量多糖(SC-LMF)结构,并结合多糖1HNMR信息,综合确定海地瓜SC-FUC主要结构为[→3-α-L-fuc-2,4(OSO3)-1→3-α-L-fuc-1→3-α-L-fuc-1→3-α-L-fuc-1→]n,这是海地瓜SC-FUC的首个结构模型。
     采用大鼠模型考察海地瓜SC-FUC的乙醇型胃溃疡预防活性。海地瓜SC-FUC预防乙醇型胃溃疡活性的量效关系显著,剂量达100mg/kg bw(连续灌胃5天)可明显抑制胃溃疡发生,溃疡抑制率为66.53%。500mg/kg bw海地瓜体壁干粉溃疡抑制率达69.44%,海地瓜SC-FUC是海地瓜抗胃溃疡作用的功效成分。通过组织切片观察、化学指标测定及western blotting分析,阐明海参SC-FUC及海地瓜粉的作用机理包括抗氧化、抑制胃粘膜基质水解、抗炎等多个方面。
     SC-FUC的乙醇型胃溃疡预防活性与其分子量密切相关。利用CZ1127FUCase将海地瓜SC-FUC降低至适当分子量,可显著提高多糖原有活性。508kDa及54kDa SC-LMF 100mg/kg.bw给药1次起到的预防作用优于原始多糖同剂量给药5次的效果。乙醇型胃溃疡预防活性的阐明,为SC-FUC及SC-LMF的应用提供了崭新的方向,也突显了CZ1127 FUCase良好的应用前景。
     综上,本文以海地瓜SC-FUC为研究对象,获得了海洋细菌来源的海参岩藻聚糖硫酸酯酶,实现了海地瓜SC-FUC的首次酶解,建立了海地瓜SC-FUC可控酶解模型,纯化得到了酶解系列寡糖片段,解析了海地瓜SC-FUC的结构,证实了海地瓜SC-FUC的乙醇型胃溃疡预防活性,并进一步通过酶解改性提高了其功效。本文以SC-FUC酶解为关键点及主要创新点,是首个关于海参岩藻聚糖硫酸酯酶解产物的研究。本文结果为海参岩藻聚糖硫酸酯的开发利用提供了理论基础,并有望促进海参精深加工及低值海参高值化利用的发展。
Sea cucumber is a traditional valuable aquatic product in China, and possesses a series of biological functions and high nutritional value. Sea cucumber processing industry in China still maintains a low level, although it was developing fast presently. Research on the field of sea cucumber biological materials is the key of sea cucumber fine-processing and value-increment, and also is the way in promoting the whole level of sea cucumber processing industry.On this background, low-price sea cucumber was chosen as material, and sea cucumber fucoidan (SC-FUC) which was lack of study among biological materials of sea cucumber was employed as the subject of this research.
     Four kinds of low-price sea cucumber (Bohadschia marmorata, Acaudina Molpadioides, Holothuria atra, Cucumaria frondosa) were chosen. Sea cucumber polysaccharide was extracted, and SC-FUC was furthermore purified. Through comparing yield, protein content, molecular mass and sugar composition of those SC-FUCs, A. Molpadioides SC-FUC which possesses the highest yield was finally chosen for the further study. The high purity SC-FUC was achieved utilizing gel filtration chromatography. A. Molpadioides SC-FUC is only composed of fucose, its molecular mass is 1656.7kDa, and its sulfate content is 26.79±3.8%。
     Enzymatic degrading is the ideal method for polysaccharide degradation, however the enzymatic degradation of A. Molpadioides SC-FUC cannot be realized limited by the lack of respective enzymes. In this contest, we isolated a marine bacterium strain named CZ1127 from coastal seawater of the Jiaozhou Bay using A. Molpadioides SC-FUC as inducing substrate. After 16S rDNA and physiological analyses, the strain was confirmed to belong to family Flavobacteriaceae. CZ1127 also is the first microorganism which can utilizing various SC-FUCs. Fucoidanase can be secreted by CZ1127, and furthermore is confirmed to be a endo-acting enzyme utilizing HPSEC, FACE and TLC. Results of enzymatic property study show that the optional reactive temperature of CZ1127 fucoidanase is 28℃,the optional pH is 7.0, it possess a poor thermal stability but is stable at 4℃, and it is stable under a environment of 5.5-9.0 pH. Activity of CZ1127 fucoidanase is inhibited by Cd2+, Mn2+, Ni2+, Zn2+, Hg2+and Cu2+, and not affected by Ca2+and Mg2+. The acquisition of CZ1127 fucoidanase firstly realized the enzymatic degradation of A. Molpadioides SC-FUC. Meanwhile, various SC-FUCs such as Bohadschia marmorata, Holothuria atra and Apostichopus japonicus SC-FUC can be degraded by this enzyme, and furthermore CZ1127 fucoidanase is the first enzyme possess above ability.
     The controllable enzymatic degrading model of A. Molpadioides SC-FUC was established by the numerical fitting. The model is a binary quadratic equation which employ logarithm of molecular mass as dependent variable, enzyme dosage and reaction time as independent variables. Oligosaccharide mixture was produced, and furthermore was purified to achieve series oligosaccharide fractions. As the result,6 oligosaccharides containing tri-, tetra-, hepta-and octasaccharide were obtained. Utilizing ESI-MS and ESI-MS/MS to elucidate the structure of oligosaccharide, utilizing 1HNMR, COSY, TOCSY and NOESY to elucidate the structure of low molecular fucoidan(SC-LMF), and combing the information of SC-FUC polysaccharide1H NMR spectra, the main structure of A. Molpadioides SC-FUC was confirmed to be [→3-a-L-fuc-2,4(OSO3)-1→3-a-L-fuc-1→3-a-L-fuc-1→3-a-L-fuc-1→]n.This is the first structure model of A. Molpadioides SC-FUC.
     Rat model was employed to evaluate the anti ethanol-inducing gastric ulcer activity of SC-FUC. There is an obvious dose dependency of A. Molpadioides SC-FUC anti-ulcer activity, and administration of SC-FUC at 100mg/kg b.w. could effectively relieve the lesion (inhibitor rate 66.53%). Administration of A. Molpadioides powder at 500mg/kg b.w. also inhibits the gastric ulcer, and it confirms that SC-FUC is the effective factor of sea cucumber on anti-ulcer activity. Result of histological study, chemical analysis and western blotting analysis show that the mechanism of anti-ulcer effect of SC-FUC and sea cucumber contain antioxidant, gastric matrix hydrolysis inhibiting and anti-inflammation.
     Anti-ulcer activity of SC-FUC is related to its molecular mass. Degrading to appreciate molecular mass will be significantly promoted original activity of SC-FUC. The effect of once administration of 508kDa and 54kDa SC-LMF at 100mg/kg.bw are better than 5 times administration of SC-FUC at the same dose. The elucidation of anti-ulcer activity provide a new area for SC-FUC and SC-LMF, and emphasize the application promising of CZ1127 FUCase.
     Above all, we employed A. Molpadioides SC-FUC as research object, obtained the marine bacterium original sea cucumber fucoidanase, firstly realized the enzymatic degradation of A. Molpadioides SC-FUC, established the enzymatic degrading model of A. Molpadioides SC-FUC, purified oligosaccharide fractions, elucidated the structure of A. Molpadioides SC-FUC, confirm its anti ethanol-inducing gastric ulcer activity, and promoted its function utilizing enzymatic degradation. SC-FUC enzymatic degradation is the key point and main novelty of this paper, and this is the first study on the SC-FUC enzymatic degraded products. Those results provide a theoretical base for SC-FUC application, and will contribute to development of sea cucumber fine processing and price increment.
引文
[1]张凤漆.棘皮动物门(中国经济动物志)[M].北京:科学出版社,1963:49-115.
    [2]廖玉麟.我国的海参[J].生物学通报,2001,36(9):1-3.
    [3]崔桂友,赵廉.食用海参的名称与种类鉴别[J].扬州大学烹饪学报,2000,3:13-18.
