用户名: 密码: 验证码:
O_2/CO_2煤粉燃烧脱硫及NO生成特性实验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是人类赖以生存发展的基础,煤的燃烧是提供能源的主要方式。随经济的发展,燃煤与日俱增来满足能源的供给,而同时燃煤过程污染物排放又加重了环境的负担。其中CO_2是温室效应产生的根源,而SO_2、NOx导致了酸雨沉降。经济发展和环境保护相协调成为世界性的问题,开发高效低污染的煤粉燃烧技术势在必行。
     近年来O_2/CO_2煤粉燃烧技术日渐得到世界各国的关注,许多研究机构陆续投入到相关的研究之中。该技术以纯氧代替空气,并与烟气再循环相结合。因为减少了占空气79%不支持燃烧的N_2所致的排烟热量损失,使燃烧效率得到很大提高,促进了能源的有效利用。此外,可以将排烟中CO_2浓度提高到95%,方便了CO_2的回收利用。基于此研究O_2/CO_2气氛下煤粉燃烧机理将为该技术的推广和应用提供理论基础。
     本文研究了O_2/CO_2气氛下煤粉燃烧特性、SO_2钙基脱除的直接硫化特性及NOx燃煤排放特性,并对燃烧过程进行了数值模拟,主要工作概括为以下六个方面:
     1.借用热重分析手段比较了空气和O_2/CO_2气氛下煤粉的燃烧特性,并就固硫特性作初步讨论。通过对莱阳煤、长广煤、太平煤三种煤种的着火温度、燃尽温度、及燃烧特性指数的分析,表明O_2/CO_2气氛下的燃烧优于空气,并从反应动力学数据得到证实。同时,借助定硫仪初步比较了煤粉在空气和O_2/CO_2两种气氛下的硫析出特性,结果表明后者脱硫效果有很大改善。
     2.分别以热重仪及沉降炉研究了中等温度(800℃~900℃)和较高温(900~1250℃)下空气和O_2/CO_2两种气氛钙基脱硫特性。在热重分析仪上考察了中等温度下温度、O_2和SO_2浓度、粒径等主要因素对直接硫化CaCO_3-SO_2过程的影响,并求取了反应的活化能。在沉降炉上考察了较高温下O_2/CO_2气氛中温度、Ca/S、不同CO_2体积浓度、炉内停留时间、过量空气系数、煤种等参量的影响。
     3.建立了高温条件下CaSO_4分解的吉布斯自由能与温度的函数关系,并求取了SO_2分解压力与分解温度之间的关系,在此基础上得到了CaSO_4高温热力学分解特性。并与直接硫化过程进行了对比,进而判断出O_2/CO_2气氛有利于阻止CaSO_4的热力分解。在热力学分析的基础上,借用热重分析评价CO_2、SO_2和O_2浓度对CaSO_4分解的影响,求取反应活化能。并采用不反应缩核模型比较O_2/CO_(2-)空气两种气氛下反应过程控制因素的变化特性。
     4.借助压汞孔结构分析、电镜扫描及热重分析等手段,研究了Na2CO_3、K2CO_3、Al_2O_3及Cs_2CO_3对CaCO_3微观孔结构性质及硫化转化的影响,结果表明:Na_2CO_3、K_2CO_3、Al_2(SO_4)_3的加入优化了孔尺寸分布、增加了孔隙率和表面积,对直接硫化过程有促进作用。而Cs_2CO_3的作用正好相反。从灰熔点的分析得出Na_2CO_3
    
    浙江大学博卜学位论文刘彦
    摘要
    的加入并没有导致结渣的加重。
    5.用沉降炉分析了02/CO:煤粉燃烧中NOx的释放特性,得出煤粉燃烧过程
    02/C氏气氛较空气下有助于抑制NOx的排放。考察了温度、不同煤种、过量空
    气系数对NOx生成特性的影响。并以甲烷等混气模拟了炉内气氛,分析了燃料
    氮、循环氮及两者同时存在对NOx生成的影响。
    6.根据煤粉燃烧条件,选取合适的模型,借助Fluent软件对沉降炉内空气一02/c 02
    两种气氛下煤粉燃烧及NOx污染物生成特性进行数值模拟,得到了炉内温度分
    布特性、传热特性及污染物生成特性,并与实验数据作了比较。
    7.初步讨论膜分离制氧的基本原理和方法,提出为了推广q/Cq煤粉燃烧技术
    的应用,开发高效低耗的膜分离制氧的方法成为必要。
    关键词:
    仇/C 02气氛煤粉燃烧热重分析直接硫化压汞仪孔结构分析SEM电镜扫描
    分析XRD测试添加剂调制NOx排放沉降炉Fluent软件模拟制氧膜分离
Combustion of coal is a main means to provide energy which is the foundation to our living. The use of coal combustion is increasing steadily to meet the need of economy development. And the pollutants from coal combustion influence reversely on environment, among them CO2 is greenhouse gas , while SO2 and NOx is the cause of acid rain. At present, how to harmonize the relation between economy development and environment protection become the focus internationally. Developing a technology with high efficiency and low pollution is imperative under the situation.Recently the technology of O2/CO2 recycled combustion is gradually paid attention internationally, and many organizations have ploughed into it. In the process air is replaced by pure oxygen, and flue gas is recycled. The heat loss resulted from N2 release is cut down, so the combustion efficiency is improved greatly. At the same time the CO2 concentration in the flue gas is increased to 95% and it will be easy to capture. Therefore, much research is necessary for a better understanding.In the work