用户名: 密码: 验证码:
南黄海晚更新世以来环境演变的矿物—地球化学记录
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对南黄海两个代表性的钻孔NT1和NT2孔沉积物的矿物和元素地球化学特征的研究,探讨了晚更新世以来南黄海的物质来源和沉积环境。运用数理统计方法将钻孔、长江、黄河及韩国河流沉积物做了对比,确定了不同河流对南黄海物质来源的贡献。论证了南黄海晚更新世以来高海平面时期存在两个“古冷涡”。在南黄海首次发现胶黄铁矿(Fe3S4)、锰方解石和重晶石晶体三种具有环境意义的海洋自生矿物,论述了南黄海冷涡沉积中自生黄铁矿的特征与环境指示意义。
     NT1孔位于南黄海涡旋泥中心区(123o24.29'N,35o26.60'E),主要沉积了晚更新世以来的细粒物质,孔深70m,鉴定矿物40余种。根据矿物、元素的垂向分布特征及沉积类型,自上而下将NT1孔岩芯分为五层或五个矿物段(十个矿物亚段)。通过将NT1岩芯与长江、黄河、锦江和荣山江沉积物的矿物—地球化学特征进行分析对比可知,在物源方面,第一、三、五层(段)岩芯沉积物的重矿物以自生黄铁矿为主,陆源矿物组合为角闪石、绿帘石、白云石、钛铁矿和片状矿物,显示了与长江的矿物组合更接近,即沉积物可能主要来源于长江;其元素地球化学以富含多数金属氧化物、有机碳和大部分微量元素为特征,对化学元素,富集因子和判别函数分析表明,各种特征均接近于长江,说明沉积物主要来自长江。在环境方面,第一、三、五层由于富集大量的自生黄铁矿,反映了弱的水动力、还原环境以及高海平面时期海相沉积环境;Na/Al、Na/K的比值反映了气候温暖湿润。因此,在高海平面时期和温暖湿润的气候条件下,长江物质对南黄海沉积物的贡献大于黄河、锦江和荣山江。第二、四层(段)的重矿物组合以片状矿物、方解石、绿帘石、角闪石和石榴石为主,显示与黄河矿物组合更接近,沉积物可能主要来自黄河。元素分析反映第二、四层沉积物以富Si、Ca、Na、Mn、P、Sr,贫Al、K、Ti、Mg、Fe、有机碳和贫14种微量元素(除了Sr以外)为特征,对化学元素、富集因子和判别函数分析发现,黄河物质的贡献大于长江、锦江和荣山江。在环境方面,第二、四层的矿物组合与Na/Al、Na/K的比值反映了较强的水动力条件和氧化作用为主的滨岸、河口和陆相沉积环境,反映了低海平面时期和较干燥、寒冷的气候条件。也就是说在低海平面时期和较干燥、寒冷的气候条件下,黄河物质对南黄海沉积物的贡献大于长江、锦江和荣山江。第一、三层沉积物对应着高海平面时期HⅠ、HⅡ海侵层,其矿物及元素特征均证明这两段岩芯形成时有“古冷涡”存在,古生物、水动力机制、孢粉、沉积物类型均为其存在提供了佐证。从而可推测,只要高海平面时期有黄海暖流和黄海环流出现则必定有“古冷涡”存在。
     NT2孔位于南黄海西南部(122o15.49'N,33o27.53'E),主要沉积了中更新世晚期以来的物质,孔深70m,发现矿物42种。据矿物的垂向分布特征及沉积类型,自上而下将NT2孔岩芯分为三个矿物段和六个矿物亚段。根据地球化学特征,又将NT2孔沉积物自上而下分为五层,基本上同矿物分段相对应。第一、二、四层化学元素分布特征相似,以富含多数氧化物和微量元素、贫Si、Na和Sr为特征,反应了近岸浅海环境,代表着HⅠ、HⅡ、HⅣ的高海平面时期;Na/Al和Na/K比值反应为温暖湿润的气候。化学元素、判别函数和富集因子均显示长江物质对物源的贡献大于黄河。稀土元素经北美页岩、上地壳和球粒陨石标准化的配分模式趋向于和长江更接近。第三、五层的化学元素分布相似,以贫Al、K、Ti、Mg、Corg、REE和微量元素,富Si、Ca、Na、Sr为特征。矿物组合和元素特征反应为海陆交互相,与古生物和孢粉反映的环境一致;Na/Al和Na/K比值反应了较干燥和寒冷的气候;元素、判别函数和富集因子显示黄河物质对物源的贡献大于长江。
     总之,晚更新世以来,NT1、NT2岩芯的矿物、地球化学、古生物和孢粉资料都反应了在温暖湿润的气候条件下和高海平面时期,长江物质对南黄海的贡献大于黄河、锦江和荣山江;而在干燥寒冷的气候条件和低海平面时期,黄河物质对南黄海物源的贡献大于长江、锦江和荣山江。
Based on the research to the features of mineral and element geochemistry for sediment from two representational bores NT1 and NT2 in South Yellow Sea, the substance source and sedimentary environment in South Yellow Sea since Late Pleistocene are discussed in the paper. Bring to bear the mathematical statistic method, the sediment from the two bores and Yangtze River, Yellow River and Korean rivers is compared, and the contribution of the different rivers to substance source in South Yellow Sea is confirmed. The occurrence of two“ancient cold eddies”during the high sea level in South Yellow Sea since Late Pleistocene is demonstrated. The greigite (Fe3S4), manganocalcite and barite crystal, three kinds of marine authigenic minerals with environmental meaning, are first discovered in South Yellow Sea. The paper also expounds the features of authigenic pyrite and its environmental indication significance in the cold eddy sediment from South Yellow Sea.