    [4]王秉和,李文波,李玉珍,等.世界海参渔业[J].齐鲁渔业,1998,15(4):45-46.
    [5]沈鸣.海参的化学成分和药理研究进展[J].中成药,2001,23(10):758-761.
    [6]姜健,杨宝灵,邰阳.海参资源及其生物活性物质的研究[J].生物技术通,2004,15(5):537-540.
    [7]盛文静,薛长湖,王静凤,等.两种海参酸性粘多糖化学组成及对血管内皮细胞保护作用的比较[J].中国海洋大学学报,2006,36(sup.Ⅱ):62-66.
    [8]盛文静,薛长湖,赵庆喜,等.不同海参多糖的化学组成分析比较[J].中国海洋药物杂志,2007,26(1):44-49.
    [9]苏秀榕,娄永江,常亚青,等.海参的营养成分及海参多糖的抗肿瘤活性的研究[J].营养学报,2003,25(2):181-182.F
    [10]龚燕波,方崇波,邵青.海地瓜多糖的抗衰老生物活性研究[J].基层中药杂志,2001,15(5):17-18.F
    [11]樊绘曾,陈菊娣,林克忠.刺参酸性粘多糖的分离及其理化性质[J].药学学报,1980,15(5):263-269.A
    [12]马西,Beguin S.刺参酸性粘多糖抑制血浆凝血酶生成的作用方式[J].中华血液学杂志.1990,11(5):237-240.F
    [13]Li J Z, Lian E C Y. Aggregation of human platelets by acidic mucopolysaccharide extracted from Stichopus japonicus [J]. Selenka Thromb Haemost,1988,59(3):435-439. A
    [14]王鸿利,彭淼,黄霞萍,等.刺参糖钾在治疗某些血栓性疾病中的应用[J].中华血液学杂志,1985,6:5961.A
    [15]范绘曾,吴世馥,李毅敏.刺参糖氨聚糖的亚分级和各级分的理化性质与抗凝性质[J].生物化学杂志,1993,9(2):146-151
    [16]高存记,李家增,彭林,等.刺参酸性粘多糖对纤维蛋白凝胶结构及其溶解性的影响[J].中华血液学杂志,1996,17(9):458.F
    [17]杨晓光,陈关珍,罗晓玲,等.Sjamp对纤溶系统影响的初步观察[J].中国医学科学院学报,1990,2:187-192.F
    [18]Li Z G, Wang H L, Li J Z, et al. Basic and clinical studies on the thrombotic mechanism of glycosaminoglycan extracted from sea cucumber [J]. Chin Med J,2000,113:706. A
    [19]马克韶,郝晓阁,王莉.刺参酸性粘多糖抗肿瘤肺转移的实验研究[J].海洋药物杂志,1982(1):72.A
    [20]梁延杰,魏树钧.刺参酸性粘多糖对小鼠移植性肺癌作用的病理组织学与超微结构观察[J].中西医结合杂志(基础理论研究特集),1988:61.A
    [21]胡人杰,于苏萍,姜卉,等.刺参酸性粘多糖与可的松联用方案对小鼠肿瘤的抑制作用[J].癌症,1997,16:4221.F
    [22]李惟敏,王述恒,梁袖勤,等.刺参酸性粘多糖对机体免疫功能的影响[J].肿瘤临床,1985,12:118.A
    [23]孙玲,徐迎辉,许华林.刺参酸性粘多糖对细胞免疫的增强作用[J].生物化学与生物物理进展,1991,18(5):394-395.F
    [24]李丽芬,相大峥,高斌.刺参酸性粘多糖治疗慢性乙型病毒性肝炎的研究[C].青岛:第四次中国海洋湖沼药物学术研讨会论文集(下册),1994:1741.
    [25]Takamatsu J, Saito H, Kamiya T, et al. A new mucopolysaccharide from Stichopus japonicus (sea cucumber) and its anticoagulant properties [J]. Thromb Haemost,1987,58:379.
    [26]Suzuki N, Kitazato K, Takamatsu J, et al. Antithrombotic and anticoagulant activity of depolymerized fragment of the glycosaminoglycan extracted from Stichopus japonicus Selenka [J]. Thromb Haemostas,1991,65:369-373.
    [27]Nagase H, Enjyoji K, Minamiguchi K, et al. Depolymerized holothurian glycosaminoglycan with novel anticoagulant actions:antithrombin Ⅲ-and heparin cofactor Ⅱ-independent inhibition of factor X activation by factor Ⅸa-factor Ⅷ a complex and heparin cofactor Ⅱ-dependent inhibition of thrombin [J]. Blood,1995,85:1527. F
    [28]Kitazato K, Kitazato K, Nagase H, et al. DHG, a new depolymerized holothurian glycosaminoglycan, exerts an antithrombotic effect with less bleeding than unfractioned or low molecular weight heparin, in rats [J]. Thrombosis Research,1996,84(2):111-120.
    [29]Nagase H, Kitazato K, Sasahiko E, et al. Antithrombin Ⅲ-independent effect of depolymerized holothurian glycosaminoglycan (DHG) on acute thromboembolism in mice [J]. Thromb Haemostas,1997,77:399-402.
    [30]Nagase H, Enjyoji K, Kamikubo Y, et al. Effect of depolymerized holothurian glycosaminoglycan (DHG) on tissue factor pathway inhibitor:In vitro and in vivo studies [J]. Thromb Haemostas,1997,78:864. A
    [31]Imanari T, Washio Y, Huary Y, et al. Oral absorption and clearance of partially deploymerized fucosyl chondroitinsulfate from sea cucumber[J]. Thromb. Res,1999,93(3):129-135.
    [32]Yutaka K, shugo W, Kanehisa H, et al. Occurance of chondroitin sulfate E in glycosaminogly-can isolated from the body wall of sea cucumber Stichopus japonicus [J]. The Journal of Biological Chemistry,1990,265:5081-5085.
    [33]Yutaka K, shugo W, Mamoru K, et al. Structure of fucose branches in the glycosaminoglycan from the body wall of the sea cucumber Stichopus japonicus.Carbohydrate Research [J]. 1997,297:273-279.
    [34]Mourao P A S, Bastos I G. Highly acidic glycans from sea cucumbers [J]. Eur. J. Bio Chem, 1987,166:639-645.
    [35]Mourao P A S, Catherine B V, Jacqueline T B, et al. Inactivation of Thrombin by a Fucosylated Chondroitin Sulfate from Echinoderm[J]. Thrombosis Research,2001,102: 167-176.
    [36]Mourao P A S, Mariana S P, Mauro S G P. Structure and Anticoagulant Activity of a Fucosylated Chondroitin Sulfate from Echinoderm[J]. The journal of biological chemistry, 1996,271(39):23973-23984.
    [37]Mourao P A S, Guimaraes.M, Mulloy B, et al. Antithrombotic activity of a fucosylated chondroitin sulphate from echinoderm:sulphated fucose branches on the polysaccharide account for its antithrombotic action [J]. British journal of haematology,1998,101:647-652.
    [38]Tapon B J, Droue B, Matou S, et al. Modulation of vascular human endothelial and rat smooth cell growth by a fucosylated chondroitin sulfate from echinoderm [J]. Thromb Haemostas,2000,84:332.
    [39]Tapon B J, Chabut D, Zierer M, et al. A Fucosylated Chondroitin Sulfate From Echinoderm Modulates in Vitro Fibroblast Growth Factor 2-Dependent Angiogenesis [J]. Molecular Cancer Research,2002,1:96-102.
    [40]Borsig L, Wang L, Cavalcante MCM, et al. Selectin Blocking Activity of a Fucosylated Chondroitin Sulfate Glycosaminoglycan from Sea Cucumber [J]. The Journal of biological chemistry,2007,282(20):14984-14991.
    [41]Collin P D. Inhibition of angiogenesis by sea cucumber fractions containing sulfated polysaccharides [P]. US:5985330 A,1999-11-16.
