用户名: 密码: 验证码:
低温铝电解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温铝电解是铝业界最活跃的研究课题之一。传统的霍尔-埃鲁法在电解生产铝时通常在950℃左右进行。该方法具有能耗高,操作复杂以及释放大量污染物等缺点。低温铝电解的采用能够在有效地提高电流效率的同时降低能耗。目前冰晶石体系低温铝电解的研究主要从降低电解质的初晶温度入手。但是随着电解温度的降低,出现一系列问题,例如电导率低,阴极结壳,氧化铝溶解度小和溶解速度慢等。在冰晶石体系低温铝电解研究进行的同时,一些国外的研究者开始了室温或者接近室温的铝电解方法(电沉积铝)的研究。采用的方法包括在有机溶液中进行铝的电沉积,以及把离子液体用于电解铝。然而,电解质的电化学电势窗口窄和电导率低使得在有机溶液中进行铝电解的方法受到了限制。离子液体制备的高放热反应造成操作困难,这限制了把离子液体用于电解铝的应用。课题在降低冰晶石体系电解质的初晶温度的基础上对低温铝电解中电解质的物理化学性质(密度和电导率等)进行了研究,同时对接近室温的铝电解的方法进行了研究。
     课题分别从氟化物体系(冰晶石体系)和氯化物体系进行了低温铝电解的研究。针对氟化物体系,并没有采用前人的经验公式计算电解质体系的初晶温度、密度和电导率,而是利用先进的实验方法测定电解质体系的初晶温度、密度和电导率,提高了数据的准确性和可靠性。课题利用34401A型数字万用表与计算机串口相结合的技术,根据步冷曲线确定电解质的初晶温度。采用东北大学炼铁研究所研制的RTW-09型熔体物性综合测定仪,根据阿基米德定律对密度进行了测定。选择热解氮化硼作为电导池,采用交流技术,利用PGSTAT30恒电位仪和BOOSTER20A电流扩展仪在高频范围内用小振幅的正弦波信号测量阻抗,用CVCC法对电导率进行了测定。不仅研究了AlF3、CaF2、LiF的加入对电解质物理化学性质的影响,而且研究了低浓度NaCl的加入对电解质物理化学性质的影响。针对氯化物体系,采用循环伏安法、计时电位法和计时电流法,研究了接近室温的铝的电化学沉积机理和成核过程,以便更好地理解该电解质体系中阴极上所发生的电化学反应。同时研究了电流密度对表面形貌以及沉积物与基体结合力的影响,以考察该体系作为铝电解的电解质的可能性。考虑到该体系的实用性,课题更注重在高电流密度下铝基体上电沉积过程的研究。
     针对氟化物体系,研究了Na3AlF6-AlF3-Al203-CaF2-LiF-NaCl体系的初晶温度、密度和电导率。实验结果表明:
     (1)在铝电解质中用氯化钠取代部分氟化锂能够有效地降低电解质的初晶温度。方差分析表明:NaCl和LiF对初晶温度都有显著影响,两者配合使用效果良好。
     (2)NaCl能有效地降低电解质密度,有利于工业生产,而LiF却使酸性电解质的密度稍有增加。在铝电解质中用氯化钠取代部分氟化锂能够有效地降低电解质的密度。
     (3)氟化锂和氯化钠能显著地提高电解质的电导率。当氟化锂和氯化钠的浓度分别增加1%时,平均电导率值分别增加为0.0276S/cm和0.024S/cm。当温度升高1℃时,电解质的电导率大约增加0.003S/cm。分子比增加有利于提高电导率。本文测得的电导率值低于Wang经验公式计算值,高于Choudhary经验公式计算值。同时根据电导率得到了部分体系的电导活化能。
     (4)从理论上解释了AlF3.A1203.LiF.NaCl对电解质的初晶温度、密度和电导率等物理化学性质的影响。
     (5)在实验的条件范围内,对Na3AlF6-A1F3-A1203-CaF2-LiF-NaCl体系所做的测定数据进行回归分析,分别得到初晶温度、密度和电导率的回归方程。
     针对氯化物体系,研究了AlCl3-NaCl体系的铝的电化学沉积机理和成核过程。实验结果如下所示:
     (1)循环伏安分析表明:Al(Ⅲ)离子通过4A12Cl7-+3e-→Al+7 AlCl4-和AlCl4-+3e-→Al+4 Cl-两个连续的步骤还原为金属铝;铝在钨电极上的电化学沉积需要一定的过电位。
     (2)计时电位分析表明:在一定的电流密度下,Al(Ⅲ)离子以两个连续的步骤还原,与循环伏安的研究结果吻合很好;铝在钨电极上电沉积发生成核和长大的电结晶过程。
     (3)计时电流分析表明:铝在钨电极上的电沉积成核的时间-电流曲线的特征依赖于所施加过电压的大小;铝在钨电极上发生电沉积,存在着明显的成核过程且为半球扩散控制成长的瞬时成核过程。
     (4)恒电流沉积分析表明:当铝在铝基体上恒电流沉积且电流密度在50~100mA/cm2时,镀层致密且与铝基体的结合较好;当电流密度大于200mA/cm.时,镀层有裂缝且与基体的结合较差。因此,AlCl3-NaCl熔盐体系作为电解质,在电流密度低于100mA/cm2时进行电沉积铝是完全可能的。
     (5)铝在铜基体上的电沉积表明:在金属铝形成之前,铝与铜形成金属间化合物并且金属间化合物的形成由铝原子向铜基体内的扩散控制。XRD结果表明:金属间化合物为AlCu.A14Cu9和A12Cu,电沉积的镀层厚度约为20μm。
Low temperature aluminium electrolysis has been one of active research fields in recent years. Traditional Hall-Heroult electrolysis process for aluminium production usually operates at very high temperature (nowadays about 950℃) and unavoidably shows high energy consumption, complicated operation and pollutant emission. By the introduction of low-melting baths one might expect an increase in current efficiency and lower energy consumption. It is important to reduce liquidus temperature for study on low temperature aluminium electrolysis. But many problems will occur, such as low electrical conductivity, cathode shell, and low alumina solubility and alumina-solution rates when the temperature is too low. Furthermore, over the last decades, many researchers turned their interest in the methods at or near ambient temperatures to reduce pollutant