     The Bore NT1 with 70 meters deep is located at the central gyre mud area (123o24.29'N,35o26.60'E) in South Yellow Sea, where the fine-grained substance has been deposited since Late Pleistocene. More than 40 kinds of minerals are identified in the core. According to the vertical distributional characteristics of minerals and elements and its sedimentary types, the core NT1 can be divided into five layers or five mineral segments (ten mineral sub-segments) from above to below. Based on the analysis and comparison on mineral– geochemistry characteristics of sediment from the core NT1, Yangtze River, Yellow River, Keum River and Yeongsan River, the paper can get the following results:In the aspect of substance source, the heavy minerals of the core sediment in the 1st Layer, 3rd Layer and 5th Layer (Segment) are mainly consisted of authigenic pyrite. The terrigenous mineral association is consisted of hornblende, epidote, dolomite, ilmenite and schistic minerals, which displays that it is closer to the mineral association in Yangtze River, and the sediment may mainly come from Yangtze River. Its element geochemistry characterizes the rich content of most metallic oxide, organic carbon and most minor elements. By means of the analysis to the elements, enrichment factors and discriminant functions of minor elements, it is shown that all kinds of characteristics are all close to that of Yangtze River, which illustrates that the sediment was mainly from Yangtze River. In the aspect of environment, for the concentration of magnanimous authigenic pyrite in the 1st Layer, 3rd Layer and 5th Layer, it reflects the weak hydrodynamic, reducing environment and marine deposit environment during high sea level period. The ratios of Na/Al and Na/K reflects that the warm and humid climate condition. Therefore, the contribution of Yangtze River to the sediment of Yellow Sea is more than Yellow River, Keum River and Yeongsan River. The heavy mineral associations of the 2nd Layer and 4th Layer (Segment) are mainly consisted of schistic minerals, calcite, epidote, hornblende and garnet, which displays that it is closer to the mineral association of Yellow River. This illustrates the sediment may mainly come from Yellow River. The element analysis reflects that the sediment in the 2nd layer and 4th Layer characterizes the rich Si, Ca, Na, Mn, P, and Sr, deficient Al, K, Ti, Mg, Fe, organic carbon, as well as fourteen kinds of minor elements except for Sr. Based on the analysis to the elements, enrichment factors and discriminant functions of minor elements, it is found that the contribution of substance from Yellow River is more than that from Yangtze River, Keum River and Yeongsan River. In the aspect of environment, the mineral associations and the ratios of Na/Al and Na/K in the 2nd layer and 4th Layer reflect stronger hydrodynamic condition and the sedimentary environment of shore, estuary and terrestrial facies, which represents the low sea level period and arider and cold climate condition. It is to say that the contribution of Yellow River to the sediment of Yellow Sea is more than Yangtze River, Keum River and Yeongsan River under the arider and cold climate condition during the low sea level period. The sediment of the 1st Layer and 3rd Layer separately corresponds to the marine strata HⅠand HⅡduring high sea level period, which characters of mineral and element all prove the existence of“ancient cold eddy”when the two core segments were formed, and the paleospecies, hydrodynamic mechanism, sporo-pollen and sedimentary types all provide the evidence for this. Thus, it can be inferred that the“ancient cold eddy”surely exists so long as the Yellow Sea warm current and Yellow Sea circular current appear during high sea level period.
     The Bore NT2 with 70 meters deep is located at the northwestern area (122o15.49'N,33o27.53'E) of South Yellow Sea, where the sediment has been formed since late Middle Pleistocene. More than 42 kinds of minerals are found in the core. According to the vertical distributional characteristics of the minerals and its sedimentary types, the core NT2 can be divided into three mineral segments and six mineral sub-segments from above to below. According to the geochemistry character, the sediment of Bore NT2 is also divided into five layers from above to below, which basically correspond to the above mineral segments. The distributional characters of chemistry elements from the 1st layer, 2nd layer and 4th layer are similar each other, which characterizes rich most oxides and minor element, deficient Si, Na and Sr. It reflects the offshore neritic environment and represents the high sea level period of marine strata HI、HII、HIV. The ratios of Na/Al and Na/K reflect the warm and humid climate. The chemistry elements, enrichment factors and discriminant functions all show that the contribution of Yangtze River to the substance source is more than Yellow River. The rare-earth element pattern tends to further approach Yangtze River via the normalization based on the North American shale, supracrust and chondritic meteorite. The chemistry elements of the 3rd layer and 5th layer distribute similarly, which characterizes deficient Al, K, Ti, Mg, Corg, REE and microelement, rich Si, Ca, Na and Sr. The characters of mineral association and elements reflect marine and terrestrial alternation facies, which is consistent with the environment that paleospecies and sporo-pollen also reflect. The ratios of Na/Al and Na/K reflect the arider and cold climate. The elements, discriminant functions and enrichment factors show that the contribution of Yellow River to the substance source is more than Yangtze River.
