用户名: 密码: 验证码:
胶州湾及邻近海区沉积动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过在胶州湾及邻近海区的野外调查,其中包括海底表层沉积物采集、
    海水样采集、浊度测量、ADCP走航式测量,获得大量数据;结合历史资料,用
    如下方法研究了胶州湾及邻近海区的沉积动力学:(1)以地貌单元完整性和特征
    距离一致性为依据,将研究区划分为若干小区;采用Gao-Collins粒径趋势分析
    模型提取海底沉积物净搬运方向的信息,并寻找天然示踪沉积物方面的证据;(2)
    通过现代声学理论分析,获得了用ADCP进行走航式悬沙浓度测量的方法;(3)
    用~(210)Pb方法和沉积物平衡法计算百年尺度的沉积速率;(4)通过对原始水槽试验
    数据的重新分析,获得了用于沉积物搬运率计算的经典公式之一—Bagnold型
    方程的系数校正公式。
     胶州湾及邻近海区海底沉积物种类繁多,而且呈现斑状分布特征。沉积物
    粒径趋势结果显示,胶州湾内的大型垄脊和口门延伸至外海的深槽尾部是两个主
    要的沉积物汇聚区,这不仅与地貌及水动力相吻合,还与根据重矿物扩散趋势一
    致;与颗石藻化石空间分布型式亦有一定的相关性。对于相同的沉积物样品来说,
    基于不同粒度分析方法所获得的粒径趋势矢量具有一致性。因此,粒径趋势分析
    模型不仅可用于采样间距不一致、沉积物类型复杂的深水海湾;也可用于传统方
    法获得的历史粒度资料的处理。胶州湾沙滩供沙的主要机制是通过风暴潮期间强
    烈的动力作用,使沙滩沉积物以悬移质、底移质形式向深水区扩散或搬运。
     胶州湾悬沙浓度的时空变化主要与水动力状况、陆地径流和天气状况有关。
    野外实测悬沙浓度和用卫星图像遥感算法获得的结果均表明,胶州湾西北部潮滩
    外缘海域悬沙浓度较高,海湾东部和邻近海区悬沙浓度较低。悬沙浓度的年变化、
    季节变化均较为显著。春季、冬季风浪大,悬沙浓度较高;夏季风暴潮通常导致
    悬沙浓度急剧升高。
     理论分析获得了海水中悬沙浓度与ADCP输出的回声强度之间的函数关系
    式;在胶州湾口门进行走航式测量,同步采水样进行现场校正来率定相应的ADCP
    声学信号,获得了计算悬沙浓度的半经验公式;进而得到走航断面准同步的悬沙
    浓度剖面。结果发现,胶州湾口门断面流速沿水深呈垂向均匀分布的特征较显著;
    悬沙浓度具有一定的水平成层分布特征,水流流速的增大有利于悬沙浓度的提
    高。在普通大潮潮周期内,胶州湾悬移质输向外海。多种研究方法表明,胶州湾
    沉积速率较小,其量级为10~0mm yr~(-1);这主要与胶州湾沉积物来源较少有关。
Sediment transport and deposition patterns of Jiaozhou Bay and adjoining
     areas, Shandong Peninsula, are investigated in the present study. The
     approaches adopted are as follows. (1) Grain size trends are identified to
     delineate sediment transport pathways on the basis of the Gao-Collins model,
     which are consistent with evidence from natural tracer dispersal patterns. (2) A
     technique is developed to measure suspended sediment concentrations using
     ADCP mounted on a moving vessel, based upon contemporary acoustic theory.
     (3) Rates of sediment accumulation are derived, by 210Pb dating and sediment
     balance calculations on a temporal scale of 100 years. (4) A formula for the
     calibration coefficient contained in Bagnold-type bed-load equations is
     modified and improved, on the basis of re-analysis of original flume
     experiment data. The data sets used for the study are obtained from analyses of
     sediment and water samples and turbidity and ADCP measurements, and
     collation of historical data.
     The patchy distribution patterns of seabed material, with many sediment
     types, indicate a multi-source nature of sediment supply and complex
     hydrodynamic conditions in the study area. Grain size trends show sediment
     transport towards the central sandbank within the embayment and the seaward
     end of the deep channel at the entrance. Such patterns are highly consistent
     with the characteristics of current velocities and geomorphology; they are also
     in good agreement with heavy mineral movement and spatial distribution
     patterns of calcareous nannofoss its. The surficial sediment samples are
     analyzed using a laser particle analyzer and pipette/sieving method to obtain
     grain size data. It is found that grain size trend patterns derived from the two
     methods are compatible with each other. The grain size trend model is not only
     applicable for coastal areas with complex sediment distributions and irregular
     sediment sampling grids, but also for the use of historical grain size data
     (which are not obtained with laser techniques), with a potential for studies in
     the evolution of the embayment. The nearby beaches may supply sediment for
     the embayment during storm surges, by causing bed-load and suspended-load
     transport of the beach material towards deeper waters.
     Suspended sediment concentrations, obtained by field measurements and
     estimated by a remote sensing algorithm using TM satellite images, are high in
     the waters of northwestern Jiaozhou Bay and low in its eastern part. Variations
     in suspended sediment concentrations are significant on annual and seasonal
     scales; this is associated with local weather, hydrodynamics and river
     discharges. Strong wind waves during spring and winter result in high
     concentrations, and the concentration can increase rapidly in response to
     resuspension during summer storm surges.
     An equation is derived by theoretical analysis, to establish a relationship
     between suspended sediment concentrations and ADCP echo intensity output.
     For the survey at the entrance to Jiaozhou Bay, an ADCP is mounted on a
     moving vessel; the calibration coefficient in the equation is determined by in
     situ measurement. Then, a semi-empirical formula is obtained and used to
     calculate suspended sediment concentration profiles along several cross-
    