emission and energy consumption. Aluminium electrodeposition in organic solutions was investigated for potential application in aluminium refining and recycling. Development in ionic liquids resulted in another potential approach for aluminium extraction and refining. But the electrolyte properties (e.g. low electrochemical potential windows and low electrical conductivity) limited organic solutions applications. It is difficult to prepare ionic liquids due to the highly exothermic reaction. It limited ionic liquids applications for aluminium extraction and refining.
     We met the problem by studying fluoride system and chloride system. The purpose of the present work is to reduce liquidus temperature and density, increase electrical conductivity to provide a scientific basis for selecting suitable low temperature aluminium electrolyte composition for fluoride system. At the same time chloride system is investigated near ambient temperatures to obtain a new method for low temperature aluminium electrolysis.
     For fluoride system, in this study, advanced experiment methods were used. The liquidus temperature, density and electrical conductivity of Na3AlF6-AlF3-Al2O3-CaF2-LiF-NaCl system were measured, but not based on the empirical equations. To a great degree, the accuracy and reliability of the data were better. The liquidus temperature was measured with one Agilent 34401A meter connected to a computer. The method was based on the principle of thermal analysis. The whole process was controlled by computer software. The density measurement method was based on the Archimedes law. RTW-09 melt objects integrated detector made at Northeastern University was used to measure density of the electrolyte. Ac-techniques with a PGSTAT30 and a BOOSTER 20A are used to measure impedance with a sine wave signal with small amplitude in high frequency range. Electrical conductivity is gained by the Continuously Varying Cell Constant (CVCC) technique together with a pyrolytic boron nitride conductance cell. Not only the effects of AIF3, Al2O3, and LiF on liquidus temperature, density and electrical conductivity were discussed but also low concentration NaCl was discussed. For chloride system, the purpose of the present work is to determine the mechanism of the electrodeposition of aluminium from AlCl3-NaCl melts onto W substrate where the methods of cyclic voltammetry, chronopotentiometry and chronoamperometry have been employed. It is necessary to reach a better understanding of electrochemical reactions occurring at very cathodic potentials in the melts. The effects of deposition parameters such as deposition current density on surface morphology and adherence of the deposits were evaluated. We are especially interested in the electrodeposition of aluminium on Al substrates and at relatively high current densities due to their practical importance. Our work aims to explore the possibility of using AlCl3-NaCl melts as potential electrolytes for the electrolytic extraction and recycling of aluminium in aluminium industry.