     In a word, the data about the minerals, geochemistry, paleospecies, and sporo-pollen in Bores NT1 and NT2 all reflect that the contribution of Yangtze River to the sediment in South Yellow Sea is more than Yellow River in the warm and humid climate condition and high sea level period, and the contribution of Yellow River to the substance source of South Yellow Sea is more than Yangtze River, Keum River and Yeongsan River in the arider and cold climate condition and low sea level period since Late Pleistocene.
引文
1.蔡德陵,石学法,周卫健,刘卫国,张淑芳,曹蕴宁,韩贻兵.南黄海悬浮体和沉积物的物质来源和运移:来自碳稳定同位素组成的证据.科学通报,2001,46(增刊):16-23
    2.苍树溪,阎军.西太平洋特定海域古海洋学.青岛:青岛海洋大学出版社,1992.180
    3.陈方,朱大奎.海岸、内陆沙漠与大陆架砂质沉积石英颗粒表面结构的对比研究.地理学报,1999, 54(2):134-141
    4.陈方.中国东南部海岸砂与大陆架砂沉积特征比较极其环境意义.第四纪研究,1997,4:367-375
    5.陈丽蓉,申顺喜,徐文强,李安春.中国海的碎屑矿物组合及其分布模式的探讨.沉积学报,1986,4(3):87-96
    6.陈丽蓉,徐文强,申顺喜.东海沉积物的矿物组合及其分布特征.科学通报,1979,15:709-712
    7.陈丽蓉,徐文强,申顺喜.东海沉积物中轻矿物的研究.海洋科学集刊,第21集,1984:297-303
    8.陈丽蓉.渤海、黄海、东海沉积物中矿物组合的研究.海洋科学,1989,2:1-7
    9.陈丽蓉.生物状海绿石的成因.沉积学报,1987,5(3):171-179
    10.陈丽蓉.中国海的碎屑矿物组合及其分布模式探讨.沉积学报,1986,4(3):87-95
    11.陈庆.南黄海沉积物中自生黄铁矿研究.地质学报,1981,3:232-243
    12.陈志华,石学法,王相芹.南黄海表层沉积物碳酸盐及Ca、Sr、Ba分布特征.海洋地质与第四纪地质,2000,20(4):9-16
    13.陈忠,颜文.海洋粘土矿物与古气候、古环境演化响应的研究进展.海洋科学,2000,24(2):25-27
    14.程鹏,高抒.北黄海西部海底沉积物的粒度特征和净输运趋势.海洋与湖沼,2000,31(6):604-615
    15.程振波,石学法,刘东升,李珍,鞠小华.南黄海B10岩芯的微体古生物组合特征及古环境演化.科学通报,2001,46(增刊):45-51
    16.初凤友,陈丽蓉,申顺喜,李春安,石学法.南黄海自生黄铁矿成因及其环境指示意义.海洋与湖沼,1995,26(3):227-232
    17.初凤友,陈丽蓉,申顺喜,石学法.南黄海沉积物中自生黄铁矿的形态标型研究.海洋与湖沼,1994,25(5):461-467
    18.董礼先,苏纪兰,王康善.黄渤海潮流场及其与沉积物搬运的关系.海洋学报,1989, 11(1):102-114
    19.杜德文,孟宪伟,王永吉等.沉积物组成的定量判识方法及其在冲绳海槽的应用.海洋与湖沼,1999,30(5):532-539
    20.杜俊民,朱赖民,张远辉.南黄海中部沉积物微量元素的环境记录研究.海洋学报,2004,26(6):49-57
    21.葛淑兰,石学法,韩贻兵.南黄海海底沉积物的磁化率特征.科学通报,2001,46(增刊):34-38
    22.韩桂荣等.黄河口海区沉积物柱状样中碳酸盐组分.海洋与湖沼,1993,24(5):456-465
    23.姜学均,李绍全,申顺喜.南黄海YSDP102孔冰消期以来的重矿物组合特征.海洋地质与第四纪地质,2000,20(2):27-31
    24.金秉福,林振宏,季福武,时振波,张宗雁.东海外陆架Q43岩芯末次冰期矿物.学特征及其古环境意义.海洋学报,2003,25(增2):177-185
    25.金秉福,林振宏,时振波,林晓彤.沉积矿物学在陆缘海环境分析中的应用.海洋地质与第四纪地质,2002,22(3):113-117
    26.金秉福,林振宏,时振波,林晓彤.东海外陆架晚更新世沉积物中的有用重矿物及其资源潜力.古地理学报,2004,6(3):372-379
    27.金翔龙.东海海洋地质.北京:海洋出版社,1992.173-215,317
    28.蓝先洪,申顺喜.南黄海中部沉积岩芯的地球化学特征.海洋地质与第四纪地质,2000,20(2):33-38
    29.蓝先洪,申顺喜.南黄海中部沉积岩芯的微体古生物组合特征及古环境演化.海洋湖沼通报,2004,3:16-21
    30.蓝先洪,申顺喜.南黄海中部沉积岩芯的稀土元素地球化学特征.海洋通报,2002,21(5):46-53
    31.蓝先洪,王红霞,李日辉,张志珣,林振宏.南黄海沉积物常量元素组成及物源分析.地学前缘,2007,14(3)
    32.蓝先洪,王红霞,张志珣,林振宏,李日辉,王中波.南黄海表层沉积物稀土元素分布与物源关系.中国稀土学报,2006,24(6):745-749
    33.蓝先洪,张训华,张志珣.南黄海沉积物的物质来源及运移研究.海洋湖沼通报,2005,(4):53-59
    34.蓝先洪.黄河、长江和珠江三角洲近代沉积物的沉积化学特征.台湾海峡,1995,14(1):44-50
    35.蓝先洪.珠江口表层沉积物的地球化学特征.海洋湖沼通报,1989,4:53-61
    36.蓝先洪.珠江三角洲第四纪沉积物TiO2/Al2O3值及其地质意义.台湾海峡,1992,11(3):227-232
    37.李从先,汪品先.长江晚第四纪河口地层学研究.北京:科学出版社,1998.144
    38.李从先,张桂甲.末次冰期时存在入海的长江吗?地理学报,1995,50(5):459-463
    39.李凡,张秀英,孟广兰等.晚更新世末期南黄海中部埋藏古三角洲的研究.海洋与湖沼,1998, 29(1):67-71
    40.李凤业,史玉兰,何丽娟等.冲绳海槽晚更新世以来沉积速率的变化与沉积环境的关系.海洋与湖沼,1999,30(5):540-545
    41.李国刚.中国近海沉积物中的粘土矿物的组成、分布及其地质意义.海洋学报,1990,12(4):470-479
    42.李培英,王永吉,刘振夏.冲绳海槽年代地层与沉积速率.中国科学(D辑),1999,29(1):50-55
    43.李绍全,刘健,王圣洁等.南黄海东侧冰消期以来的沉积层序与环境变化.科学通报,1998,43(8):876-880
    44.李双林,李绍全.黄海YA01孔沉积物稀土元素组成与源区示踪.海洋地质与第四纪地质,2001,21(3):51-55
    45.李双林.东海陆架HY126EA1孔沉积物稀土元素地球化学.海洋学报,2001,23(3):127-132
    46.李珍,傅命佐,徐小薇,石学法.南黄海B10孔的孢粉分析及其反映的气候变化特征.科学通报,2001,46(增刊):39-44
    47.李志珍.南海中部深海沉积物中的宇宙尘.沉积学报,1989,7(3):31-38
    48.李志忠,朱大奎,王颖.关于中国陆架沙漠化理论几个问题的探讨.地理学报,1999,54(3):269-276
    49.林晓彤,李巍然,时振波.黄河物源碎屑沉积物的重矿物特征.海洋地质与第四纪地质,2003, 23(3):17-21
    50.林振宏,吕亚男,高学敏.冲绳海槽中部表层沉积物的重矿物分布和来源.青岛海洋大学学报,1996,26(3):361-368
    51.林振宏,吕亚男,李学伦等.冲绳海槽中部表层沉积物的热水铁锰氧化物.海洋与湖沼,1997,28(增刊):91-98
    52.刘建,朱日祥,李绍全,Chang Jeong-Hae.南黄海东南部冰后期泥质沉积物中磁性矿物的成岩变化及其对环境变化的响应.中国科学(D辑),33(6):583-592
    53.刘健,李绍全,王圣洁,杨子赓,葛宗诗.末次冰消期以来黄海海平面变化与黄海暖流的形成.海洋地质与第四纪地质,1999,19(1):13-24
    54.刘健,王红,李绍全,金仙梅.南黄海北部泥质沉积区冰后期海侵沉积记录.海洋地质与第四纪地质, 2004, 24(3):1-9
    55.刘敏厚,吴世迎,王永吉.黄海晚第四纪沉积.北京:海洋出版社,1987.69-370
    56.刘振夏,Berne S等.东海陆架的古河道和古三角洲.海洋地质与第四纪地质,2000,20(1):9-14
    57.刘振夏,Berne S等.中更新世以来东海陆架的古环境.海洋地质与第四纪地质,1999,19(2):1-10
    58.吕亚男,林振宏,孙聿嵋,周易.黄河口滨外区矿物分布特征及其控制因素探讨.山东海洋学院报,1985,15(1):180-187
    59.吕亚男,林振宏,杨作升等.东海中部外陆架重矿物砂富集初步研究.海洋与湖沼,1997,28(增刊):74-79
    60.罗宾.巴瑟斯特(1971)(中国科学院地质研究所《碳酸盐沉积物及其成岩作用》翻译组译).碳酸盐沉积物及其成岩作用.北京:科学出版社,1977
    61.罗曼云,石斯器,林锦英.南黄海西部表层沉积物中重矿物分布特征及其组合分区.海洋地质与第四纪地质. 1983, 3(1):55-65
    62.马克俭.浙江海岸带石英砂表面微形貌结构的初步研究.东海地质,1991, 3:50-57
    63.孟宪伟,杜德文,吴金龙.冲绳海槽中段表层沉积物物质来源的定量分离:Sr-Nd同位素方法.海洋与湖沼,2001,32(3):319-325
    64.孟宪伟,王永吉,吕成功.冲绳海槽中段沉积物地球化学分区及其物源指示意义.海洋地质与第四纪地质,1997,17(3):37-41
    65.米利曼T. D.(中国科学院地质研究所碳酸盐研究组译).现代碳酸盐(海洋碳酸盐).北京:地质出版社,1977
    66.彭汉昌.从自生黄铁矿的分布规律和相关因素探讨北黄海西部海域的沉积环境.地质论评,1979, 25(2):53-57
    67.奇林格G. V.(1967)(冯增昭等译).碳酸盐岩.北京:石油化学工业出版社,1977.