    
     II
    
    
    
    
    
    
    
    
    
     sections. Stratification in terms of the concentration is observed, which is
     probably in response to sediment settling processes. The current velocities are
引文
丁文兰,1986。胶州湾的潮汐与潮流。海洋科学集刊,26:1-25。
    万延森,1986。青岛沿海全新世海面的变化。海岸工程,5(3):48-53。
    万国江,1997。现代沉积的~(210)Pb计年。第四纪研究,3230-239。
    中国海湾志编委会,1993。中国海湾志(第四分册)—山东半岛南部和江苏省海湾。北京:海洋出版社。157-258。
    卞云华,汪品先,1980。胶州湾第四纪晚期的微体化石群及其意义。海洋微体古生物论文集。北京:海洋出版社。
    尹世源,1982。应用陆地卫星图象解译滩涂面积的初步探讨。海岸工程,1:98-101。
    方国洪,王仁树,1966。海湾的潮汐与潮流。海洋与湖沼,8(1):60-77。
    王化桐,方欣华,匡国瑞,1980。胶州湾环流与污染扩散的数值模拟:Ⅰ.胶州湾潮流数值计算。山东海洋学院学报,10(1):26-55。
    王文海,1983。黄岛前湾建港中的地质与泥沙问题。海岸工程,2:(2):38-49。
    王文海,1986。胶州湾自然环境概述。海岸工程,5:(3):18-24。
    王文海,王润玉,张书欣,1982。胶州湾的泥沙来源及其自然沉积速率。海岸工程,1:83-90。
    王永吉,李善为,1982。青岛胶州湾地区钻孔岩芯孢粉分析。海洋研究,3:30-36。
    王钟裙,夏综万,1990。青岛近海海域污染物扩散数值模拟。黄勃海海洋,8(2):9-14。
    邓明,2000。海洋悬浮泥沙的遥感研究。硕士论文。国家海洋局第二海洋研究所。61pp。
    边淑华,1999。胶州湾环境演变与冲淤变化。硕士论文。53pp。
    