     For fluoride system, the liquidus temperature, density and electrical conductivity of Na3AlF6-AlF3-Al2O3-CaF2-LiF-NaCl are discussed. By experiments and discussion, the main contents and results can be summarized as follows:
     (1) The addition of NaCl and LiF into the electrolyte reduced greatly the liquidus temperature. The Variance analysis showed it is necessary that LiF be partly replaced by NaCl. It not only improves the physicochemical properties of the electrolyte but also decreases cost and increases economic benefits.
     (2) The result showed increase in NaCl concentration reduced bath density. It is beneficial to industry production. But LiF increased density of the acidic melt. NaCl replace LiF partly in electrolyte system, the density was reduced greatly.
     (3) The experiments showed that electrical conductivity was increased greatly with NaCl and LiF added. Increasing lwt%LiF resulted in corresponding increase of 0.0276 S/cm for superheat condition 15℃. For NaCl, it was 0.024 S/cm. Electrical conductivity was increased 0.003 S/cm with 1℃increased. In this study, electrical conductivity was lower than that which is predicted by the Wang Model and higher than that which is predicted by the Choudhary Model. Activation energy of conductance was obtained based on the experiment results.
     (4) The effects of AIF3, Al2O3, LiF, and NaCl on liquidus temperature, density and electrical conductivity were discussed in theory.
     (5) In experimental range, the regression equations were developed on the basis of experimental data.
     For Chloride system, the mechanism of the electrodeposition of aluminium from AlCl3-NaCl melts is investigated. By experiments and discussion, the main contents and results can be summarized as follows:
     (1) The voltammetric studies showed Al (Ⅲ) was reduced in two consecutive steps: 4Al2Cl7-+3e-→Al+7 AICl4-, AlCl4-+3e-→Al+4 Cl-.Certain nucleation overpotential was required during the deposition of aluminium on W electrode.
     (2) Chronopotentiometry analysis showed that Al (Ⅲ) was reduced in two consecutive steps under certain current density. This is in reasonable agreement with cyclic voltammograms. The electrochemical deposition process of aluminium on tungsten electrode has been investigated and found to proceed by a nucleation and growth mechanism.
     (3) The current-time characteristics of nucleation on tungsten showed a strong dependency on overpotential. Initially, the current decreases rapidly with the time, then the current began to increase and became flat gradually. These transients showed the typical nucleation characteristics during the deposition of aluminium on tungsten electrode. Chronoamperometric analysis showed that the deposition of aluminium exhibited instantaneous three-dimensional nucleation with hemispherical diffusion-controlled growth of nuclei.
     (4) By using constant current deposition, the electrodeposits obtained on aluminium substrates between 50 and 100mA/cm2 were quite dense and well adherent to the aluminium substrates. Those obtained at the current density higher than 200mA/cm2 had intergranular crevices growth with relatively poor adherence. Our studies showed that AlCl3-NaCl melt system can be possibly used as potential electrolytes for the electrolytic extraction and recycling of aluminium at less than 100mA/cm2.
     (5) The electrochemical deposition of aluminium on copper substrates in AlCl3-NaCl melts indicated that the formation of intermetallic compounds was occurred before the metal aluminium was formed. The formation of intermetallic compounds was controlled by the process of which aluminium atoms were diffusing into copper electrode. XRD showed intermetallic compounds were AlCu, Al4Cu9 and Al2Cu. Coating thickness was about 20μm.