    68.秦蕴珊,赵一阳,陈丽蓉等.东海地质.北京:科学出版社,1987.210-263
    69.秦蕴珊,赵一阳,陈丽蓉等.黄海地质.北京:海洋出版社,1989.28-91
    70.申顺喜,陈丽蓉,高良,李安春.南黄海冷涡沉积和通道沉积的发现. 1993,24(6):563-570
    71.申顺喜,李安春,袁巍.南黄海中部的低能沉积环境.海洋与湖沼,1996,27(5):518-572
    72.申顺喜,于洪军,张法高.济州岛西北部的反气旋型涡旋沉积.2000,31(2):215-220
    73.石学法,陈春峰,刘焱光,任红,王慧艳.南黄海中部沉积物粒径趋势分析及搬运作用.科学通报,2002,47(6):452-456
    74.石学法,陈丽蓉,李坤业等.西菲律宾海西部海域粘土沉积物的成因矿物学研究.海洋地质与第四纪地质,1995,15(2):61-72
    75.石学法,申顺喜,Yi Hi-il,陈志华,孟毅.南黄海现代沉积环境及动力沉积体系.科学通报,2001,46(增刊):1-6
    76.石学法.南黄海自生黄铁矿成因及其环境指示意义.海洋与湖沼,1995,26(3):227-233
    77.苏纪兰,黄大吉.黄海冷水团的环流结构.海洋与湖沼,1995, 26(增刊):1-7
    78.孙白云.黄河、长江和珠江三角洲沉积物中碎屑矿物的组合特征.海洋地质与第四纪地质, 1990,10(3): 23-34
    79.汤艳杰,贾建业,谢先德.粘土矿物的环境意义.地学前缘,2002,9(2):337-344
    80.唐保根.东海陆架第四纪地层.杨子赓主编,中国第四纪地层与国际对比.北京:地质出版社,1996.56-75
    81.汪品先.冰期旋回中西太平洋边缘海的季节性与暖流的多变性.中国科学D辑,1998, 28(1):1-6
    82.汪品先.西太平洋边缘海对我国冰期干旱化影响的初步探讨.第四纪研究,1995, (1):32-42
    83.王桂芝,高抒,李凤业.北黄海西部的全新世泥质沉积.海洋学报,2003,25(4):125-134
    84.王红霞,林振宏,文丽,姜学钧.南黄海西部表层沉积物中碎屑矿物的分布.海洋地质与第四纪地质,2004, 24(1):571-573
    85.王金土.黄海表层沉积物稀土元素地球化学.地球化学,1990,1:44-52
    86.王昆山,石学法,姜晓黎.南黄海沉积物的来源及分区,来自轻矿物的证据.科学通报,2001,46(增刊):24-29
    87.王昆山,石学法,林振宏.南黄海和东海北部陆架重矿物组合分区及来源.海洋科学进展,2003,21(1):31-40
    88.王琦,杨作升.黄海南部表层沉积物中的自生黄铁矿.海洋与湖泊,1981,12(1):25-32
    89.王颖等.石英砂表面结构模式图集.北京:科学出版社,1985.
    90.王永吉,苟淑名.江苏北部沿岸第四纪海相地层中的孢粉分析.海洋与湖沼,1983, 17(1):35-43
    91.王张华,陈中原.东海陆架平北地区残留沉积特征及古环境意义.海洋学报,2001,23(5):70-77
    92.王振宇.南黄海西部残留砂特征及成因的研究.海洋地质研究,1982,2 (3)
    93.王中波,杨守业,李从先.南黄海中部沉积物岩芯常量元素组成与古环境.地球化学,2004,33(5):483-490
    94.王中刚,于学元,赵振华等.稀土元素地球化学.北京:科学出版社,1989.137-153
    95.魏建伟,石学法,辛春英,张海平.南黄海黏土矿物分布特征及其指示意义.科学通报,2001,46(增刊):30-33
    96.谢传礼,翳知泯等.未次冰期对中国海地理轮廓及其气候效应.第四纪研究,1996(1):1-10
    97.谢又予等.中国石英砂表面结构特征图谱.北京:海洋出版社,1984.
    98.阎军,何丽鹃,薛胜吉.西太平洋边缘海元素地层学研究及其古海洋学意义.海洋地质与第四纪地质,1991, 11(2):57-67
    99.颜文,陈忠,王有强等.南海NS93-5柱样的矿物学特征及矿物沉积序列.矿物学报, 2000,(1):143-149
    100.杨从笑,赵澄林.石榴石电子探针在物源研究中的应用.沉积学报, 1996,14(1):162-166.
    101.杨群慧,林振宏,张富元,林晓彤,季福武.南海东部重矿物分布特征及其影响因素.青岛海洋大学学报,2002,32(6):956-964
    102.杨群慧,林振宏,张富元,林晓彤,季福武.南海中东部表层沉积物矿物组合分区及其地质意义.海洋与湖沼,2002,33(6):591-599
    103.杨守业,Jung Hoi-Soo,李从先,Lim Dong-Il.黄河、长江与韩国Keum、Yeongsan江沉积物常量元素地球化学特征.地球化学,2004,33(1):99-106
    104.杨守业,李从先,JUNG Hoi-soo,LIM Dong-il,CHOI Man-sik.中韩河流沉积物微量元素地球化学研究.海洋地质与第四纪地质,2003b,23(2):21-24
    105.杨守业,李从先,Lee C. B.,Na T. K.黄海周边河流的稀土元素地球化学及沉积物物源示踪.科学通报,2003a,48(11):1233-1236
    106.杨守业,李从先,朱金初,张文兰.长江与黄河沉积物中磁铁矿成分标型意义.地球化学,2000,29(5):480-484
    107.杨守业,李从先.长江与黄河沉积物元素组成及地质背景.海洋地质与第四纪地质,1999a,19(2):19-25
    108.杨守业,李从先.长江与黄河现代表层沉积物元素组成及其示踪作用.自然科学进展,1999b,9(10):930-937
    109.杨子赓,林和茂,王圣洁,李绍全.对末次间冰期南黄海古冷水团沉积的探讨.海洋地质与第四纪地质,1998,18(1):47-58
    110.杨子赓.南黄海陆架晚更新世以来的沉积及环境.海洋地质与第四纪地质,1985, 5(4):1-19
    111.杨子赓.海洋地质学.青岛:青岛出版社,2000:46-129
    112.杨子赓.中国东部陆架第四纪时期的演变及其环境效应.梁名胜等主编,中国海陆第四纪对比研究.北京:科学出版社,1991.1-22
    113.杨子赓等.黄海陆架第四纪地层.杨子赓主编,中国第四纪地层与国际对比.北京:地质出版社,1996.31-35
    114.杨作升.黄河、长江、珠江沉积物中粘土的矿物组合、化学特征及其与物源区气候环境的关系.海洋与湖沼,1988,19(4):334-346
    115.姚伯初,蓝先洪,邱燕.西沙西南海域表层沉积物的地球化学特征.海洋地质与第四纪地质,1998,18(1):23-35
    116.袁迎如,陈冠球.南黄海西北部沉积物中矿物组合特征及其分布规律.海洋与湖沼,1981,12(6):512-520
    117.翟世奎,陈志华,徐善民等.冲绳海槽北部稀土元素沉积地球化学研究.海洋地质与第四纪地质,1996,16(2),47-56
    118.张德玉.马里亚纳海槽和西菲律宾海盆更新世以来沉积物中的粘土矿物.沉积学报,1993,11(1):111-120
    119.张富元,王秀昌.东海表层沉积物中重矿物聚类分析及其动力分布特征.台湾海峡,1984,3(1):68-77
    120.张富元,王秀昌.聚类分析在东海重矿物研究中的应用.海洋通报,1984,3(6):45-49
    121.张光威,杨子赓,王圣洁.南黄海第四纪时期石英砂表面结构特征及其环境意义.海洋地质与第四纪地质,1996,16(3):37-47
    122.赵红格,刘池洋.物源分析方法及研究进展.沉积学报,2003,3(3)
    123.赵松龄.陆架沙漠化.北京:海洋出版社,1995.4-175
    124.赵松龄.晚更新世末期中国陆架沙漠化及其衍生沉积的研究.海洋与湖沼,1991,22(3):285-293
    125.赵一阳,李凤业,秦朝阳,陈毓蔚.试论南黄海中部泥的物源及成因.地球科学,1991,2:112-117
    126.赵一阳,王金土,秦朝阳等.中国大陆架海底沉积物中的稀土元素.沉积学报,1990,8(1):37-43
    127.赵一阳,鄢明才.黄河、长江、中国浅海沉积物化学元素丰度比较.科学通报, 1992, 13:1202-1204
    128.赵一阳,鄢明才.中国浅海沉积物地球化学.北京:科学出版社,1994.