    [42]樊绘曾,陈菊娣,林克忠,等.玉足海参酸性多糖的研究[J].药学学报,1983,18(3):203.A
    [43]张佩文,骆苏芳,钟春,等.玉足海参酸性多糖的抗凝血作用[J].中国药理学与毒理学杂志,1988,5(2):98.A
    [44]钱晋,过鑫昌.玉足海参酸性粘多糖对冠心病患者血凝、血液粘度及血脂的影响[J].上海医学,1997,20(6):342-344.F
    [45]沈卫章,周荣富,王学锋,等.玉足海参糖胺聚糖抗血栓形成的研究[J].中华血液学杂志,2006,27(9):579-583.F(未确认是HL-P)
    [46]王强基,李春艳.玉足海参粘多糖对小鼠免疫功能的影响[J].海洋药物,1984,(1):12.A
    [47]Liu H H, Ching K W, Lin H M. Hypolipidemic effect of glycosaminoglycans from the cucumber Metriatyla scabra in rats fed a cholesterol-supplemented diet [J]. J Agric Food Chem,2002:50(12):3602:F
    [48]陈健,郑艾初,肖凯军,等.糙海参酸性粘多糖的分离及特性研究[J].食品与发酵工业.2006,32(10):123-126.
    [49]唐孝礼,邱鹏新,黎明涛,等.黑海参酸性粘多糖的分离纯化[J].中药材,1999,22(5):223-225.
    [50]邱鹏新,黎明涛,唐孝礼,等.黑海参多糖对β-淀粉样蛋白诱导的皮质神经元凋亡的保护作用[J].中草药,2000,31:271.
    [51]王玲,陈健,姜建国,等.沙海参多糖的分离和特性研究[J].现代食品科技,2008,24(7):655-657.
    [52]李海棠,周清凯,蔡云见,等.玉足海参多糖的分离及理化性质研究[J].中药材,1999,22(7):328-329.
    [53]Ribeiro A C, Vieira R P, Mourao P A S, et al. A sulfated a-L-fucan from sea cucumber [J]. Carbohydrate Research,1994,255:225-240.
    [54]Pereira M S, Mulloy B, Mourao P A S. Structure and anticoagulant activity of sulfated fucans [J]. The journal of biological chemistry,1999,274(12):7656-7667.
    [55]Yutaka K, Barbara M, Kyoko I, et al. Isolation and partial characterization of fucan sulfates from the body wall of sea cucumber Stichopus japonicus and their ability to inhibit osteoclastogenesis [J]. Carbohydrate Research,2004,339:1339-1346.
    [56]吴萍茹,方金瑞,黄维兵,等.二色桌片参的化学成分研究Ⅱ-二色桌片参多糖-1,一种新的岩藻聚糖[J].中国海洋药物,2000,(2):4-10.
    [57]黄益丽,郑忠辉,苏文金,等.二色桌片参的化学成分研究Ⅲ,二色桌片参多糖-Ⅰ的免疫调节作用[J].海洋通报,2001:20(1):88-91.
    [58]Zhang Y, Song S, Song D, et al. Proliferative effects on neural stem/progenitor cells of a sulfated polysaccharide purified from the sea cucumber Stichopus japonicus [J]. Journal of Bioscience and Bioengineering,2009,109(1):67-72.
    [59]Snellman O. Evaluation of extraction methods for acid tissue polysaccharides. in:Tunbridge R E, Eds. Connective tissue. Blackwell, Oxford,1957.
    [60]王长云,管华诗.氨基多糖的提取分离和分析测定方法及其研究进展[J].中国海洋药物,1996,15(1):24-30.
    [61]Himmelhoch S R. Methods in Enzymology [M]. New York:Academic Press (Jakoby, W.B.), 1971.273-286.
    [62]Koichi O, Suda T. Isolation of characterization of a fucosamine-containing polysaccharide from a marine strain of pseudomonas [J]. Nippon Suisan Gakkaishi.1991,57(11): 2151-2156.
    [63]Berman E R. Separation of connective tissue mucopolysaccharide-protein complexes from unrelated proteins [J]. Nature,1966,211:640-64].
    [64]盛文静.不同海参多糖的提取分离及化学组成分析比较:[硕士学位论文].青岛:中国海洋大学,2007.
    [65]Mikes O. Laboratory handbook of chromatographic and allied methods [M].1979.218-220.
    [66]Bigge J C, Patel T P, Bruce J A, et al. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid [J]. Anal Biochem,1995,230: 229-238.
    [67]Karamanos N K, Hjerpe A. Determination of iduronic acid and glucuronic acid in glycosaminoglycans after stoichiometric reduction and depolymerization using high-performance liquid chromatography and ultraviolet detection [J]. Anal Biochem,1988, 172:410-419.
    [68]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社(第二版),1999.
    [69]Suzuki S, Kakehi K, Honda S. Comparison of the sensitivities of various derivatives of oligosaccharides in LC/MS with fast atom bombardment and electrospray ionization interfaces [J].Anal Chem.,1996,68(13):2073-2083.
    [70]Hama Y, Nakagawa H, Mochizuki K, et al. Quantitative anhydrous mercaptolysis of algal galactans followed by HPLC of component sugars[J]. J Biochem,1999,125(1):160-165.
    [71]Meyer A, Raba C, Fischer K. Ion-Pair RP-HPLC Determination of Sugars, Amino Sugars, and Uronic Acids after Derivatization with p-Aminobenzoic Acid [J]. Anal Chem,2001, 73(2):377-382.
    [72]Tran N T, Daali Y, Cherkaoui S. Routine o-glycan characterization in nutritional supplements--a comparison of analytical methods for the monitoring of the bovine kappa-casein macropeptide glycosylation[J]. JChromatogr A,2001,929:151-163.
    [73]Fu R, O'Neill A N. Monosaccharide composition analysis of oligosaccharides and glycoproteins by high-performance liquid chromatography [J]. Anal Biochem.1995,227(2): 377-384.
    [74]Strydom D J. Chromatographic separation of 1-phenyl-3-methyl-5-pyrazolone-derivatized neutral, acidic and basic aldoses [J]. J Chromatogr A.,1994,678:17-23.
    [75]Zhang L Y, Xu J, Zhang L H, et al. Determination of 1-phenyl-3-methyl-5-pyrazolone-labeled carbohydrates by liquid chromato-graphy and micellar electrokinetic chromatography[J]. J Chromatogr B,2003,793(1):159-165.
    [76]周斌,张承明,张承聪,等.烟草中糖类的1-苯-3-甲基-5-吡唑啉酮衍生化与HPLC分析方法研究[J].云南化工,2006,33(6):40-44.
    [77]杨兴斌,赵燕,王海芳,等.柱前衍生化高效液相色谱法分析当归多糖的单糖组成[J].分析化学,2005,33(9):1287-1290.
    [78]井泽良,刘兴华,关文强.真菌寡聚糖单糖组成(HPLC)分析及诱导抗病活性初步研究 [J].食品研究与开发,2006,27(1):53-56.
    [79]Kinoshita A, Yamada S, Haslam S, et al. Novel tetrasaccharides isolated from squid cartilage chondroitin sulfate E contain nusual sulfated disaccharide units GlcA(3-O-sulfate) 1-3GalNAc (6-O-sulfate) or GlcA(3-O-sulfate) 1-3 GalNAc (4,6-O-disulfate)[J]. J Biol Chem,1997,272:19656-19665.
    [80]Satomi N, Albrecht C, Kiniko M, et al. Characteristic hexasaccharide sequences in octasaccharides derived from shark cartilage chindroitin sulfate D with a neurite outgrowth promoting activity [J]. JBiol Chem.,1998,273(6):3296-3307.
    [81]Vieira R P, Pedrosa C, Mourao P A S, et al. Extensive heterogeneity of proteoglycans bearing fucose-branched chondroitin sulfate extracted from the connective tissue of sea cucumber[J], JBiol.Chem,1993,32:2254-2262.
    [82]Mourao P A S, Bastos I. Highly acidic glycans from sea cucumbers:Isolation and fractionation of fucise-rich sulfated polysaccharides from the body wall of Ludwigothurea grisea [J]. Eur JBiochem.,1987,166:639-645.