the characteristics of coal combustion in O2/CO2, the direct sulfation of CaCO3-SO2 and NOx emission were studied and the coal combustion numerical simulation carried out. The job consists of aspects as followings:1. Combustion characteristics of the pulverized coal was studied by thermogravime-tric analysis under the O2/CO2 atmosphere and the results were compared with traditional air conditions. The ignition temperature and burnout temperature of the pulverized coal are significantly lowered under O2/CO2 conditions, so the burning characteristics are improved greatly. The conclusion is confirmed by dynamic analysis. It is shown that calcium-based desulfurization efficiency increases in O2/CO2 atmosphere.2. Sulfation process under moderate and high different temperature in both atmosphere of air- O2/CO2 was studied by thermogravimetric analysis and one dimension drop-tube experiment. The influence of temperature,O2 and SO2 concentration, and grain diameter on desulfurization efficiency was investigated by thermogravimetric analysis. The effect of temperature,Ca/S,CO2 volume percent, residual time, excessive air coefficient and coal species on sulfation process was studied under one dimension drop-tube.3. The thermodynamics characteristics of CaSO4 decomposition was obtained by establishing the relation between Gibbs Free Energy and T, and the decomposition pressure of SO2 and T. CaSO4 decomposition in O2/CO2 is prevented compare to air. The influence of the concentration of CO2, SO2 and O2 on CaSO4 decomposition was evaluated, and the activation energy was obtained.The results from experiment and
    
    calculation consistent with the thermodynamic conclusion.4. The effect on pore structure and direct sulfation of CaCCb added by K2CO3 A12(SO4)3 and Cs2CO3 was studied by Pore Master and SEM analysis. The results show that by adding Na2CO3,K2CO3 or Al2(SO4)3, the pore structure of CaCO3 was optimized, and sulfation effect is improved. The other way round is in CS2CO3. Ash melting point is not lowered by adding of Na2CO3.5. The characteristics of NOx release in O2/CO2 atmosphere was studied and compared with air, the law was summed up by analyzing the effect of coal species, temperature, excessive air coefficient et al on it. The effect of fuel-N, recycled-N and the combination of them on characteristics of NOx release was investigated.6. The coal combustion process and characteristics of NOx release in O2/CO2-air was simulated with the Fluent software, the temperature field, heat exchange characteristics and NOx concentration field were obtained and the results were consistent with experiment.7. Discussed the membrane separation process and the principle to produce oxygen, and believed that the technology of coal combustion in O2/CO2 will be applied widely to industry with improving of producing oxygen by membrane separation process.