    
    刘凤树,1986。胶州湾假潮现象的初步分析。海洋与湖沼,17(1):45-56。
    刘学先,1985。胶州湾中南部北向风与波浪的关系。海岸工程,4(2):55-65。
    刘学先,刘秀亭,1986。胶州湾寿命初探。海岸工程,5(3):25-30。
    刘学先,胡泽建,1990。胶州湾浅水风浪计算方法。黄勃海海洋,8(2):15-21。
    刘洪滨,1986。胶州湾成因的探讨。海洋地质与第四纪地质,6(3),53-66。
    刘瑞玉,徐凤山,崔玉珩,1992。胶州湾的生物环境:大型底栖生物生态学。胶州湾生态学和生物资源,刘瑞玉主编。北京:科学出版社。220-228。
    吕常五,1990。关于胶州湾内双峰谱波浪的某些统计特征初步分析。黄勃海海洋,8(2):1-8。
    孙英兰,陈时俊,1987。胶州湾环流和污染扩散数值模拟:Ⅳ.胶州湾变边界模型。山东海洋学院学报,17(1):10-25。
    孙英兰,陈时俊,俞光耀,1988。海湾物理自净能力分析及水质预测实例,第三节胶州湾。山东海洋学院学报,2期(Ⅱ):60-160。
    许卫忆,苏纪兰,1986。杭州湾二维潮波计算及底质分布的动力成因。海洋与湖沼,17(6):493-503。
    许卫忆,陈耕心,李伯根,1992。乐清湾的动力沉积过程。海洋与湖沼,23(1):20-29。
    吴桑云,王文海,蔡龙宝,1995。胶州湾的第四系划分。海洋学报,17(4):78-85。
    张叔英,李允武,1998。声学悬浮泥沙观测系统的研制和应用。海洋学报,20(5):114-119。
    张铭汉,2000。胶州湾海水中悬浮体的分布及其季节变化。海洋科学集刊。(待刊)
    李凡,林宝荣,吴永成,王从敏,1994。薛家岛湾沉积动力学特征及海港开发研究。海洋与湖沼,25(4):452-457。
    
    
    李文勤,1991。黄、渤海表层沉积物中钙质超微化石分布规律与黄海暖流流路。黄渤海海洋,9(1):7-11。
    李玉瑛,沈渭铨,章伟,1997。鲁南沿海沉积物分布规律的研究。青岛海洋大学学报,27(4):546-552。
    李安春,1997。青岛地区一次浮尘过程的来源及向海输尘强度。科学通报,42(18):1990-1992。
    李成治,黄宝艇,1984。胶州湾地貌的遥感图象机助解译。海洋与湖沼,15(3):251-257。
    李启瑞,1985。青岛汇泉海水浴场环境质量初步研究。海洋科学,9(3):51-54。
    李炎,李京,1999。基于海面-遥感器光谱反射率斜率传递现象的悬浮泥沙遥感算法。科学通报,44(17):1892-1897。
    李培泉,苗绿田,刘志和,1986。青岛胶州湾表层沉积物五种重要放射性同位素的测定。海洋科学,10(6),18-21。
    李善为,1983。从海湾沉积物特征看胶州湾的形成演变。海洋学报。1983,5(3):328-339。
    李善为,王永吉,张耆年,徐孝诗,1982。胶州湾海岸与海底地貌发育特征。海洋研究,3:37-47。
    杨治家,高抒,黄海军,杨光复,张宏才,1999。山东海阳核电厂工程可行性研究—厂址区域泥沙运动及岸滩稳定性分析专题报告。中国科学院海洋研究所。218pp。
    邵秘华,张素香,马嘉蕊,1997。略论浊度标准、单位和测量仪器的研究与进展。海洋技术,50-61。
    邹长兴,1982。胶州湾微波遥感资料分析。山东海洋学院学报,12(1):21-26。
    陈肯,罗炎炎,刘智深,1982。胶州湾航空海洋遥感试验结果分析。山东海洋学院学报,12(1):27-34。
    周莉,赵其渊,李巍然,1983。山东半岛南部表层沉积物粒度分布与泥沙动态。山东海洋学院学报,,13(3):45-58。
    
    
    国家海洋局,1975。海洋调查规范:第四分册—海洋地质调查。9-88。
    国家海洋局第一海洋研究所,1984。胶州湾自然环境。北京:海洋出版社。
    国家海洋信息中心,1997。潮汐表—鸭绿江口至长江口(青岛)。北京:海洋出版社。
    国家海洋信息中心,1999。潮汐表—鸭绿江口至长江口(青岛)。北京:海洋出版社。
    林振宏,王玉文,吕亚男,1983。青岛海滩砂中的变生矿物曲晶石。山东海洋学院学报,13(3):81-85。
    武桂秋,高振华,1986。论胶州湾岸滩和航道的治理。海岸工程,5(3):76-80。
    郑全安,吴隆业,张欣梅,孙玉星,潘家祎,徐鸿楷,1991。胶州湾遥感研究:Ⅰ.总水域面积和总岸线长度量算。海洋与湖沼,22(3):193-199。
    郑全安,吴隆业,戴懋英,潘家祎,纪育强,1992。胶州湾遥感研究:Ⅱ.动力参数计算。海洋与湖沼,23(1):1-6。
    郑继民,沈渭铨,1986。胶州湾沉积物工程特性及其开发利用。海岸工程,5(3):39-47。
    俞光耀,陈时俊,1983。胶州湾环流和污染扩散数值模拟:Ⅲ.胶州湾拉格朗日余流与污染物的迁移。山东海洋学院学报,13(1):1-14。
    赵一阳,李凤业,Demaster,D.J.,Nittouer,C.A.,Milliman,J.,1991.南黄海沉积速率和沉积通量的初步研究。海洋与湖沼,22(1):38-43。
    赵全基,刘福寿,1998。胶州湾东北侧岩芯分析。海洋科学,2:68-69。
    赵亮,魏皓,赵建中,2000。胶州湾水交换的数值研究。海洋与湖沼。(待刊)
    赵奎寰,1983。胶州湾重矿物分析—在港湾洄淤调查中的应用。海岸工程,2(1):26-38。
    