    [83]Pavao S G, Mauro R M, Aiekko K C, et al. Highly sulfated dermatan sulfates from ascidiand: Structure versus anticoagulant activity of these glycosaminoglycans[J]. J Biol Chem.,1998, 273(43):27848-27857.
    [84]Janayna A S, Mulloy B, Mourao P A S. Structural diversity among sulfateda-L-galactans from ascidians (tunicates):studies on the species Clavelina sp and S. plicata [J]. Eur J Biochem,1992,204:669-677.
    [85]Nikos K K, Alexis J A, Christos A A, et al. Chondroitin proteoglycans from squid skin: Isolation, characterization and immunological studies [J]. Eur J Biochem.,1990,192:33-38.
    [86]姚新生.有机化合物波谱分析[M].北京:中国医药科技出版社,2000.33-36.
    [87]Mourao P A S, Bastos I G. Highly acidic glycans from sea cucumbers. Isolation and fractionation of fucose-rich sulfated polysaccharides from the body wall of Ludwigothurea grisea [J]. Eur JBiochem,1987,166:639-645.
    [88]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学,2000,28(2):240-247.
    [89]Chai W G, Lawson A, Gradwell M, et al. Structure characterization of two hexasaccharides and an octasaccharide from chondroitin sulphate C containing the unusual sequence (4-sulpho)-N-acetylgalactosamine-β-1→4 (2-sulpho)-glucuronic acid-β1->3-(6-sulpho)-N-acetylgalactosamine [J]. Eur J Biochem.,1998,251:114-121.
    [90]刘翠平,方积年.质谱技术在糖类结构分析中的应用[J].分析化学,2001,29(6):716-720.
    [91]董群,方积年.高效阴离子交换-脉冲安培法在糖及其复合物分析上的应用[J].中国药 学杂志,1996,31(12):710-713.
    [92]Berteau O, Mulloy B. Sulfated fucans, fresh perspectives:structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide [J]. Glycobiology,2003,13(6):29R-40R.
    [93]Conchie J, Percival E G V. Fucoidin part Ⅱ. The hydrolysis of a methylated fucoidin prepared from Fucus vesiculosus [J]. J Chem Soc,1950,827-833.
    [94]O'Neill A N. Degradative studies on fucoidan [J]. JAmer Chem Soc,1954,76,5074-5076.
    [95]Anno K, Seno N, Ota M. Isolation of L-fucose 4-sulfate from fucoidan [J]. Carbohydr Res, 1970,73,167-169.
    [96]Patankar M S, Oehninger S, Barnett T. A revised structure for fucoidan may explain some of its biological activities [J]. J. Biol. Chem.1993,268,21770-21776.
    [97]Bilan M I, Grachev A A, Ustuzhanina N E. Structure of a fucoidan from the brown seaweed Fucus evanescens C.Ag. [J]. Carbohydr. Res.2002,337,719-730.
    [98]Bilan M I, Grachev A A, Ustuzhanina N E, et al. A highly regular fraction of a fucoidan from the brown seaweed Fucus distichus L. [J]. Carbohydr. Res.2004,339,511-517.
    [99]Bilan M I, Grachev A A, Shashkov A S, et al. Structure of a fucoidan from the brown seaweed Fucus serratus L. [J]. Carbohydr. Res.2006,341,238-245.
    [100]Adhikaria U, Mateub C G, Chattopadhyaya K C, et al. Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum [J]. Phytochemistry.2006,67,2474-2482.
    [101]Vilela-Silva A C, Alves A P, Valente A P, et al. Structure of the sulfated a-L-fucan from the egg jelly coat of the sea urchin Strongylocentrotus franciscanus:Patterns of preferential 2-O-and 4-O-sulfation determine sperm cell recognition [J]. Glycobiology,1999,9: 927-233.
    [102]Vilela-Silva A C, Castro M O, Valente AP, et al. Sulfated fucans from the egg jellies of the closely related sea urchins Strongylocentrotus droebachiensis and Strongylocentrotus pallidus ensure speciesspecific fertilization [J]. JBiol Chem,2002,277:379-387.
    [103]Mulloy B, Ribeiro A C, Alves A P, et al. Sulfated fucans from echinoderms have a regular tetrasaccharide repeating unit defined by specific patterns of sulfation at the 0-2 and O-4 positions [J]. JBiol Chem,1994,269:22113-22123.
    [104]Alves A P, Mulloy B, Diniz J A, et al. Sulfated polysaccharides from the egg jelly layer are species-specific inducers of acrosomal reaction in sperms of sea urchins [J]. JBiol Chem, 1997,272:6965-6971.
    [105]Alves A P, Mulloy B, Moy G W, et al. Females of the sea urchin Strongylocentrotus purpuratus differ in the structures of their egg jelly sulfated fucans[J]. Glycobiology,1998, 8:939-946.
    [106]Nishino T, Nagumo T, Kiyohara H. Structure characterization of a new anticoagulant fucan sulfate from the brown seaweed Ecklonia kurome [J].Carbohydr Res,1991,211,77-90.
    [107]Chizhov A O, Dell A, Morris H R. A study of fucoidan from the brown seaweed Chorda filum [J]. Carbohydr Res,1999,320,108-119.
    [108]Mian J, Percival E. Carbohydrates of the brown seaweeds Himanthalia lorea and Bifurcaria bifurcata Part Ⅱ. structural studies of the "fucans" [J]. Carbohydr Res,1973,26: 147-161.
    [109]Hussein M M, Abdel A, Salem H M. Sulfated heteropolysaccharides from Padina pavoia [J]. Phytochemistry,1980,19:2131-2132.
    [110]Hussein M M, Abdel A, Salem H M. Some structural features of a new sulfated heteropolyssaride from Padina pavoia [J]. Phytochemistry,1980,19:2133-2135.
    [111]Chevolot L, Mulloy B, Racqueline J. A disaccharide repeat unit is the structure structure in fucoidans from two species of brown algae [J]. Carbohydr Res,2001,330:529-535.
    [112]Marais M, Joseleau J. A fucoidan fraction from Ascophyllum nodosum [J]. Carbohydr. Res.2001,356:155-159.
    [113]Li B, Xin J W, Sun J L, et al. Structural investigation of a fucoidan containing a fucose-free core from the brown seaweed Hizikia fusiforme [J]. Carbohydr. Res.2006,341: 1135-1146.
    [114]Silva T M A, Alves L G, Queiroz K C S, et al. Partial characterization and anticoagulant activity of a heterofucan from the brown seaweed Padina gymnospora[J]. Braz. J. Med. Biol. Res.2005,38:523-533.
    [115]Pomin V H, Mourao P A S. Structure, biology, evolution, and medical importance of sulfated fucans and galactans [J]. Glycobiology,2008,18(12):1016-1027.
    [116]Duarate M, Cardoso M, Noseda M. Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum [J]. Carbohydr Res,2001,333:281-293.
    [117]Ponce N M A, Pujol C A, Damonte E B. Fucoidans from the brown seaweed Adenocystis utricularis:extraction methods, antiviral activity and structural studies [J]. Carbohydr Res,2003,338:153-165.
    [118]Honya M, Mori H, Anzai M, et al. Monthly changes in the content of fucans, their constituent sugars and sulphate in cultured Laminaria japonica [J]. Hydrobiologia,1999, 398/399:411-416.
    [119]Ribeiro A, Vieira R P, Mourao P A S. A sulfated a-L-fucan from sea cucumber [J]. Carbohydr Res,1994,255:225-240.
    [120]Pavao M S G, Mourao P A S, Mulloy B. Structure of a unique sulfated a-L-galactofucan from the tunicate Clavelina [J]. Carbohydr Res,1990,208:153-161.
    [121]Mulloy B, Ribeino A, Alves A. Sulfated fucans from echinoderms have a regular tetrasaccharide repeating unit defined by specific patterns of sulfation at the O-2 and O-4 position[J]. J Biol Chem,1994,269:22113-22123.
    [122]Vieira R P, Mourao P A S. Occurrence of a unique fucose-branced chondroitin sulfate in the body wall of a sea cucumber [J]. J Biol Chem,1988,263:18176-18183.