引文
1.邱竹贤.预焙槽炼铝(第3版)[M].北京:冶金工业出版社,2005:1-12
    2.邱竹贤.铝电解原理与应用[M].徐州:中国矿业大学出版社,1998:1-15
    3.姚鸿博,郑万平.电解铝生产实践[M].北京:冶金工业出版社,1984:4
    4. Thonstad J, Fellner P, Haarberg G M, et al. Aluminium electrolysis (3nd Edition)[M]. Dusseldorf, Aluminium-Verlag,2001:8-22
    5. Haupin W E. Principles of aluminum electrolysis[C]//Light Metals 1995. Warrendale: Minerals, Metals & Materials Soc,1995:195-203
    6. Grjotheim K, Kvande H. Introduction to aluminium electrolysis (2nd Edition)[M]. Dusseldorf, Aluminium-Verlag,1993:6-25
    7. Vanvoren C, Iiomsi P, Basquin J L. Ap50:the 500kA cell[C]//Light Metals 2001. Warrendale:Minerals, Metals & Materials Soc,2001:221-226
    8.邱竹贤.世界铝工业与新技术发展趋势[J].有色冶炼,2000,29(2):1-6
    9.邱竹贤.21世纪伊始铝电解工业的新进展[J].中国工程科学,2003,5(4):41-46
    10. Qiu Zhuxian, Gao Bingliang. Aluminum electrolysis in a 200A bench-scale cell at 845 ℃ with 96%~98% current efficiency [J]. Aluminum,2001,77(12):974-976
    11. #12
    12. Lu H, Fang K, et al. A new electrolytic aluminum production process[J]. Aluminum, 1999,75(12):1113-1118
    13. Lu H, Yu L. Technique and mechanism of aluminum floating electrolysis in molten heavy Na3AlF6-AlF3-BaF2-CaF2 bath system[C]//Light Metals 2003. Warrendale: Minerals, Metals & Materials Soc,2003:351-356
    14. Lu H M, Fang K M, Qiu Z X. Low temperature aluminum floating electrolysis in heavy electrolyte Na3AlF6-AlF3-BaCl2-NaCl bath system[J]. Acta Metallurgic Sinica,2000, 13(4):949-954
    15. Rolseth S, Gudbrandsen H, et al. Low temperature aluminum electrolysis in a high density electrolyte [J]. Aluminum,2005,81(5):448-450
    16. Beck T R. Production of aluminum with low temperature fluoride melts [C]//Light Metals 1994. Warrendale:Minerals, Metals & Materials Soc,1994:417-423
    17. Beck T R. A non-consumable metal anode for production of aluminum with low-temperature fluoride melts[C]//Light Metals 1995. Warrendale:Minerals, Metals & Materials Soc,1995:355-360
    18.王国献.190KA大型预焙槽“四高一低”工艺研究与实践[J].轻金属,2002,(3):29-31
    19.高炳亮.低温铝电解研究[D].沈阳:东北大学,2001.
    20.邱竹贤,王兆文,高炳亮.铝电解添加氯化钠的研究[J].轻金属,2002,(3):32-34
    21. Chin D A, Hollingshead E A. Journal of the Electrochemical Society,1966,113: 736-739
    22. Fernandez R, Grjotheim K, Ostvold T. Physicochemical properties of cryolite and cryolite alumina melts with KF additions:1. temperature of primary crystallization [C]//Light Metals 1985. Warrendale:Minerals, Metals & Materials Soc,1985:501-506
    23.李国华,李德祥.NaF-AlF3-BaCl2-NaCl系物化性质及铝精炼节能型电解质成份选择[J].中国有色金属学报,1994,4(1):28-32
    24.任凤莲,李海斌,蔡震峰,等.铝电解质初晶温度测定装置及初晶数模的研究[J].冶金分析,2005,25(3):9-12
    25. Ray D P, Alton T T. Liquidus curves for the cryolite AlF3-CaF2-Al2O3 system in aluminium cell electrolytes[C]//Light Metals 1987. Warrendale:Minerals, Metals & Materials Soc,1987:383-388
    26. Solheim A, Rolseth S, Skybakmoen E, et al. Liquidus temperature and alumina solubility in the system Na3AlF6-AlF3-LiF-CaF2-MgF2[C]//Light Metals 1995. Warrendale:Minerals, Metals & Materials Soc,1995:451-456
    27. Rotum A, Solheim A, Sterten A. Phase diagram data in the system Na3AlF6-Li3AlF6-AlF3-Al203[C]//Light Metals 1990. Warrendale:Minerals, Metals & Materials Soc,1990:311-316
    28. Rolseth S, Verstreken P, Kobbeltvedt O. Liquidus temperature determination in the molten salts[C]//Light Metals 1998. Warrendale:Minerals, Metals & Materials Soc, 1998:359-366
    29. Chrenkova M, V. Danek, A. Silny, et al. Density, electrical conductivity and viscosity of low melting baths for aluminum electrolysis[C]//Light Metals 1996. Warrendale: Minerals, Metals & Materials Soc,1996:227-232