    
    赵奎寰,1998。胶州湾的成因及演变。黄勃海海洋,16(1):15-20。
    徐馨,何才华,沈志达等,1992。第四纪环境研究方法。贵州:贵州科技出版社。377pp。
    翁学传,朱兰部,王一飞,1992。胶州湾的自然环境:水文要素的结构和变化。胶州湾生态学和生物资源,刘瑞玉主编。北京:科学出版社。20-38。
    胶州湾功能区划联席会议,1996。胶州湾及邻近海岸带功能区划。北京:海洋出版社。22-326。
    胶州湾环境综合与研究组,1992。胶州湾环境综合调查与研究。海洋通报,11(3):1-77。
    贾玉连,柯贤坤,许叶华,王艳,1999。渤海湾曹妃甸沙坝-泻湖海岸沉积物搬运趋势。海洋科学,3:56-60。
    郭纪捷,任来法,李允武,1998。声学悬浮泥沙观测数据现场定标研究。海洋学报,20(5):120-125。
    郭耀同,1997。胶州湾海域COD浓度场数值计算应用研究。海洋湖沼通报,3:11-17。
    钱江初,1987。~(210)Pb测定沉积速率的误差及校正。东海海洋,5(3):29-34。
    高玉,曾呈奎,郭玉洁,1992。胶州湾的生物环境:微型浮游生物。胶州湾生态学和生物资源,刘瑞玉主编。北京:科学出版社。203-219。
    高抒,1997。海洋沉积动力学研究与应用前景展望。世界科技研究与发展,19(3):62-66。
    高抒,1999。海底边界层参数的观测与计算。(99河口海岸泥沙运动高级研讨班讲义)
    高抒,2000。示踪沉积物方法的理论框架。科学通报,45(3):329-334。
    高抒,Collins,1998。沉积物粒径趋势与海洋沉积动力学。中国科学基金,4:241-246。
    
    
    常德馥,1987。胶州湾特征波要素间的统计关系。海岸工程,6(2):65-72。
    曹钦臣,1982。青岛沿海外滨表层沉积物的化学成分和微量元素的初步研究。山东海洋学院学报,12(2):73-81。
    曹钦臣,俞旭,1982。胶州湾沉积物中有机碳、三氧化硫和矿物学的的初步研究。山东海洋学院学报,15(1):73-83。
    曹琼英,沈德勋,1988。第四纪年代学及实验技术。南京:南京大学出版社。228-252。
    曹德明,1984。胶州湾潮汐潮流的数值计算。海洋科学集刊,21:157-164。
    黄培基,1988。胶州湾风浪谱特征分析。海洋学报,10(2):146-152。
    黄培基、胡泽建,1988。胶州湾双峰海浪频谱的表示。海洋学报,10(5):531-537。
    董礼先,苏纪兰,王康墡,1989。黄勃海潮流场及其与沉积物搬运的关系。海洋学报,11(1):102-114。
    韩有松,孟广兰,1984。胶州湾地区全新世海侵及其海平面变化。科学通报,20:1255-1258。
    韩有松,孟广兰,1986。青岛沿海地区20000年以来的故地理环境演变。海洋与湖沼,17(3):196-206。
    鲍献文,闫菊,赵亮,石磊,1999。ECOM模式在胶州湾潮流计算中的应用。海洋科学,5:57-60。
    薛鸿超,顾家龙,任汝述,1980。海岸动力学。北京:人民交通出版社。511pp。
    魏合龙,庄振业,1992。山东荣城月湖潮汐汊道演化研究。湖泊科学,9:135-140。
    Bagnold, R.A., 1956. The flow of cohesionless grains in fluids. Philophical Transaction of the Royal Society of London, 249: 24-297.
    Banse, K., Falls, C. P. and Hobson, L. A., 1963. A gravimetrie method for determining suspended matter in sea water using Millipore filters.Deep-Sea Research, 10: 639-642.
    