    129.中国科学院海洋研究所海洋地质研究室.渤海地质.北京:科学出版社,1985.
    130.朱而勤,王琦,李建华,夏明杰,陈青.东海北部表层沉积物中碳酸盐的形成作用.沉积学报,1986,4(3):43-56
    131.朱而勤,王琦,周莉,张建华,冯伟文.海南岛三亚湾内自生铁锰碳酸盐矿物的特征.科学通报,1985,30(22):1738-1742
    132.朱而勤,王琦.海洋自生矿物.北京:海洋出版社,1988.
    133.朱而勤.东海北部的钙质结核.中国科学(B),1983,29(9):849-856
    134.朱而勤.黄海东海钙质结核的特征及成因.海洋学报,1985,7(3):333-341
    135.朱玉荣.潮流场对勃、黄、东海的陆架地质分布的控制作用.海洋地质与第四纪地质,2001,21(2):7-13
    136.庄振业,许卫东,刘东生等.渤海南部S3孔晚第四纪海相地层的划分及环境演变.海洋地质与第四纪地质, 1999, 19 (2): 27-35
    137. Abouchami, Galer S J, Koschinsky A. Pb and Nd isotopes in NE Atlantic Fe-Mn crusts: Proxies for trace metal paleosources and paleocean circulation. Geochimica et Cosmochimica Acta,1999, 63 (10): 1489-1505
    138. Aksu A. E., et al. Organic geochemical and palynological evidence for terrigenous origin of the organic matter in Aegean Sea sapropel S1. Marine Geology, 1999,153 (1-4): 303-318
    139. Armstrong-altrin S. J., Lee Y. I., Verma S. P., Ramasamg S. Geochemistry of sandstones from the upper Miocene kudankulam formation,Southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 2004, 74(2): 285-297
    140. Asahara Y., Tanaka T., Kamioka H., et al. Asian continental nature of 87Sr/86Sr ratios in north central Pacific sediments. Earth Planet. Sci. Lett., 1995, 133: 105–116
    141. Asahara Y., Tanaka T., Kamioka H., et al. Provenance of the north Pacific sediments and process of source material transport as derived from Rb–Sr isotopic systematics. Chemical Geology, 1999, 158(3-4): 271–291
    142. Baker H. W. Environmental sensitivity of submicroscopic surface textures on quartz sand grains, a statistical evaluation. J. Sediment. Petrol, 1976, (46): 871-880
    143. Basu A., Molinaroli E. Provenance characteristics of detrital opaque Fe-Ti oxideminerals. Jour. Sed. Petrology, 1989, (59): 922-934
    144. Bednarz U., et al. Composition and origin of volcaniclastic sediments in the Lau Basin (Southwest Pacific), Leg 135 (sites 834-839). ODP Scientific Result, 1994, 135:51-63
    145. Benning L. G., Wilkin R. T., Barnes H. L. Reaction pathways in the Fe-S system below 100°C. Chem. Geol., 2000, 167: 25-51
    146. Berner R. A. Calcium carbonate concretions formed by the decomposition of organic matter. Science, 1968, 159: 195-197
    147. Berner R. A. Comparative dissolution characteristics of carbonate minerals in the presence and absence of aqueous magnesium ion. Amer. J. Sci., 1967, 265: 45-70
    148. Berner R. A. Pelagic sedimentation of aragonite: its geochemical significance. Science, 1981, 211 (4485): 940-942
    149. Berner R. A. Sedimentary pyrite formation: an update. Geo-chim. Cosmochim. Acta, 1984, 48: 605-615
    150. Berner R. A. Thermodynamic stability of sedimentary iron sulfides. Am. J. Sci., 1967, 265: 773-785
    151. Bernet M., Brandon J., Garrer J., Molitor B. Downstream changes of alpine zircon fission-track ages in the Rh?ne and Rhine Rivers. Journal of Sedimentary Research, 2004, 74(1): 82-94
    152. Bertine K. K., Keene J. B. Submarine barite-opal rocks of hydrothermal origin. Science, 1975, 188: 150-152
    153. Boe B. Nature and record of late miocence mass-flow deposits from the Lau-Tonga forarc Basin, Tongan platform (hole 840B). ODP Scientific Result , 1994, 135:87-104
    154. Borole D. V., Somayajulu B. L. K. Radium and lead-210 in marine barite. Marine Chem., 1977, 5: 291-296
    155. Canfield D. E., Berner R. A. Dissolution and pyritization of magnetite in anoxic marine sediments. Geochim. Cosmochim. Acta, 1987, 51: 645-659
    156. Canfield D. E., Raiswell R., Bottrell S. H. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci., 1992, 292: 659-683
    157. Ceccaroni M. Frank, Frignani M., et al. Late Quaternary fluctuations of biogenic component fluxes on the continental slope of the Ross Sea. Antarctica. Journal of Marine Systems,1998, 17 (1-4): 515-525
    158. Chauhan O. S., Sukhija B. S., Gujar A. R., et al. Late-Quaternary variations in clay minerals along the SW continental margin of India: evidence of climatic variations. Geo-Marine Letters, 2000, 20: 118-122
    159. Chesselet R., Jedwab J., Darcourt C., Dehairs F. Barite as a discrete suspended particle in the Atlantic ocean. EOS. Am. Geophys. Union, 1976, 57: 255
    160. Cho Y. G., Lee C. B., Choi M. S. Geochemistry of surface sediments off the southern and western coasts of Korea. Marine Geology, 1999, 159: 111–129
    161. Chruch T. M. Marine Barite, Ph. D. Dissertation. San Diego: Univ. Cal-California, 1970. 100
    162. Chruch T. M., Bernat M. Thorium and uranium in marine barite. Earth Planet. Sci. Lett., 1972, 14: 139-144
    163. Chruch T. M., Wolgemuth K. Marine barite saturation. Earth Planet. Sci. Lett., 1979, 15: 35-44
    164. Clark A. H. Stability field of monoclinic pyrrhotite. Inst. Miner. Metal. Trans., 1996, 75B: 232-235
    165. Cortecci G., Longinell A. Oxygen-isotope variations in a barite slab from the sea bottom off California. Chem. Geol., 1972, 9: 113-117
    166. Dean W. E., Schreiber B. C. Authigenic barite. In Initial Reports of the Deep-Sea Drilling Project. U. S. Govt. Printing Office, 1977, Vol. XXXXI: 915-931
    167. Deconinck J. F., Vanderaveroet P. Eocene to Pleistocene clay mineral sedimentation off New Jersey western north Atlantic (sites 903 and 905). ODP Scientific Results,1996, 150: 147-170
    168. Dell C. I. An occurrence of greigite in lake Superior sediments. Am. Miner., 1972, 57: 1303-1304
    169. Dennis A. Darby. Trace elements in ilmenite: A way to discriminate provenance or age in coastal sands. Geological Society of America Bulletin, 1984, (95): 1208-1218
    170. Descombes H. J., et al. Pelagic producivity changes in the equatorial area of the northwest India Ocean during the last 400,000 years. Marine Geology, 1999,158 (1-4): 27-35
    171. Diekmann B., Kuhn G. Provenance and dispersal of glacial-marine surface sediments in the Weddell Sea and adjoining areas, Antarctica: ice-rafting versus current transport. Marine Geology, 1999, 158(1-4): 209-231
    172. Dill H. G. A review of heavy minerals in clastic sediments with case studies from the alluvial-fan therough the nearshore-marine environments. Earth-Science Reviews, 1998, 45: 103-132