    30. Utigard T A. Density of the Na3AlF6-AlF3-Al203-CaF2 system:a key to the performance of Hall-Heroult cell[C]//Light Metals 1993. Warrendale:Minerals, Metals & Materials Soc,1993:239-245
    31.马秀芳,李德祥,陈建设,等.Na3AlF6-AlF3-LiF-CaF2系熔体的等溶初晶温度和等溶变温密度[J].中国有色金属学报,2000,10(10):109-112
    32. Jan Hives, Jomar Thonstad, Sterten A. Electrical conductivity of cryolite-based ternary mixtures Na3AlF6-Al203-CaF2 and Na3AlF6-Al2O3-MgF2[J]. Electrochimica acta,1993, 38(15):2165-2169
    33. Fellner P, Kobbelt O, Sterten A. Electrical conductivity of molten cryolite-based binary mixtures obtained with a tube-type cell made of pyrolytic boron nitride [J]. Electrochimica Acta,1993,38(4):589-592
    34. Wang X W, Ray D P, Alton T T. A multiple regression equation for the electrical conductivity of cryolitic melts [C]//Light Metals 1993. Warrendale:Minerals, Metals & Materials Soc,1993:247-255
    35. Choudhary G. Electrical conductivity for aluminum cell electrolyte between 950-1025 ℃ by regression equation [J]. Journal of the Electrochemical Society,1973,120(3): 381-383
    36. Jan Hives, Jomar Thonstad. Electrical conductivity of low-melting electrolytes for aluminium smelting[J]. Journal of the Electrochemical Society,2004,49:5111-5114
    37. Wang X W, Ray D P, Alton T T. Electrical conductivity of cryolitic melts[C]//Light Metals 1992. Warrendale:Minerals, Metals & Materials Soc,1992:481-488
    38. Kim K B, Sadoway D R. Electrical conductivity measurements of molten alkaline-earth fluoride[J]. Journal of the Electrochemical Society,1992,139(8):1027-1033
    39. Grjotheim K, Matiasovsk Y K. Some Problems Concerning Aluminum Electroplating in Molten Salts[J]. Acta Chemica Scan-dinavica,1980,34 (9):666-670
    40. Ya B. UNIgovski, Gutman E M. Surface morphology of a die-cast Mg alloy[J]. Applied Surface science,1999,47-53
    41. Rolland P, Mamantov. Electrochemical Reduction of Al2Cl7- Ions in Chloroaluminate Melts[J]. Journal of the Electrochemical Society,1976,123(9):1299-1302
    42. Zhao Y, VanderNoot T J. Electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts[J]. Electrochim Acta,1997,42 (1):3-13
    43. Zhao Y, VanderNoot T J. Electrodeposition of aluminium from room temperature AICI3-TMPAC molten salts[J]. Electrochim Acta,1997,42 (11):1639-1643
    44. Lee J J, Miller B, Shi X, et al. Aluminium deposition and nucleation on Nitrogen-incororated tetrahedral amorphous carbon electrodes in ambient temperature chloroaluminate melts[J]. Journal of the Electrochemical Society,2000,147(9): 3370-3376
    45. Abbott A P, Eardley C A, et al. Electrodeposition of aluminium and aluminium/platinum alloys from AlCl3/benzyltrimethylammonium chloride room temperature ionic liquids[J]. J Appl Electrochem,2001,31(12):1345-1350
    46. Jiang T, Chollier Brym M J, Dube G, et al. Electrodeposition of aluminium from ionic liquids:Part I-electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)-l-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids[J]. Surface & coatings technology,2006,201(1-2):1-9
    47. Jiang T, Chollier Brym M J, Dube G, et al. Electrodeposition of aluminium from ionic liquids:Part II-studies on the electrodeposition of aluminum from aluminum chloride (AlCl3)-trimethylphenylammonium chloride (TMPAC) ionic liquids[J]. Surface & coatings technology,2006,201(1-2):10-18