    
    Blair, T.C. and McPherson, J.G., 1999. Grain-size and textural classifical of coarse sedimentary particles. Journal of Sedimentary Research,69(1): 6-19.
    Blumberg, A.P., and Mellor, G L, 1987. "A Description of a ThreeDimensional Coastal Ocean Circulation Model," In: ThreeDimensional Coastal Ocean Models, N. Heaps (editor). American Geophysics Union, 1-16.
    Burdam, P.Y., Lick, W. and Lick, J., 1989. The flocculation of fine-grained sediments in estuarine waters. Journal of Geophysical Research, 94,8323-8330.
    Campell, J.B., 1996. Introduction to Remote Sensing (second edition).London: Taylor & Francis. 622pp.
    Cilas Companie Industrielle Des Lasers. 1992. Granylometer 1064 user manual.
    Collins, M.B., Kc, X.-K., and Gao, S., 1998. Tidally-induced flow structure over sandy intertidal flats. Estuarine, Coastal and Shelf Science, 46: 233-250.
    Dammann, W.P., Proni, J.R., Craynock, J.R. and Fergen, R., 1991. Oceanic waste-water outfall plume characteristics measured acoustically.Chemistry and Ecology, 5: 75-84.
    DeVriend, H.J., Zyserman, J., Nicholson, J., Roelvink, J.A., Péchon,P.,Southgate, H.N., 1993. Medium-term 2DH coastal area modeling.Coastal Engineering, 21: 193-224.
    Drake, D.E. and Cacchione, D.A., 1989. Estimates of the suspended sediment reference concentration (C_a) and resuspension coefficient (γ_0) from near bottom observations on the California shelf.Continental Shelf Research, 9(1): 51-64.
    Dyer, K.R., 1986. Coastal and estuarine sediment dynamics. John Wiley,Chichester, 342pp.
    
    
    Engelund, F. and Hansen, E., 1972. A Monograph on Sediment Transport in Alluvial Streams, 3rd edn. Technical Press, Copenhagen.Falconer, R. A. and Owens, P. H., 1990. Numerical modeling of suspended sediment fluxes in estuarine waters. Estuarine, Coastal and Shelf Science, 31,745-762.
    Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary-rock nomenclature. Journal of Geology, 62: 344-359.
    Folk, R.L., Ward, W. C., 1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27: 3-26.
    Gadd, P. E., Lavelle, J. W. and Switft, D. J. P., 1978. Estimate of sand transport on the New York shelf using near-bottom current meter observations. Journal of Sedimentary Petrology, 48, 239-252.
    Gao, S. and Collins, M., 1992a. Modelling exchange of natural trace sediments between an estuary and adjacent continental shelf. Journal of Sedimentary Petrology, 62(1): 35-40.
    Gao, S. and Collins, M., 1992b. Net sediment transport patterns inferred from grain-size trends, based upon definition of "transport vectors". Sedimentary Geology, v.81, no.3/4, p.47-60.
    Gao, S. and Collins, M., 1995. Net transport direction of sands in a tidal inlet, using foraminiferal tests as natural tracers. Estuarine, Coastal and Shelf Science, 40(6): 681-697.
    Gao, S., Park, Y.A., Zhao, Y. and Qin, Y., 1996. Transport and resuspension of fine-grained sediments over the southeastern Yellow Sea. Proceedings of the Korea-China International Seminar on Holocene and later Pleistocene Environments in the Yellow Sea Basin.Seoul, Korea. 83-98.
    