    173. Douglas G. B., Gray C. M., Hart B. T., et al. A strontium isotopic investigation of the origin of uspended particulate matter (SPM) in the Murray—Darling River system. Australia. Geochim. Cosmochim. Acta,1995,59 (18): 3799-3815
    174. Ehrmann W., Polozek K. The heavy mineral record in the Pliocene to Quaternary sediments of the CIROS-2 drill core, McMeurdo Sound, Antarctica. Sedimentary Geology, 1999, 128: 223-244
    175. Flecker R., Ellam R. M. Distinguishing climatic and tectonic signals in the sedimentary successions of marginal basins using Sr isotopes: an example from the Messinian salinity crisis, eastern Mediterranean. Journal of the Geological Society, 1999, 156 (4): 847-854
    176. Fleet A. J. Rare earth elements Geochemistry. Elsevier Science Publishers, 1984: 350-365
    177. Fleischer M. Glossary of Mineral Species. 5th ed. Tucson: The Mineralogical Record Inc., 1987. 227
    178. Florindo F., Sagnotti L. Palaeomagnetism and rock magnetism in the upper Pliocene Valle Ricca (Rome, Italy) section. Geophys. J. Int., 1995, 123: 340-354
    179. Freke A. M., Tate D. The formation of magnetic iron sulfide by bacterial reduction of iron solution. J. Biochem. Microbiol. Technol. Eng., 1961, 3:29-39
    180. Frihy O. E., Lotfy M. F., Komar P. D. Spatial variations in heavy minerals and patterns of sediment sorting along the Nile Delta, Egypt. Sedimentary Geology, 1995, 97: 33-41
    181. Goldberg E. D., Somayajulu B. L. K., Galloway J. N., Kaplan I. R., Fauce G. Differences between barites of marine and continental origin. Geochim. Cosmochim. Acta, 1969, 33: 287
    182. Goldhaber M. B., Kaplan I. R. The sulfur cycle, in: E. D. Goldberg (Ed.), The Sea, Marine Chemistry. vol.5. New York: Wiley, 1974. 569-655
    183. Goldsmith J. R., Graf D. L. The system CaO-MnO-CO3: solid solution and decompositon relations. Geochim. Cosmochim. Acta, 1957, 11: 310-334
    184. Goldstrand P. M. Provenance and sedimentoligic variations of turbidite and slump deposits at sites 955 and 956. ODP Scientific Results, 1998, 157: 343-356
    185. Graham I. J., Glasby G. P., Churchman G. J. Provenance of the detrital component of deep-sea sediments from the SW Pacific Ocean based on mineralogy, geochemistry and Sr isotopic composition. Marine Geology, 1997, 140: 75-96
    186. Grigsby J. D. Detrital magnetite as a provenance indicator. J sediment Petrol, 1990, 60: 940-951
    187. Guichard F., Church T., Treuii M., Jaffrezic H. Rare earths in barite: distribution and effets on aqueous partitioning. Geochim. Cosmochim. Acta, 1979, 43: 983-997
    188. Gujar A. R., Chauhan O. S. A 25ky BP record of Himalayan aridity using muscovite and clays as proxy climate indicators. Giornale di Geologia, 1999, 61: 115-120
    189. Hall I. R., McCave I. N. Late Glacial to Recent accumulation fluxes of sediments at the shelf edge and slope of NW Europe, 48-50. N. Geological Society Special Publication, 1998, 129: 339-350
    190. Hallam D. F., Maher B. A. A record of reversed polarity carried by the iron sulphide greigite in British early Pleistocene sediments. Earth Planet. Sci. Lett., 1994, 121: 71-80
    191. Hallsworth C. R., Chisholm J. I. Stratigraphic evolution of provenance characteristics in Westphalian sandstones of the Yorkshire coalfield. Proceedings of the Yorkshire Geological society, 2000, (53): 43-72
    192. Hanor J. S. Barite saturation in sea water. Geochim. Cosmochim. Acta, 1969, 33: 899
    193. Hanor J. S., Chan L. H. Non-conservative behavior of barium during mixing of Mississippi River and Culf of Mexico waters. Earth Planet. Sci. Lett., 1977, 37: 242-250
    194. Haughton P. D. W., Todd S. P., Morton A. C. Sedimentary provenance studies. London: Geology Society Special Publication, No.57, 1991: 1-11
    195. Heroy D. C., Kuehl S. A., Goodbred Jr., et al. Mineralogy of the Ganges and Brahmaputra Rivers: implications for river switching and Late Quaternary climate change. Sedimentary Geology, 2003, 155 (3-4): 343-359
    196. Higgs R. Quartz-grain surface features of Mesozoic - Cenozoic sands from the Labrador and western Greenland continental margins. J. Sediment. Petrol, 1979, (49): 599-610
    197. Hilton J. Greigite and the magnetic properties of sediments. Limnol. Oceanogr., 1990, 35 (2): 509-520
    198. Holser W. T. Evaluation of the application of rare-earth elements to paleoceanography. Paleoceanography, Paleaoclimatology, Paleaoecology, 1997, 132: 309-323
    199. Honda M., Yabuki S., Shimizu H. Geochemical and isotopic studies of Aeolian sediments in China. Sedimentology, 2004 (51): 211-230
    200. Horng C. S., Chen J. C., Lee T. Q. Variation in magnetic minerals from two Plio-Pleistocene marine-deposited sections, southwestern Taiwan. J. Geol. Soc. China, 1992, 35: 323-335
    201. Horng Chorng-Shern, Torii Massauki,Shea Kai-Suan, Kao Shuh-Ji. Inconsistent magnetic polarities between greigite and pyrrhotite magnetite-bearing marine sediment from the Tsailiao-chi section, southwest Taiwan. Earth and Planetary Science Letter, 1998, 164: 467-481
    202. Hu D. X. Upwelling and sedimentation dynamics. Chin J Oceanol Limnol, 1984, 2(1):12-19
    203. Innocent C., Fagel N., Hillaire-Marcel C. Sm-Nd isotope systematics in deep-sea sediments: Clay-size versus coarser fractions. Marine Geology, 2000, 168: 79-87
    204. Irino Tada R. Quantification of Aeolian dust (Kosa) contribution to the Japan Sea sediments and its variation during the last 200 ky. Geochemical Journal, 2000, 34 (1): 59-93
    205. Ishiga H., Dozen K. Geochemical indications of provenance change as recorded in Miocene shales: opening of the Japan Sea, Aan’in region, southwest Japan. Marine Geology, 1997, 144: 211-228
    206. Jeffry D. G. Detrital magnetite as a provenance. Journal of Sedimentary Petrology, 1990, 60(6): 940-951
    207. Jiang W. T., Horng C. S., Roberts A. P., Peacor D. R. Contradictory magnetic polarties in sediments and variable timing of neoformation of authigenic greigite. Earth Plant. Sci. Lett., 2001, 193: 1-12
    208. Jin J. H., Chough S. K. Partitioning of transgressive deposits in the southeastern Yellow Sea: a sequence stratigraphic interpretation. Marine Geology, 1998, 149: 79-92