    48. Li QingFeng, Hjuler H A, Berg R W, Bjerrum N J. Electrochemical Deposition of Aluminum from NaCl-AlCl3 Melts[J]. Journal of the Electrochemical Society,1990, 137(2):593-597
    49. Nayak B, Misra M M. The electrodeposition of aluminium on brass from a molten aluminium chloride-sodium chloride bath[J]. Journal of Applied Electrochemistry, 1977,7(1):45-50
    50. Nayak B, Misra MM. The electrodeposition of aluminum on mild steel from a molten aluminum chloride-sodium ehloride bath[J]. J Applied Electrochemistry,1979,9(9): 699-706
    51.牛洪军,孙国恩,宋国泰.AlCl3-NaCl熔融盐电解渗铝及其耐蚀性[J].腐蚀与防护,1994,(2):61-63
    52. Paucfova, Matiasovsk. Electrolytic aluminum-plating in fused salts based on chlorides [J]. Electrodeposition and Surface Treatment,1975,3(3):121-128
    53. Fellner P, Chrenkov apauc rova, Matiasovsky K. Electrolytic Aluminium Plating in Salt Mixtures Based on AlCl3 Ⅰ:Influence of the Addition of Tetramethylammonium Chloride [J]. SurfaceTreatment,1981,14:101-108
    54. Chrenkov apauc rova M, Fellner P, Siln Y A, Matiasovsk y K. Electrolytic Aluminium Plating in Salt Mixtures Based on AICl3Ⅱ:Influence of the Pulsed Current and of a Copper Underlayer[J]. Surface Treatment,1982,16:15-21
    55. Grjotheim K, Matiasovsk y K. Some Problems Concerning Aluminum Electroplating in Molten Salts[J]. Acta CHemica Scan-dinavica,1980,34(9):666-670
    56.李庆峰,邱竹贤.铝在NaCl-AlCl3熔盐体系中的电化学沉积[J].稀有金属材料与工程,1995,24(3):59-63
    57. Nayak B, Misra M M. The electrodeposition of aluminum on brass from a molten aluminum chloride-sodium chloride bath[J]. Journal of Applied Electrochemistry,1977, 7(1):45-50
    58. Jafarian M, Mahjani M G, Gobal F, et al. Effect of potential on the early stage of nucleation and growth during aluminum electrocrystallization from molten salt (AlCl3-NaCl-KCl)[J]. J Electroanal Chem,2006,588:190-196
    59. Li Qingfeng, Hjuler H A, Berg R W, et al. Influence of substrates on the electrochemical deposition and dissolution of aluminum in NaAlCl4 melts[J]. Journal of the Electrochemical Society,1991,138(3):763-766
    60. Li Qingfeng, Hjuler H A, Berg R W, et al. Electrochemical deposition of Aluminium from NaCl-AlCl3 melts[J]. Journal of the Electrochemical Society,1990,137(2): 593-597
    61. Gerhard L Holleck, Jose Giner. The aluminum electrode in AlCl3-alkali-halide melts[J]. Journal of the Electrochemical Society,1972,119(9):1161-1166
    62. Moffat T P. Electrodeposition of Ni1-xAlx in a chloroaluminate melt[J]. Journal of the Electrochemical Society,1994,141(11):3059-3070
    63. Leonas S, Algimantas S, Albertas S. The initial stages of aluminium and zinc electrodeposition from an aluminium electrolyte containing quaternary aralkylammonium compound[J]. Electrochimica Acta,1997,42(10):1581-1586
    64. Muhammad R, Atshushi N, Tooru T. Electrodeposition of Al-Ni intermetallic compounds from aluminium chloride-N-(n-butyl) pyridinium chloride room temperature molten molten salt[J]. Journal of the Electroanalytical Chemistry,2001, 513(2):111-118
    65. Jafarian M, Gobal F, Mahjani M G. Impedance spectroscopy study of aluminium electrocrystallization from basic molten salt (AlCl3-NaCl-KCl)[J]. Electrochimica Acta, 2007,52(17):5437-5443
    66. Michael E H, Richard G C. A review of the analysis of multiple nucleation with diffusion controlled growth[J]. Journal of the Electroanalytical Chemistry,2003,549: 1-12
    67. Katayama Y. Electrodeposition of metals in ionic liquids[M]//Hiroyuki Ohno, Electrochemical Aspects of Ionic Liquids, John Wiley & Sons,2005:111-131.