    
    Gao, S., Zhuang, Z.Y., Wei, H.L., Sun, Y.L., Chen, S.J., 1998. Physical processes affecting the health of coastal embayments: an example fi.om the Yuehu Inlet, Shandong Peninsula, China. In: Health of the Yellow Sea. Hong, G.H., Zhang, J. and Park, B.K. (editor). 313-329.
    Gao, S., Wang, Y.P. and Zhao, W.H., 2001. Suspended sediment and nutrient concentrations over the East China Sea continental shelf, the summer of 1998. Journal of Sea Research. (In press)Gibbs, R.J., 1985. Settling velopcity, diameter, and density for flocs of illite, kaolinite, and montmorillonite. Journal of Sedimentary Petrology, 55: 65-68.
    Goldberg, E. D., Koide, M., 1963. Rates of sediment accumulation in the Indian Ocean. In: Earth Sciences and Meteoritics, Geiss J., Goldberg, E D. (editor). Amsterdam: North-Holland publishing Company, 1963.90-102.
    Gordon, R.L., 1996. Acoustic Doppler Currents Profilers principles of operation: a practical primer (second edition for Brand Band ADCPs). RD Instruments, USA. 29-32.
    Grant, W.D. and Madsen, O.S., 1979. Combined wave and current interaction with a rough bottom. Journal of Geophysical Research, 84, 1799-1808.
    Guy, H.P., Simons, D.B., and Richardson, E.V., 1966. Summary of alluvial channel data from flume experiments 1955-1961. U.S. Geological Survey Professional Paper, 462-I, 92pp.
    Hardisty, J. 1983. An assessment and calibration of formulations for Bagnold's bedload equation. Journal of Sediment Petrology, 53:1007-1010.
    Harris, P. T., 1989. Sandwave movement under tidal and wind-driven currents in a shallow marine environment: Adolphus Channel, northeastern Australia. Continental Shelf Research, 9, 981-1003.
    
    
    Hay, A.E. and Sheng, J., 1992. Vertical profiles of suspended sand concentration and size from multifrequency acoustic backscatter. Journal of Geophysical Research, 97(C10): 15661-15677.
    Heathershaw, A.D., 1981. Comparisons of measured and predicted sediment transport rates in tidal currents. Marine Geology, 42: 75-104.
    Hjulstrom, F., 1939. Transportation of Detritus by moving water. In:Recent Marine Sediments, Trask, P. D. (editor.). The Society of Economic Paleontologists and Mineralogists, Special Publication 5-31.
    Ippen, A. T., 1966. Estuary and Coastal Hydrodynamics. McGraw-Hill,New York, 744pp.
    Jago, C.F. and Maharnod, Y., 1999. A total load algorithm for sand transport by fast steady currents. Estuarine, Coastal and Shelf Science, 48: 93-99.
    Ke, X.K., Collins, M.B. and Polous, S.E., 1994. Velocity structure and sea bed roughness associated with intertidal (sand and mud) flat and saltmarshes in the wash, the U.K. Journal of Coastal Research, 10(3):702-715.
    Koide, M., Soutar, A., Goldberg, E.D., 1972. Marine geochronology with ~(210)Pb. Earth and Planetary Science Letters, 14: 442-446.
    Komar, P.D. and Inman, D.L., 1970. Longshore sand transport on beaches. Journal of Geophysical Research, 75, 5914-5927.
    Konert, M and Vandenderghe, J., 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology, 44:523-535.
    Krishnaswamy, S., Seidemann, D.E., 1988.Comparaive study of ~(222)Rn, ~(20)Ar,~(39)Ar and ~(37)Ar leakage from rocks and minerals: Implications for the role of nanopores in gas transport through natural silicates.Geochimica et Cosmochimica Acta, 1988, 52: 655-658.
    
    
    Lavelle, J.W. and Mofjeld, H.O., 1987. Do critical stresses for incipient motion and erosion really exist? Journal of Hydraulic Engineering, 113(3): 370-393.
    Li, M.Z., Amos C.L. and David E.H., 1997. Boundary layer dynamics and sediment transport under storm and non-storm conditions on the Scotian Shelf. Marine Geology, 141: 157-181.
    Lynch J. F., Gross T. F., Sherwood C. R. Irish J. D. and Brumley B. H., 1997. Acoustical and optical backscatter measurement sediment transport in the STRESS experiment. Continental Shelf Research, 17(4): 337-366.
    Madsen, O. S., 1989. Transport determination by tracer. A: Tracer theory. In: Nearshore Sediment Transport, Seymour, R. J. (editor). Plenum Press, New York, 103-114.
    McCave, I.N., Bryant, R.J., Cook, H.F. and Coughanowr, C.A. 1986. Evaluation of a laser diffraction size analyzer for use with natural sediments. Journal of Sedimentary Petrology, 56, 561-564.
    McLaren, P. and Bowles, D., 1985. The effects of sediment transport on grain-size distributions. Journal of Sedimentary Petrology, 55, 457-470.
    McLaren, P., Collins, M. B., Gao, S. and Powys, R. I. L., 1993. Sediment dynamics in the Severn Estuary and Bristol Channel. Journal of the Geological Society (London), 150: 589-603.
    McManus, J., 1988. Grain size determination and interpretation. In: Techniques in Sedimentology, Tucker M. (editor), Backwell, Oxford. 63-85.
    Miller, M.C., McCave, I.N. and Komar, P.D., 1977. Threshold of sediment motion under unidirectional currents. Sedimentology. 24: 507-527.
    Pickril, R. A., 1986. Sediment pathways and transport rates through a tidedominated entrance, Rangaunu Harbour, New Zealand. Sedimentology, 33: 887-898.
    