    [123]Black W A P. The seasonal variation in the combined L-fucose content of the common British laminariaceae and fucaceae [J]. J Sci Food Agr,1954,5:445-448.
    [124]Evans L V. Mucilaginous substances from macroalgae:an overview [J]. Symp. Soc. Exp. Biol.,1989,43:455-461.
    [125]Kloareg B, Quatrano R S. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides [J]. Oceanogr. Mar. Biol. Annu. Rev.,1988,26:259-315.
    [126]Bisgrove S R, Kropf D L. Cell wall deposition during morphogenesis in fucoid algae [J]. Planta,2001,212:648-658.
    [127]Mabeau S, Kloareg B, Joseleau J P. Fractionation and analysis of fucans from brown algae[J]. Phytochemistry,1990,29,2441-2445.
    [128]Mulloy B, Ribeiro A C, Alves A P, et al. Sulfated fucans from echinoderms have a regular tetrasaccharide repeating unit defined by specific patterns of sulfation at the O-2 and O-4 positions[J]. J. Biol. Chem.,1994,269:22113-22123.
    [129]Alves A P, Mulloy B, Moy G W, et al. Females of the sea urchin Strongylocentrotus purpuratus differ in the structure of their egg jelly sulphated fucans [J]. Glycobiology,1998, 8:939-946.
    [130]Vilela-Silva A C, Alves A P, Valente A P. Structure of the sulfated a-L-fucan from the egg jelly coat of the sea urchin Strongylocentrotus franciscanus:patterns of preferential 2-O-and 4-O-sulfation determine sperm cell recognition[J]. Glycobiology,1999,9:927-933.
    [131]Vilela-Silva A C, Castro M O, Valente A P, et al. Sulfated fucans from the egg jellies of the closely related sea urchins Strongylocentrotus droebachiensis and Strongylocentrotus pallidus ensure species-specific fertilization[J]. J. Biol. Chem.,2002,277,379-387.
    [132]Hirohashi N, Vilela-Silva A C, Mourao P A S, et al. Structural requirements for species-specific induction of the sperm acrosome reaction by sea urchin egg sulfated fucan [J]. Biochem. Biophys. Res. Commun.,2002,298:403-407.
    [133]Biermann C H, Marks J A, Vilela-Silva A C, et al. Carbohydrate-based species recognition in sea urchin fertilization:Another avenue for speciation[J]. Evol Dev.,2004, 6:353-361.
    [134]Mourao PAS. A carbohydrate-based mechanism of species recognition in sea urchin fertilization [J]. Braz JMed Biol Res,2007,40:5-17.
    [135]Nishino T, Nagumo T. Sugar constituents and blood-anticoagulant activities of fucose-containing sulfated polysaccharides in nine brown seaweed species [J]. Nippon Nogeikagaku Kaishi,1987,61:361-363.
    [136]Cumashi A, Ushakova N A, Preobrazhenskaya M E, et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds [J]. Glycobiology,2007,17:541-552.
    [137]Li B, Rui X Z, Xin J W. Anticoagulant activity of fucoidan from Hizikia fusiforme [J]. Agro Food Ind. Hi-tech.2008,19:22-24.
    [138]Zheng J, Wang Y, Qian J J. Isolation, purification and the anticoagulant activities of fucoidan[J]. J. Mol.Sci.2002,18:109-112.
    [139]Zoysa M, Nikapitiya C, Jeon Y J, et al. Anticoagulant activity of sulfated polysaccharide isolated from fermented brown seaweed Sargassum fulvellum [J]. J. Appl. Phycol.,2008,20: 67-74.
    [140]Kitamura K, Matsuo M, Yasui T. Fucoidan from brown seaweed Laminaria angustata var. longissima [J].Agric. Biol. Chem.,1991,55(2):615-616.
    [141]Nishino T, Nagumo T. Anticoagulant and antithrombin activities of oversulfated fucans [J]. Carbohydr. Res.,1992,229:355-362.
    [142]Yoon S J, Pyun Y R, Hwang J K, et al. A sulfated fucan from the brown alga Laminaria cichorioides has mainly heparin cofactor II-dependent anticoagulant activity [J]. Carbohydr. Res.2007,342:2326-2330.
    [143]Pomin V H, Pereira M S, Valente A, et al. Selective cleavage and anticoagulant activity of a sulfated fucan:stereospecific removal of a 2-sulfate ester from the polysaccharide by mild acid hydrolysis, preparation of oligosaccharides, and heparin cofactor II-dependent anticoagulant activity [J]. Glycobiology,2005,15:369-381.
    [144]Frank C, James B M, Rita E T. Antithrombin activity of fucoidan [J].J. Biol. Chem., 1989,264:3618-3623.
    [145]Chen X, Chen W Z, Zheng G Y. Cardiovascular Pharmacology [M]. Beijing:People's Medical Publishing House,1998.
    [146]Kuznetsova T A, Besednova N N, Mamaev A N, et al. Anticoagulant activity of fucoidan from brown algae Fucus evanescens of the Okhotsk sea [J]. Bull. Exp. Biol. Med., 2003, 136:471-473.
    [147]Dobashi K, Nishino T, Fujihara M. Isolation and preliminary characterization of fucose-containing sulfated polysaccharides with blood-anticoagulant activity from seaweed Hizikia fusiforme [J]. Carbohydr. Res.,1989,194:315-320.
    [148]Nishino T, Nagumo T. Anticoagulant and antithrombin activities of oversulfated fucans [J]. Carbohydr. Res.,1992,229:355-362.
    [149]Qiu X D, Amarasekara A, Doctor V. Effect of oversulfation on the chemical and biological properties of fucoidan [J]. Carbohydrate Polymers,2006,63:224-228.
    [150]Rocha H A O, Moraes F A, Trindade E S, et al. Structural and hemostatic activities of a sulfated galactofucan from the brown alga Spatoglossum schroederi [J]. J. Biol. Chem.,2005, 280:1278-41288.
    [151]Chevolot L, Foucault A, Chauber F. Further data on the structure of brown seaweed fucans:relationships with anticoagulant activitity [J]. Carbohyd Res.,1999,319:154-165.
    [152]Mourao P A S. Use of sulfated fucans as anticoagulant and antithrombotic agents:future perspectives [J]. Curr. Pharmaceut. Des.,2004,10:967-981.
    [153]Chandia N P, Matsuhiro B. Characterization of a fucoidan from Lessonia vadosa (Phaeophyta) and its anticoagulant and elicitor properties [J]. Int. J. Biol. Macromol,2008, 42:235-240.
    [154]Nishino T, Yokoyama G, Dobahi K. Isolation, purification and characterization of fucose-containing sulfated polysaccharides from the brown seaweed Ecklonia kurome and their blood-anticoagulant activities [J]. Carbohydr. Res.,1989,186:119-129.
    [155]Pereira M S, Vilela-Silva A C, Valente A, et al. A 2-sulfated,3-linked a-L-galactan is an anticoagulant polysaccharide [J]. Carbohydr. Res.,2002,337:2231-2238.
    [156]Pereira M S, Melo F R, Mourao P A S. Is there a correlation between structure and anticoagulant action of sulfated galactans and sulfated fucans? [J] Glycobiology,2002,12: 573-580.
    [157]Li F, Tian T C, Shi Y C. Study on antivirus effect of fucoidan in vitro [J]. JN. Bethune Univ.Med. Sci.,1995,21:255-257.
    [158]Hemmingson J A, Falshaw R, Furneaux R H, et al. Structure and antiviral activity of the galactofucan sulfates extracted from Undaria pinnatifida (Phaeophyta) [J]. J.Appl. Phycol., 2006,75:185-193.
    [159]Hayashi K, Nakano T, Hashimoto M, et al. Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection [J]. Int. Immunopharmacol., 2008,5:109-116.
    [160]Mandal P, Mateu C G, Chattopadhyay K, et al. Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica [J]. Antivir. Chem. Chemother.,2007,18:153-162.