    68. Chang J K, Chen S Y, Tsai T T. Electrodeposition of aluminium on magnesium alloy in aluminium chloride (AlCl3)-1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and its corrosion behavior[J]. Electrochemistry communications,2007,9(7):1602-1606
    69. Leonas S, Algimantas S, Albertas S. Codeposition of aluminium with some metals from AlBr3-dimethylethylphenylammonium bromide solutions xontaining acetylacetonate of selected metal[J]. Electrochimica Acta,2000,46(4):499-507
    70. Ali M R, Nishikata A, Tsuru T. Electrodeposition of aluminium-chromium alloys from AICl3-BPC melt and its corrosion and high temperature oxidation behaviors[J]. Electrochimica Acta,1997,42(15):2347-2354
    71. Lee J J, Bae I T, Scherson D A, et al. Underpotential deposition of aluminium and alloy formation on polycrystalline gold electrodes from AICl3/EMIC room-temperature molten salts[J]. Journal of the Electroanalytical Chemistry,2000,147(2):562-566
    72. Allongue P, Souteyrand E. Metal electrodeposition on semiconductors. I. Comparison with glassy carbon in the case of platinum deposition[J]. J Electroanal Chem,1990, 286(1-2):217-237
    73. Scharifker B and Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochim Acta,1982,28(7):879-889
    74. Carlin R T, Crawford W, Bersch M. Nucleation and morphology studies of aluminum deposited from an ambient-temperature chloroaluminate molten salt[J]. Journal of the Electrochemical Society,1992,139(10):2720-2727
    75. Xu X H and Hussey C L. Electrodeposition of Silver on Metallic and Nonmetallic Electrodes from the Acidic Aluminum Chloride-l-Methyl-3-Ethylimidazolium Chloride Molten Salt[J]. Journal of the Electrochemical Society,1992,139(5): 1295-1300
    76. Lee J J, Miller B, Shi X, Kalish R, Wheeler K A. Electrodeposition and nucleation of copper at nitrogen-incorporated tetrahedral amorphous carbon electrodes in basic ambient temperature chloroaluminate melts[J]. Journal of the Electrochemical Society, 2001,148(3):C183-C190
    77. Grjotheim K, et al. Low-melting baths in aluminum electrolysis [C]//Light Metals 1986. Warrendale:Minerals, Metals & Materials Soc,1986:417-423
    78. Grjotheim K, Kvande H. Physico-chemical properties of low-melting baths in aluminum electrolysis [J]. METALL,1985,39(6):510-513
    79. Qiu Zhuxian, He Minghong, et al. Aluminum electrolysis at lower temperature [C]// Light Metals 1985. Warrendale:Minerals, Metals & Materials Soc,1985:529-544
    80.邱竹贤,邱天爽,王兆文,高炳亮.铝电解实验数据的回归分析和经验公式拟合[J].东北大学学报(自然科学版),2003,24(4):352-357
    81.邱竹贤.铝电解原理与应用[M].徐州:中国矿业大学出版社,1998:73-112
    82. Chrenkova M, Danek V. Silny A, et al. Density, electrical conductivity and viscosity of low melting baths for aluminum electrolysis [C]//Light Metals 1996. Warrendale: Minerals, Metals & Materials Soc,1996:227-231
    83. Grjotheim K, Kvande H, Qiu Z X. Key improvements to hall-heroult since the end of world war Ⅱ[J]. JOM,1995,47(11):32-35
    84. Knapp L L. Prediction of pot performance at new operating conditions [C]//Light Metals 1992. Warrendale:Minerals, Metals & Materials Soc,1992:537-539
    85. Kvande H. Current efficiency of alumina reduction cells [C]//Light Metals 1989. Warrendale:Minerals, Metals & Materials Soc,1989:261-268
    86. Langon B, Peyneau J M. Current efficiency in modern point feeding industrial pot lines[C]//Light Metals 1990. Warrendale:Minerals, Metals & Materials Soc,1990: 267-274