引文
[1] 郝吉明,王书月,陆永琪编著,燃煤二氧化硫污染控制技术手册,化学工业出版社,北京,2001,1-8;
    [2] 陈亚非,烟气脱硫技术综述,制冷空调和电力机械,2001,1:17-21;
    [3] 韩翔宇,陈皓侃,李保庆,石灰石在煤燃烧过程中固硫反应机理研究进展,煤炭转化,2000,23(1):22-28;
    [4] 郝吉明,王书月,陆永琪编著,燃煤二氧化硫污染控制技术手册,化学工业出版社,北京,2001,4-6;
    [5] 石定寰,中国洁净煤技术发展状况,中荷洁净煤技术发展研讨会论文集,北京,1991,33-35;
    [6] 李荫堂,环境保护与节能,西安交通大学出版社,西安,1998,1-129;
    [7] 雷仲存主编,王宇主审,华紫光同兴环保公司组织编制,工业脱硫技术,化学工业出版社,北京,2001,31-124;
    [8] 顾念祖,燃煤电厂脱硫的现状分析和防治对策,热能动力工程,2000,15:91-92;
    [9] Powell, E. K., and Searcy, D.W., The rate and activation enthalpy of decomposition of CaCO_3, Metal.Trans.,1980,11b:121-126;
    [10] Borgwardt,R.H.,Calcination kinetics and surface area of dispersed limestone particals, AIChE.J.,1985,31(1):103-111;
    [11] Beittel.R.Dry sorbent emission control, Southem research institute monthly report,1985,18 (10), Contrac. No. 195-83-003;
    [12] Mai M.C., Edgar T. F., Surface are evolution of calcium hydroxide during calcinations and sintering,AIChE, 1989,35(1):30-36;
    [13] Rhines, F.N. and Dehoff, R.T. Channel network decay in sintering, in sintering and hetergeneons catalysis, Plenum Press, NewYork, 1984,48-67;
    [14] Borgwardt R.H., Sintering of Nascent Calcium Oxide, Chem. Eng. Sci., 1989, 44(1):53-60;
    [15] Simons,G. A., Garman,A.R.,and Boni,A.A., The kinetics rate of SO_2 sorption by CaO,AIChE.J.,1987,33:211-216;
    [16] German R.M., Munirs Z.A., Surface area reduction during isothermal sinter -ing, J.Am. Ceram.Soc.,1976,59,379-383;
    [17] Bhstion S.K.and Perlmutter, D.D., The effects of pore structure on fluid-solid reactions application to the SO_2--lime reaction, AIChE., 1989,32,226-234;
    [18] Borgwardt, R.H. Bruce, K.R. and Blake,J, An investigation of product-layer diffusivity for CaO sulfation, Ind. Eng. Chem. Res., 1987,26,1993-1998;
    [19] B. Kamphuis,A.W. Potma, W. Prins et al.,The reductive decompositionof calcium sulthate-I .kenitics of the apparent solid-solid reaction. Chem.Eng.Sci., 1991,48:105-116;
    [20] Core R.Milne,Geoffrey D.Silcox. et al., High-temperature, short-time sulfation of calcium sorbents,2.Experimental data and theoretical model predictions, Ind. Eng.Chem.Res.,1990, 29: 2201-2214;
    
    [21] Core R.Milne,Geoffrey D.Silcox. et al., High-temperature, short-time sulfation of calcium sorbents, I. Theoretical sulfation model, Ind. Eng.Chem.Res., 1990, 29:2192-2201;
    [22] Ghost-Dastidar, A.Mahuli,S. Agnihotri, R., and L.-S.,Investigation of high reactivity calcium carbonate sorbent for enhanced capture,Ind. Eng.Res., 1996,35:598-606;
    [23] Dispertion and ultra-fast reaction of calcium-based sorbent powders for SO_2 and air toxics removal in coal combustion; L.-S.Fan,P.Jiang,R. Agnihotri, Chem. Eng. Sci, 1999,54:5585-5597;