    [161]Dohura K, Kuge T, Uomoto M, et al. Prophylactic effect of dietary seaweed fucoidan against enteral prion infection [J]. Antimicrob Agents Chemother,2007,51:2274-2277.
    [162]Lapshina L, Reunov A, Nagorskaya V, et al. Inhibitory effect of fucoidan from brown alga Fucus evanescens on the spread of infection induced by tobacco mosaic virus in tobacco leaves of two cultivars [J]. Russ. J. Plant Physiol,2006,53:246-251.
    [163]OoI E V, Ang J P O. Antiviral polysaccharides isolated from Hong Kong brown seaweed Hydroclathrus clathratus [J]. Sci. China Ser. C-Life Sci.,2007,50:611-618.
    [164]Usui T. Isolation of highly purified fucoidan from Eisenia bicyclics and its anticoagulant and antitumor activities [J].Agric. Biol. Chem.,1980,44:1965-1966.
    [165]Song J Q, Xu Y T, Zhang H K. Immunomodulation action of sulfate polysaccharide of Laminaria japonica on peritoneal macrophages of mice [J]. Chin. J. Immunol.,2000,16:70.
    [166]Shi Z Y, Guo Y Z, Wang Z. Pharmacological activity of fucoidan from Laminaria japonic [J]. J. Shanghai Fish. Univ.,2000,9:268-271.
    [167]Aisa Y, Miyakawa Y, Nakazato T, et al. Fucoidan induces apoptosis of human HS-Sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways [J]. Am. J. Hematol.,2004,78:7-14.
    [168]Liu J M, Bignon J, Haroun B F, et al. Inhibitory effect of fucoidan on the adhesion of adenocarcinoma cells to fibronectin [J]. Anticancer Res.,2005,25:2129-2133.
    [169]Haneji K, Matsuda T, Tomita M, et al. Fucoidan extracted from Cladosiphon okamuranus Tokida induces apoptosis of human T-Cell leukemia virus type 1-infected T-Cell lines and primary adult T-Cell leukemia cells [J]. Nutrit. Cancer,2005,52:189-201.
    [170]Maruyamaa H, Tamauchib H, Iizuka M, et al. The role of NK cells in antitumor activity of dietary fucoidan from Undaria pinnatifida Sporophylls (Mekabu) [J]. Planta Med.,2006, 72:1415-1417.
    [171]Wang W T, Zhou J H, Xing S T, et al. Immunomodulating action of marine algae sulfated polysaccharides on normal and immunosuppressed mice [J]. Chin. J. Pharm Toxicol., 1994,8:199-202.
    [172]Wu X W, Yang M L, Huang X L, et al. Effect of fucoidan on splenic lymphocyte apoptosis induced by radiation [J]. Chin. J. Radiol. Med. Prot.,2003,23:430-432.
    [173]Wu X W, Yang M L, Huang X L, et al. Effect of Laminaria japonica polysaccharides on radioprotection and splenic lymphocyte apoptosis [J]. Med. J. Wuhan Univ.,2004,25: 239-241.
    [174]Yang X L, Sun J Y, Xu H N. An experimental study on immunoregulatory effect of fucoidan [J]. Chin. J. Marine Drugs,1995,9-13.
    [175]Shimizu J, Wada F U, Mano H, et al. Proportion of murine cytotoxic T cells is increased by high molecular-weight fucoidan extracted from Okinawa mozuku (Cladosiphon okamuranus) [J]. J. Health Sci.,2005,51:394-397.
    [176]Kima M H, Joo H G. Immunostimulatory effects of fucoidan on bone marrow-derived dendritic cells [J]. Immunol. Lett.,2008,115:138-143.
    [177]Li D Y, Xu R Y, Zhou W Z, et al. Effects of fucoidan extracted from brown seaweed on lipid peroxidation in mice [J]. Acta Nutrim. Sin,2002,24:389-392.
    [178]Zhang Q B, Yu P Z, Zhou G F, et al. Studies on antioxidant activities of fucoidan from Laminaria japonica [J].Chin. Trad. Herbal Drugs,2003,34:824-826.
    [179]Zhao X, Xue C H, Cai Y P, et al. The study of antioxidant activities of fucoidan from Laminaria japonica [J]. High Tech. Lett.,2005,11:91-94.
    [180]Wang J, Zhang Q, Zhang Z, et al. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica [J]. Int. J. Biol. Macromol.,2008,42:127-132.
    [181]Micheline R S, Cybelle M, Celina G D, et al. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds [J]. J. Appl. Phycol.,2007,19:153-160.
    [182]Li D Y, Xu Z, Zhang S H. Prevention and cure of fucoidan of L.japonica on mice with hypercholesterolemia [J]. Food Sci.,1999,20:45-46.
    [183]Li D Y, Xu Z, Huang L M, et al. Effect of fucoidan of L. japonica on rats with hyperlipidaemia [J]. Food Sci.,2001,22:92-95.
    [184]Wang S Z, Bi A F. Clinic observation of fucoidan on patients with hyperlipidaemia [J]. Med.J. Qilu.,1994:173-174.
    [185]Li Z J, Xue C H, Lin H. The hypolipidemic effects and antioxidative activity of sulfated fucan on the experimental hyperlipidemia in rats [J]. Acta Nutrim. Sin.,1999,21:280-283.
    [186]Fu X Y, Xue C H, Ning Y, et al. Acute antihypertensive effects of fucoidan oligosaccharides prepared from Laminaria japonica on renovascular hypertensive rat [J]. J. Ocean Univ. Qingdao,2004,34:560-564.
    [187]Blondin C, Fisher E, Boisson V C, et al. Inhibition of complement activation by natural sulphated polysaccharides (fucans) from brown seaweed [J]. Mol. Immunol.,1994,31: 247-253.
    [188]Zvyagintseva T, Shevshenko N, Nazarova I, et al. Inhibition of complement activation by water-soluble polysaccharides of some far-eastern brown seaweeds [J]. Comp. Biochem. Phys. C.,2000,126:209-215.
    [189]Maruyamaa H, Tamauchib H, Hashimotoc M, et al. Suppression of Th2 immune responses by Mekabu fucoidan from Undaria pinnatifida Sporophylls [J]. Int. Arch. Allergy Immunol,2005,137:289-294.
    [190]Yang J W, Se Y Y, Soo J O, et al. Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase [J]. Biochem. Biophys. Res.,2006,346:345-350.
    [191]Shibata H, Kimura T I, Nagaoka M; et al. Properties of fucoidan from Cladosiphon okamuranus tokida in gastric mucosal protection [J]. BioFactors.,2000,11:235-245.
    [192]Itsuko K. Antiulcer agent and adhesion inhibitor for Helicobacter pylori [P]. Eur. Pat.: EP0645143,1995.
    [193]Kawamoto H, Miki Y, Kimura T, et al. Effects of fucoidan from Mozuku on human stomach cell lines [J]. Food Sci. Technol. Res.,2006,12:218-222.
    [194]Saito A, Yoneda M, Yokohama S, et al. Fucoidan prevents concanavalin A-induced liver injury through induction of endogenous IL-10 in mice [J]. Hepatol. Res.,2006,35(3): 190-198.
    [195]Hayashi S, Itoh A, Isoda K, et al. Fucoidan partly prevents CC14-induced liver fibrosis [J]. Eur. J. Pharmacol,2008,580:380-384.
    [196]Veena C K, Josephine A, Preetha S P, et al. Renal peroxidative changes mediated by oxalate:the protective role of fucoidan [J]. Life Sci.,2006,79:1789-1795.
    [197]Veena C K, Josephine A, Preetha S P, et al. Physico-chemical alterations of urine in experimental hyperoxaluria:a biochemical approach with fucoidan [J]. J. Pharm. Pharmacol, 2007,59:419-527.
    [198]Veena C K, Josephine A, Preetha S P, et al. Beneficial role of sulfated polysaccharides from edible seaweed Fucus vesiculosus in experimental hyperoxaluria [J]. Food Chem.,2007, 100:1552-1559.