    209. J?rgenson B. B. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr., 1977, 22 (5): 814-832
    210. Kao S. J., Horong C. S., Roberts A. P., Liu K. K. Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation. Chem. Geol., 2004, 203: 153-168
    211. Kim B. K., Park Yoon H. II. Vertical variations of major, minor, and rare earth elements in the Maxwell Bay sediments of the South Sheltnad Islands, west Antarctica. Ocean Research, 1998b, 20 (1): 9-18
    212. Kim G., Yang H. S., Kodama Y. Distributions of transition elements in the surface sediments of the Yellow Sea. Continental Shelf Research, 1998a, 18:1531–1542
    213. Krom M. D., Cliff R. A., Eijsink L. M., et al. The characterization of Saharan dusts and Nile particulate matter in surface sediments from the Levantine basin using Sr isotopes. Marine Geology, 1999, 155: 319-330
    214. Krs M., KrsováM., Pruner P., Zeman A., Novák F., Jansa J. A petromagnetic study of Miocene rocks bearing micro-organic material and the magnetic mineral greigite (Sokolow and Cheb basins, Czechoslovakia). Phys. Earth Planet. Inter., 1990, 63: 98-112
    215. Krs M., Novak F., KrsováM. Magnetic properties and metastability of greigite-smythite mineralization in brown-coal basins of the Krusne hory Piedmont, Bohemia. Physics of the Earth and Planetary Interiors. Amsterdam: Eisevier Science Publishers B. V., 1992, 70: 273-287
    216. Kurtz A. C., Derry L. A., Chadweck O. A. Accretion of Asian dust to Hawaiian soils: Isotopic, elemental, and mineral mass balances. Geochimica et Cosmochimica Acta, 2001, 65 (12): 1971-1983
    217. Lacasse C., et al. Geochemisity and origin of Pliocene and Pleistocene ash layers from the iceland plateau, site 907. Proccedings of the ODP Scientfic Results, 1996, 151: 309-328
    218. Le Ribault L. Lexoscopie, méthode et applications. Notes et mem. C. F. P., 1975, (12): 231
    219. Lear C. H., et al. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 2000, 287: 269-272
    220. Lee C. H., Jin J.-H. Authigenic greigite in mud from the continental shelf of the Yellow Sea, off the southwest Korean Peninsula. Mar. Geol., 1995, 128: 11-15
    221. Liu J. P., Milliman J. D., Gao S. The Shandong mud wedge and post-glacial sediment accumulation in the Yellow Sea. Geo-Mar. Lett. 2002, 21: 212-218
    222. Liu J., Zhu R. X., Roberts A. P., Li S. Q., Chang J. -H. High-resolution analysis of early diagenetic effects on magnetic mineral in post-Middle-Holocene continental shelf sediments from the Korea Strait. J. Geophys. Res., 2004, 109
    223. Love L. G. Early diagenetic iron sulphide in recent sediments of wash. Sedimentology, 1976, 9: 327-352
    224. Mary C., Iaccarino S., Courtillot V., Besse J., Ais-saoui D. M. Magnetostratigraphy of Pliocene sediments from the Stirone river (Po Valley). Geophys. J. Int., 1993, 112: 359-380
    225. Moral-cardona J. P., Sánchez bellón A., López-Aguayo F., Caballero M. A. The analysis of quartz grain surface features as a complementary method for studying their provenance: the Guadalete River Basin (Cádiz, SW Spain). Sedimentary geology, 1996, (106): 155-164
    226. Morton A. C. Geochemical studies of detrital heavy min-erals and their application to provenance studies. In: Morton A. C., Todd S. P., Haughton P. D. W. (Eds.), Developments in Sedimentary Provenance Studies. Geol. Soc. London, Spec. Publ, 1991, No.57: 31-45
    227. Morton A. C., Claire R. Hallsworth. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 1999, (124): 3-29
    228. Morton A. C., Claoué-Long J. C., Hallsworth C. R. Zircon age and heavy mineral on provenance of North Sea Carboniferous sandstones. Marine and Petroleum Geology, 2001, 18: 319-337
    229. Morton A. C., Humphreys B., Dharmayanti D. A., Sundoro A. Palaeogeographic implications of the heavy mineral dis-tribution in Miocene sandstones of the North Sumatra Basin. J. Southeast Asian Earth Sci., 1994, (10): 177-190
    230. Murray R. W., Christensen B. A., Kalbas J. L., et al. Pliocene Export production and terrigenous provenance of the Southern Cape Basin, southwest African margin. Marine Geology, 2002, 180: 133-150
    231. Oba T., Pedersen T. F. Paleoclimatic significance of eolian carbonates supplied to the Japan Sea during the last glacial maximum. Paleoceanography, 1999, 14 (1): 34-41
    232. Oppenheimer C. H. Bacterial activity in sediments of shallow marine bays. Geochim. Cosmochim. Acta, 1960, 19: 244-260
    233. Parra M., et al. Nd-Sr isotopic composition of present-day sedements from the Gironde Estuary, its draining basins and the West Gironde mud parch (SW France). Continetal Shelf Reaeach, 1999, 19 (1): 135-150
    234. Passchier S. Variablity in geochemical provenance and weathering history of Sirius group strata, transantarctic mountains: implications for Antarctic glacial history.Journal of Sedimentary Research, 2004, 74(5): 607-619
    235. Pattan J. N. Manganese micronodules: A possible indicator of sedimentary environments. Marine geology, 1993, 113(3-4): 331-344
    236. Patterson D. B., Farley K. A., Norman M. D. 4He as a tracer of continental dust: A 1. 9 million year record of Aeolian flux to the west equatorial Pacific Ocean. Geochimica et Cosmochimica Acta, 1999, 63(5): 615-625
    237. Pettke T., Halliday A. N., Hall C. M., et al. Dust production and deposition in Asia and the north Pacific Ocean over the past 12 myr. Earth and Planetary Science Letters, 2000, 178: 397-413
    238. Polushkin A. P., Sidorenko G. A. Melnikovite as a mineral species (in Russian). Zapiski Vses. Miner. Obshch., 1963, 92: 547-554
    239. Prins M. A., Postma G., Weltje G. J. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope. Marine Geology, 2000, 169: 351-371
    240. Radusinovic D. R. Greigite from the Lojane Chromium deposits, Macedonia. Am. Miner., 1966, 51: 209-215
    241. Razjigaeva N. G., Naumova V. V. Trace element composition of detrital magnetite from coastal sediments of northwestern Japan Sea for provenance study. J. Sediment. Petrol, 1992, 62: 802-809
    242. Reynolds R. L., Fishman N. S., Wanty R. B., Goldhaber M. B. Iron sulfide minerals at Cement oil field, Oklahoma: Implications for magnetic detection of oil fields. Geol. Soc. Am. Bull., 1990, 102: 368-380