    87. Grjotheim Welch.邱竹贤,王家庆,刘海石等译.铝电解厂技术[M].沈阳:轻金属编辑部,1997,62-70
    88.杨振海.工业铝电解质相关物理化学参数的研究及检测[D].沈阳:东北大学,2000:57-79
    89. Kvande H. Structure of alumina dissolved in Cryolite melts[J]. Metallurgical Soc of AIME,1986,2:451-459
    90.邱竹贤.铝电解原理与应用[M].徐州:中国矿业大学出版社,1998:109-111
    91. Sleppy W C, et al. U.S. Patent,3951763, April 20,1976
    92.卢惠民,方克明,洪彦若,邱竹贤.惰性TiB2阴极在低温铝电解中的应用[J].矿冶,1999,8(3):50-53
    93.李庆峰,邱竹贤,氯化钠-氯化铝熔盐体系及其应用[J].矿冶工程,1996,16(1):54-57
    94.李庆峰,邱竹贤,张中林.熔盐电解中的阳极电流效率[J].中国有色金属学报,1994,4(4):23-25
    95.杜道斌,熔盐电解渗铝过程及渗铝层性能研究[J].金属热处理,1993,(10):16-21
    96. Warren H. The Liquidus Enigma [C]//Light Metals 1992. Warrendale:Minerals, Metals & Materials Soc,1992:477-480
    97. Madsen D J, Temperature measurement and control in reduction cell[C]//Light Metals 1993. Warrendale:Minerals,Metals & Materials Soc,1993:453-456
    98.孙本良,翟玉春,田彦文.NaCl-KCl(1:1)-ScCl3体系电导率及初晶温度的测定[J].稀土,1999,20(4):26-28
    99.马秀芳,李德祥,陈建设,等.Na3AlF6-AlF3-LiF-CaF2系熔体变温密度的研究[J].有色金属,1999,51(1):61-64
    100.马秀芳,张世荣,李德祥,等.Na3AlF6-AlF3-LiF-CaF2系熔体变温电导率的研究[J].有色金属,1998,50(4):77-81
    101.于亚鑫,邱竹贤,杨宝刚,等.NaF-AlF3-CaF2-LiF-Al203系电导率的研究[J].中国有色金属学报(增刊),1998,8(2):458-460
    102.曾水平,蔡祺凤,李荐,等.NaF-AlF3-NaCl-MgF2熔盐体系初晶点及电导率的研究[J].轻金属,1994,(8):30-32
    103.Edwards J D, Taylor C S, Russell A S. Electrical conductivity of molten cryolite and Lotassium, Sodium, and Lithium chlorides[J]. Journal of the Electrochemical Society, 1952,99(10):527-535
    104.Hives J, Thonstad J, Sterten A. Electrical conductivity of molten cryolite-based mixtures obtained with a tube-type cell made of pyrolytic boron nitride [J]. Metallurgical and Materials Transactions B,1996,27(4):255-261
    105.Fellner P, Midtlyng S, Sterten A. Electrical conductivity of low melting baths for aluminium electrolysis:the system Na3AlF6-Li3AlF6-AlF3 and the influence of additions of A12O3, CaF2 and MgF2[J]. Journal of Applied Electrochemistry,1993,23: 78-81
    106.Haarberg G M, Thonstad J, Egan J J. Electrical conductivity measurements in cryolite alumina melts in the presence of aluminium[C]//Light Metals 1996. Warrendale: Minerals, Metals & Materials Soc,1996:221-225
    107.Chrenkova M, Danek V, Silny A. Density, electrical conductivity and viscosity of low melting baths for aluminium electrolysis[C]//Light Metals 1996. Warrendale:Minerals, Metals & Materials Soc,1996:227-232
    108.高小霞.电分析化学导论[M].北京:科学出版社,1986:32-44
    109.方建安.电化学分析仪器[M].南京:东南大学出版社,1992:200-208
    110.段淑贞,乔芝郁.熔盐化学-原理和应用[M].北京:冶金工业出版社,1990:212-230
    111.阿伦.J.巴德,拉里.R.福克纳著.邵元华,朱果逸,董献堆等译.电化学方法原理和应用(第二版)[M].北京:化学工业出版社,2005:32-80
    112.田邵武.电化学研究方法[M].北京:科学出版社,1984:141-201
    113.蒋汉瀛.冶金电化学[M].北京:冶金工业出版社,1983:113-117
    114.李军,李冰.LiF-NaF-KF-K2TiF6-KBF4熔体中电沉积TiB2的阴极过程[J].中国有色金属学报,2006,16(6):1070-1075
    115.Li Jun, Li Bing. Electrochemical reduction and electrocrystallization process of Ti(IV)LiF-NaF-KF-K2TiF6 molten salt[J]. Rare metal materials and engineering,2007, 36(1):15-19
    116.张祖训,汪尔康.电化学原理和方法[M].北京:科学出版社,2000:55
    117.Lai P K, Kazacos M S. Electrodeposition of aluminium in aluminium chloride/1-methyl-3ethylimidazolium chloride[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistr,1988,248(2):431-440

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700