    [199]Veena C K, Josephine A, Preetha S P, et al. Mitochondrial dysfunction in an animal model of hyperoxaluria:a prophylactic approach with fucoidan [J]. Eur. J. Pharmaco,.2008, 579:330-336.
    [200]Veena C K, Josephine A, Preetha S P, et al. Effect of sulphated polysaccharides on erythrocyte changes due to oxidative and nitrosative stress in experimental hyperoxaluria [J]. Human Exp. Toxicol,2007,26:923-932.
    [201]Liu J C, Zheng F L, Liu Y P. Effect of fucoidan on renal interstitial fibrosis in adenine-induced chronic renal failure in rats [J]. Nephrology,2008,13 (Suppl.),158.
    [202]Zhang Q B, Li N, Zhao T T, et al. Fucoidan inhibits the development of proteinuria in active Heymann nephritis [J]. Phytother. Res.,2005,19:50-53.
    [203]Deux JF, et al. Low molecular weight fucoidan prevents neointimal hyperplasia in rabbit iliac artery in-stent restenosis model [J]. Arterioscler Thromb Vasc Biol,2002, 22:1604-1609.
    [204]Klarzynski O, Descamps V, Plesse B, et al. Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus [J]. Mol Plant Microb Interact,2003,16:115-122.
    [205]Ye J, et al. Enzyme-digested fucoidan extracts derived from seaweed Mozuku of Cladosiphon novae-caledoniae kylin inhibit invasion and angiogenesis of tumor cells [J]. Cytotechnology,2005,47:117-126.
    [206]Descamps V, Colin S, Lahaye M, et al. Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae [J]. Mar. Biotechnol,2006,8:27-39.
    [207]Andrykovitch G, Marx I. Isolation of a new polysaccharidedigesting bacterium from a salt marsh [J]. Appl Environ Microbiol,1988,54:1061-1062.
    [208]Ekborg N A, Gonzalez J M, Howard M B, et al. Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides [J]. Int J Syst Evol Microbiol, 2005,55:1545-1549.
    [209]Wu K, et al. Production of fucoidanase from marine fungus Dendryphiella arenaria TM 94 by solid substrate fermentation using marine algae resources [J]. Nantes Proceedings, 2002,122-133.
    [210]Bakunina I Y, et al. Screening of marine bacteria for fucoidanases [J]. Microbiology (Moscow)(Translation of Mikrobiologiya),2000,69:303-308.
    [211]Barbeyron T, L'Haridon S, Corre E, et al. Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of Cytophaga uliginosa (Zobell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. Nov. [J]. Int J Syst Evol Microbiol,2001,51:985-997.
    [212]Furukawa S, Fujikawa T, Koga D, et al. Purification and some properties of exo-type fucoidanases from Vibrio sp. N-5 [J]. Biosci Biotechnol Biochem,1992,56:1829-1834.
    [213]Furukawa S, Fujikawa T, Koga D, et al. Production of fucoidan-degrading enzymes, fucoidanase, and fucoidan sulfatase by Vibrio sp. N-5 [J]. Nippon Suisan Gakkaishi,1992, 58:1499-1503.
    [214]Sakai T, Kawai T, Kato I. Isolation and characterization of a fucoidan-degrading marine bacterial strain and its fucoidanase [J]. Mar Biotechnol,2004,6:335-346.
    [215]Ivanova E P, et al. Two species of culturable bacteria associated with degradation of brown algae Fucus evanescens [J]. Microb Ecol,2002,43:242-249.
    [216]Sakai T, Ishizuka K, Kato I. Isolation and characterization of a fucoidan-degrading marine bacterium [J]. Mar Biotechnol,2003,5:409-416.
    [217]Daniel R, Berteau O, Chevolot L, et al. Regioselective desulfation of sulfated L-fucopyranoside by a new sulfoesterase from the marine mollusk Pecten maximus: application to the structural study of algal fucoidan (Ascophyllum nodosum) [J]. Eur J Biochem,2001,268:5617-5626.
    [218]Yaphe W, Morgan K. Enzymic hydrolysis of fucoidin by Pseudomonas atlantica and Pseudomonas carrageenovora [J]. Nature (London, United Kingdom),1959,183:761-762.
    [219]Colin S, et al. Cloning and biochemical characterization of the fucanase FcnA: definition of a novel glycoside hydrolase family specific for sulfated fucans [J]. Glycobiology, 2006,16:1021-1032.
    [220]Sakai T, Kimura H, Kato I. A marine strain of Flavobacteriaceae utilizes brown seaweed fucoidan [J]. Mar Biotechnol,2002,4:399-405.
    [221]Sakai T, Kimura H, Kato I. Purification of sulfated fucoglucuronomannan lyase from bacterial strain of Fucobacter marina and study of appropriate conditions for its enzyme digestion [J]. Mar Biotechnol,2003,5:380-387.
    [222]Sakai T, Kimura H, Kojima K, et al. Marine bacterial sulfated fucoglucuronomannan (SFGM) lyase digests brown algal SFGM into trisaccharides [J]. Mar Biotechnol,2003, 5:70-78.
    [223]Sakai T, Ishizuka K, Shimanaka K, et al. Structures of oligosaccharides derived from Cladosiphin Okamuranus fucoidan by digestion with marine bacterial enzymes [J]. Mar Biotechnol,2003,5,536-544.
    [224]Kitamura K, Matsuo M, Yasui T. Enzymatic degradation of fucoidan by fucoidanase from the hepatopancreas of Patinopecten yessoensis [J]. Biosci Biotechnol Biochem,1992, 56:490-494.
    [225]Bilan M I, et al. Effect of enzyme preparation from the marine mollusk Littorina kurila on fucoidan from the brown alga Fucus distichus [J]. Biochemistry (Moscow).2005, 70:1321-1326.
    [226]Daniel R, Berteau O, Jozefonvicz J, et al. Degradation of algal (Ascophyllum nodosum) fucoidan by an enzymatic activity contained in digestive glands of the marine mollusk Pecten maximus [J]. Carbohydr Res,1999,322:291-297.
    [227]Berteau O, McCort I, Goasdoue N, et al. Characterization of a new alpha-L-fucosidase isolated from the marine mollusk Pecten maximus that catalyzes the hydrolysis of alpha-L-fucose from algal fucoidan (Ascophyllum nodosum) [J]. Glycobiology,2002, 12:273-282.
    [228]Sakai T, Ishizuka K, Kato I. Enzyme for decomposition for sulfated fucan derived from sea cucumber [P]. US patent:0122875 A1,2007.
    [229]樊绘曾.关于海参及其成分保健医疗功能的研究与开发[J].中国海洋药物,2001,4:37-44.
    [230]Albano R M, Moura~o P A S. Isolation, fractionation, and preliminary characterization of a novel class of sulfated glycans from the tunic of Styela plicata (Chordata Tunicata) [J]. Biol Chem,1986,261(2):758-765.
    [231]Lowry O H, Rosebrough N J, Farr A L. Protein measurement with the Folin phenol reagent [J]. Biol Chem,1951,193:265-275.
    [232]马定远,陈君,李萍,等.柱前衍生化高效液相色谱法分析多糖中的单糖组成[J].分析化学研究简报,2002,30(6):702-705.
    [233]Dong Q, Zheng L Y, Fang J N. Modified phenol-sulfuric acid method for determination of the content of oligo-and polysaccharides [J]. Chin Pharm J,1996,31(9):550-553.
    [234]陈菊娣,樊绘曾,刑芯凝,等.花刺参酸性粘多糖的分离研究[J].中国海洋药物,1994,13(1):24-26.
    [235]Yutaka K, Shugo W, Kanehisa H, et al. Occurance of chondroitin sulfate E in glycosaminoglycan isolated from the body wall of sea cucumber Stichopus japonicus [J]. The Journal of Biological Chemistry,1990,265:5081-5085.
    [236]Somogyi M. Notes on sugar determination [J]. J Biol Chem,1952,195:19-23.
    [237]Nelson N J. A photometric adaptation of the Somogyi method for the determination of glucose [J]. J Biol Chem,1944,153:375-380.