    243. Reynolds R. L., Tuttle M. L., Rice C. A., Fishman N. S., Karachewski J. A., Sherman D. M. Magnetization and geochemistry of greigite-bearing Cretaceous strata, North Slope basin, Alaska. Am. J. Sci., 1994, 294: 485-528
    244. Richter C., Roberts A. P., Stoner J. S., Benning L. D., Chi C. T. Magnetostratigraphy of Pliocene-Pleistocene sediments from the eastern Mediterranean Sea , Proc. ODP. Sci. Res., 1998, 160: 61-74
    245. Rickard David. A novel iron sulphide mineral switch and its implications for Earth and planetary science. Earth and Planetary Science Letters, 2001, 189: 85-91
    246. Roberts A. P, Turner G. M. Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth Plant. Sci. Lett., 1993, 115: 257-273
    247. Roberts A. P. Magneic properties of sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 1995, 134: 227-236
    248. Roberts A. P. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 2005, 231: 263-277
    249. Roberts A. P., Jiang Wei-The, Florrido Fabio, Horng Chorng-Shern. Assessing the timing of greigite formation and the reliability of the Upper Olduvai polarity transition record from the Crostolo River. Italy Geophysical Reseerch Letters, 2005, 32: 1-4
    250. Roberts A. P., Reynolds R. L., Verosub K. L., Adam D. P. Environmental magnetic implications of greigite (Fe3S4) formation in a 3 m. y. lake sediment record from Butte Valley, northern California. Geophys. Res. Lett., 1996, 23 (20): 2859-2862
    251. Rosales I., Robles S., Quesada S. Elemental and oxygen isotope composition of early Jurassic belemnites:salinity vs.temperature signals. Journal of Sedimentary Research, 2004, 74(3): 342-354
    252. Sagnotti L., Roberts A. P., Weaver R., Verosub K. L., Florindo F., Pike C. R, Clayton T., Wilson G. S. Apparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from siderite. Geophys. J. Int., 2005, 100: 89-100
    253. Saito S. Major and trace element geochemistry of sediments from east Greenland continental rise: an implication for sediment provenance and area weathering. Proceedings of the ODP Scientist Result, 1998, 152:19-28.
    254. Sakai H. Sulfur and oxygen isotopic study of barite concretion from banks in the Japan Sea off the Northeast Honshu Japan. Geochim. J., 1971, 5: 79-93
    255. Schafer J., Dorr W. Heavy mineral analysis and typology of detrital zircons: A new approach to provenance study (Saxothuringian Flysch, Germany). Journal of Sedimentary Research, 1997, 67 (3): 451-461
    256. Schoonen M. A. A., Barnes H. L. Reactions forming pyrite and marcasite from solution.Ⅱ: via FeS precursors below 100°C. Geochim. Cosmochim. Acta, 1991, 55: 1505-1514
    257. Scott S. D., Kissin S. A. Sphalerite composition in the Zn-Fe-S system below 300℃. Econ. Geol., 1973, 68: 475-479
    258. Skinner B. J., Erd R. C., Grimaldi F. S. Greigite, the thio-spinel of iron; a new mineral. Am. Miner., 1964, 49: 543-555
    259. Stankjek H., Murad E. Comparison of pedogenic and sedimentary greigite by X-ray diffraction and M?ssbauer spectroscopy. Clays Clay Miner., 1994, 42: 451-454
    260. Taylor L. A. Oxidation of pyrrhotites and the formation of anomalous pyrrhotite. Carnegie Inst. Washington Year Book, 1971, 70: 287-289
    261. Taylor L. A., Williams K. L. Smythite, (Fe,Ni)9S11- a redefinition. Am. Miner., 1972, 57: 1571-1577
    262. Taylor S. R., McLennan S. M. The Continental Crust: Its Composition and Evolution. Blackwell: Melbourne, 1985. 28-52
    263. Thompson R., Cameron T. J. D. Palaeomagnetic study of Cenozoic sediments in North Sea boreholes: an example of a magnetostratigraphic conundrum in ahydrocarbon-producing area, in: P. Turner, A. Turner (Eds.), Palaeomagnetic Applications in Hydrocarbon Exploration. Spec. Publ.-Geol. Soc. Lond., 1995, 98: 223-236
    264. Thompson Snowball R. A stable chemical remanence in Holocehne sediments. J. Geophys. Res., 1990, 95 (B4): 4471-4479
    265. Thompson Snowball R. The occurrence of greigite in sediment from Loch Lomond. J. Quat. Sci., 1988, 3 (2): 121-125
    266. Tric E., Laj C., Jehanno C., Valet J. -P., Kissel C., Mazaud A., Iaccarino S. High-resolution record of the upper Olduvai transition from Po Valley (Italy) sediments: support for dipolar transition geometry? Phys. Earth Planet. Inter., 1991, 65: 319-336
    267. Uda M. The structure of synthetic Fe3S4 and the nature of transition to FeS. Z. Aonrg. Allg. Chem., 1967, 350: 105-109
    268. Uddin A. Unroofing history of the eastern Himalaya: Heavy-mineral study of Cenozoic sediment from the Bengal basin, Bangladesh. Journal of Sediment Research, 1998, 68 (3): 465-472
    269. Vance D., Burton K. Neodymium isotopes in planktonic foraminifera: A record of the response of continental weathering and ocean circulation rates to climate change. Earth and Planetary Science Letters, 1999, 17 (3-4): 365-379
    270. Vennemann T. W., Hegner E. Oxygen strontium and neodymium isotope composition of fossil shark teeth as a proxy for the palaeoceanography and palaeoclimatology of the Miocene northern Alpine Paratethys. Palaeogeography Palaeoclimatology Palaeoecology, 1998, 142 (3-4): 107-121
    271. Vital H., Stattegger K., Garbe-Schonberg C. Composition and trace-element geochemistry of detrital clay and heavy-mineral suits of the lowermost Amazon river: A provenance study. Journal of Sediment Research, 1999, 69 (3): 563-575
    272. Walter H. J., Hegner E., Diekmann B., et al. Provenance and transport of terrigenous sediment in the South Atlantic Ocean and their relations to glacial and interglacial cycles: Nd and Sr isotopic evidence. Geochimica et Cosmochimica Acta, 2000, 64 (22): 3813-3827
    273. Wang Q. W., Morse J. W. Pyrite formation under conditions approximating those in anoxic sediments.Ⅰ; pathway and morphology. Mar. Chem., 1996, 52: 99-121
    274. Wilkin R. T., Barnes H. L. Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta, 1997, 61: 323-339
    275. Williams S. A. More data on greigite. Am. Miner., 1968, 53: 2087-2088
    276. Zhao Yiyang, et al. Geochemical record of the climate effect in sediments of the China Shelf. Sea. Chem. Geol., 1993, 107:267-269

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700