    
    Proni, J.R., Rona D.C., Lauter C.A. and Sellers R.L., 1975. Acoustic observations of suspended particulate mater in the ocean. Nature, 254:413-515.
    Qin, Y.S., Li, F., Xu, S.M., Milliman, J. and Limebumer, R., 1989. Suspended matter in the south Yellow Sea. Oceanologia et Limnologia Sinica, 20(2): 101-111.
    Qin, Y.S. and Zhen, T.M., 1982. A study of distribution pattern of sediments on the continental shelf of the East China Sea. The Geology of the Yellow Sea and the East China Sea. Beijing: Science Press. 39-51
    Rowe, F. and Young, J., 1979. An Ocean current profiler using Doppler sonar. Oceans '79 Proceedings.
    Shi, Z., Ren, L. F. and Lin, H. L., 1996. Vertical suspension profile in the Changjiang Estuary. Marine Geology, 130: 29-37.
    Shi, Z., Ren, L. F. and Hamilton, L. J., 1999. Acoustic profiling of fine suspension profile in the Changjiang Estuary. Estuaries, 22(3A): 648-656.
    Sternberg, R.W., 1972. Predicting initial motion and bedload transport of sediment particles in the shallow marine environment. In: Shelf Sediment Transport: Process and Pattern, Dowden, Hutchinson and Ross, Stroudsberg, Pa. Swift, D.J.P., Duane, D.B., and Pilkey, O.H. (editor). 61-82.
    Stumpf, R.P., 1987. Application of AVHRR satellite data to the study of sediment and chlorophyll in turbid coastal water. NOAA Technical Memorandum NESDIS AISC7.Su, J. and Wang, K., 1986. The suspended sediment balance in Changjiang Esuary. Estuarine, Coastal and Shelf Science, 23:81-98.
    Thevenot, M.M. and Kraus, N.C., 1993. Comparison of acoustical and
    
    
    optical measurements of suspended material in the Chesapeake Estuary. Journal of Marine Environment Engineering, 1: 65-79.
    Thimakorn, P., 1984. Resuspension of clays under waves. In: Seabed Mechanics. Denness, B. (editor). Graham & Trotman, London.
    Thorne, P. D., 1986. An intercomparison between visual and acoustic detection of seabed gravel movement. Marine Geology, 72:11-31.
    Urick, R.J., 1983. Principles of underwater sound. McGraw-Hill Book Company. New York, NY.
    van Rijn, L.C., 1984. Sediment transport: Part I: bed load transport.Journal of Hydraulic Division, Proceeding of ASCE, 110(hy10),1432-1456.
    van Rijn, L.C., 1984. Sediment transport: Part II: suspended load transport. Journal of Hydraulic Division, Proceeding of ASCE, 110(hy11),1613-1641.
    van Rijn, L.C., 1984. Sediment transport: Part III: bed forms and alluvial roughness. Journal of Hydraulic Division, Proceeding of ASCE, 110(hy12), 1733-1754.
    Vincent, C.E., Young, R.A. and Swiift, D. J. P., 1981. Bedload transport under waves and currents. Marine Geology, 39, M71-M80.Wang, Y.P. and Gao, S., 1998. Assessment of a laser grain size analyzer for use with marine sediments. (Unpublished manuscript)
    Wang, Y.P. and Gao, S., 2001. Modification to the Hardisty equation, regarding the relationship between sediment transport rate and grain size. Journal of Sedimentary Research. (in press)
    Williams, G. P., 1967, Flume experiments on the transport of a coarse sand. U.S. Geological Survey Professional Paper, 562-B, 31pp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700