    [238]Anthon G E, Barrett D M. Determination of reducing sugars with 3-methyl-2-benzothiazolinonehydrazone [J]. Anal Biochem,2002,305:287-289.
    [239]Holtkamp A D, Kelly S, Ulber R, et al. Fucoidans and fucoidanases-fucos on techniques for molecular structure elucidation and modification of marine polysaccharides [J]. Appl Microbiol Biotechnol,2009,82:1-11.
    [240]Zhang Z Q, Xie J, Zhang F M, et al. Thin-layer chromatography for the analysis of glycosaminoglycan oligosaccharides [J]. Analytical Biochemistry,2007,371:118-120.
    [241]Kitamura K, Matsuo M, Yasui. Enzymic degradation of fucoidan by fucoidanase from the hepatopancreas of Patinopecten yessoensis [J]. Biosci. Biotech. Biochem,1992,56, 490-494.
    [242]Thanassi N M, Nakada H. Enzymic degradation of fucoidan by enzymes from the hepatopancreas of abalone, Haliotus species [J]. Arch. Biochem. Biophys,1967,118: 172-177.
    [243]Morinaga T, Araki T, Ito M, et al. A search for fucoidan-degrading bacteria in coastal sea environments of Japan. Bull [J]. Japan. Soc. Sci. Fish.,1981,47:621-625.
    [244]Hauser T R, Cummins R L. Increasing the sensitivity of 3-methyl-2-benzothiazolone hydrazone test for analysis of aliphatic aldehydes in air [J]. Anal. Chem.,1964,36:679-681.
    [245]Daniel R, Berteau O, Chevolot L, et al. Regioselective desulfation of sulfated 1-fucopyranoside by a new sulfoesterase from the marine mollusk pectin maximus [J]. Eur. J. Biochem.,2001,268:5617-5626.
    [246]Aagstrom A, Pommier T, Rohwer F, et al. Use of 16S ribosomal DNA for delineation of marine bacteridplankton species [J]. Applied and environmental microbiology,2002,68(7): 3628-3633.
    [247]Olsen G J, Woese C R. Archaeal genomics:An overview [J]. Cell,1997,89:991-994.
    [248]Macrae A. The use of 16S rDNA methods in soil microbial ecology [J]. Brazilian Journal of Microbiology,2000,31:77-82.
    [249]Holt J G, Krieg N R, Sneath P A, et al. Bergey's Manual of Determinative Bacteriology(9th edn) [M]. Baltimore:Williams & Wilkins,1994.
    [250]Barbeyron T, L'Haridon S, Michel G, et al. Mariniflexile fucanivorans sp.nov., a marine member of the flavobacteriaceae that degrades sulphated fucans from brown algae [J]. Int J Syst Evol Microbiol,2008,58:2107-2113.
    [251]Urvantseva A M, Bakunina I Y, Nedashkovskaya O I, et al. Distribution of intracellular fucoidan hydrolases among marine bacteria of the family flavobacteriaceae [J]. Appl Biochem Biotechnol,2006,42:484-491.
    [252]Sasaki K, Sakai T, Kojima K, et al. Partial purification and characterization of an enzyme releasing 2-sulfo-alpha-L-fucopyranose from 2-sulfo-alpha-Lfucopyranosyl-(1->2)pyridylaminated fucose from a sea urchin, Strongylocentrotus nudus [J]. Biosci Biotechnol Biochem,1996,60:666-668.
    [253]Tanigawa M, Suzuto M, Fukudome K. Changes in molecular weights and molecular weight distributions of differently stranded nucleic acids after sonication:Gel permeation chromatography/low angle laser light scattering evaluation and computer simulation [J]. Macromolecules,1996,29:7418-7425.
    [254]Cao W, Li X Q, Liu L, et al. Structural analysis of water soluble glucans from the root of Angelica sinensis (Oliv.) Diels [J]. Carbohydr Res,2006,341(11):1870-1877.
    [255]Kilcoyne M, Shashkov A S, Knirel Y A, et al. The structure of the O-polysaccharide of the Pseudoalteromonas rubra ATCC 29570T lipopolysaccharide containing a keto sugar [J]. Carbohydr Res,2005,340(15):2369-2375.
    [256]Kondakova A N, Fudala R, Senchenkova S N, et al. Structure of a lactic acid ether-containing and glycerol phosphate-containing O-polysaccharide from Proteus mirabilis O40[J]. Carbohydr Res,2005,340(9):1612-1617.
    [257]于广利.系列硫酸寡糖的制备与其结构与序列分析:[博士学位论文].青岛,中国海洋大学,2005.
    [258]Chuang W L, Allister H M, Rabenstein D L. Chromatographic methods for product-profile analysis and isolation of oligosaccharides produced by heparinase-catalyzed depolymerization of heparin [J]. Journal of Chromatography A,2001,12:65-74.
    [259]Hwang H J, Kwon M J, Kim I K, et al. The effect of polysaccharide extracted from the marine alga Capsosiphon fulvescens on ethanol administration [J]. Food and chemical toxicology,2008,46:2653-2657.
    [260]Choi E Y, Hwang H J, Kim I H, et al. Protective effects of a polysaccharide from Hizikia fusiformis against ethanol toxicity in rats [J]. Food and chemical toxicology,2009,47: 134-139.
    [261]胡伏莲.消化性溃疡发病机制的现代理念[J].中华消化杂志,2005,25(:5)189-190.
    [262]徐颖,陈欣,周世文.药物对乙醇所致胃粘膜损伤的保护作用[J].中国医院用药评价与分析.2001,1(5):302-303.
    [263]Hossam M M A, Mohamed M S. Protective role of carnitine esters against alcohol-induced gastric lesions in rats [J]. Pharmacological Research,2003,48:285-290.
    [264]Zamora RZB, Gonzalez AR, Guanche D, et al. Antioxidant mechanism is involved in the gastroprotective effects of ozonized sunflower oil in ethanol-induced ulcers in rats [J]. Mediators of Inflammation,2007, (1):65873-65878.
    [265]Khandhar M, Shah M, Santani D, et al. Antiulcer activity of the root bark of Oroxylum indicum against experimental gastric ulcers [J]. Pharmaceutical Biology,2006,44(5): 363-370.
    [266]Nair V D, Yuen T, Olanow C W, et al. Early single cell bifurcation of pro-and antiapoptotic states during oxidative stress [J]. J. Biol. Chem,2004,279:27494-27501.
    [267]Zhang J, Tiller C, Shen J, et al. Antidiabetic properties of polysaccharide-and polyphenolicen riched fractions from the brown seaweed Ascophyllum nodosum [J]. Can. J.Physiol. Pharmacol,2007,85 (11):1116-1123.
    [268]Shahin M, Konturek J W, Pohle T, et al. Remodeling of extracellular matrix in gastric ulceration [J]. Microsc. Res. Tech.,2001,53:396-408.
    [269]Swarnakar S, Ganguly K, Kundu P, et al. Curcumin regulates expression and activity of matrix metalloproteinases 9 and 2 during prevention and healing of indomethacin-induced gastric ulcer [J]. J. Biol. Chem.,2005,280:9409-9415.
    [270]Parks W C, Mecham R P. Matrix metalloproteinases [M]. New York:Academic Press, 1998.
    [271]Ohmiya N, Saga S, Ohbayashi M, et al. Kinetics and collagenolytic role of eosinophils in chronic gastric ulcer in the rat [J]. Histochem. Cell Biol.,1997,108:27-34.
    [272]Lempinen M, Inkinen K, Wolff H, et al. Matrix metalloproteinases 2 and 9 in indomethacin-induced rat gastric ulcer [J]. Eur Surg Res.,2000,32:169-176.
    [273]郭一峰,周文丽,张建鹏,等.海螵蛸多糖对小鼠胃黏膜保护作用的研究[J].第二军医大学学报,2008,29(11):1328-1332.
    [274]Gage D, Rathke E, Costello C, et al. Determination of sequence and linkage of tissue oligosaccharides in caprine β-mannosidosis by fast atom bombardment, collisionally

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700