    [24] Milne C R, Calcination and sintering models for application to high temperature, short time sulfation of calcium-based sorbents. Ind. Eng. Chem. Res. 1990, 29: 129-149;
    [25] 钟北京,姚海军等,超细CaO煤粉炉内喷射脱硫实验研究,燃料化学学报, 2002,8(4):289-292;
    [26] Gullett,B.K.,Bruce,K.R., Indentification of CaSO_4 formal by reaction of CaO and SO_2,1989,AIChE.J.,35(10):1739-1741;
    [27] K.Mahuli, Rajeev Agnibotri, Suhas, Pore-structure optimization of calcium carbonate for enhanced sulfation, Fuel Energy Abstracts,1997,38(4):272-278;
    [28] G. Van Howe,L.Rodrlque, Kinetics of the reaction of calcium sulfite and calcium carbonate with sulfur, Ame.Chem.Soci.,1981,15(3):327-332;
    [29] Paolo Parini,Gennaro Demichele, An investigation of the influence of sodium chloride on the desulphurization properties of limestone., Fuel, 1992,71 (1): 831-835;
    [30] 陈鸿伟等,复合调制提高CaO脱硫效率的试验研究,环境科学学报,1999,19(4)357-361;
    [31] J.Fernández,J.Renedo, Preparetion and characterization of fly ash /hydrated lime sorbents for SO_2 removal, Powder Technology, 1997,94:13-139;
    [32] Jun chen,Ning li,Junhu zhou, The high-temperature sulphation behavior of arium-based sorbents during coal combustion, The Proceedings of the 25~(th) International Technical Conference on Coal Utilization & Fuel Systems Systems, Clearwater, Florida,March,2000:867-875;
    [33] 李宁,煤高温燃烧过程脱硫反应机理的研究及其工业应用,浙江大学博士学位论文,2000,2,85-90;
    [34] Simons,G. A., Garman,A.R.,and Boni,A.A.,The kinetics rate of SO_2 sorption by CaO, AIChE. J.,1987,33.211-217;
    [35] BhatiamS.K., and Permutter, D.D.,The effect of pore structure on fuild-solid reaction: application to the SO_2-lime reaction, AIChE. J.,1981b,27:226-230;
    [36] Robert H.Borgwardt, Kevin R.Bruce and James Blake, An investigation of product-layer diffusivity for CaO Sulfation,Ind.Eng.Chem.Res.,1987,26:1993-1998;
    [37] Hisa,C., St.Pierre,G. R., and Fan, L.-S, Isotpe study on diffusion in CaSO_4 formed during sorbent flue gas reaction,AIChE.J.,1995,41(10):2337-2340;
    [38] R.Vanslow, R.Howe.,Chemistry and physics of solid surface Ⅳ ,Springer-Verlag Berlin Heidelbery New York, 1982,281-313;
    [39] Melloslav Hartman, Jaroslar Pata, and Robort W., Coughlln influence of porosity of calcium carbonates on their reactivity with sulfur dioxide,Ind.Eng.Chem.Process Des.Dev.,1978,17(4): 411-419;
    
    [40] A.B.Futeres,M.J.Femandez,The effect of metallic salt additives on direct sulfation of calcium carbonate and on decomposition of sulfated samples,Thermo-chinica Acta ,1996,276:257-269;
    [41]John Wilely,Levenspiel,O.,Chem.Res.Eng.,Chaperl5,Second Edition,New York,1972;
    [42]Andres Trikkel, Ron Zerenhoven,Rein Kuusik, Estonian Calcareous rocks as SO2 sorbents in AFBC and PFBC conditions, Proc. Int.Conf. Fluid Bed Combust. 15th, 1999,322-340;
    [43]J,Szekely Y. andJ.W.Evans;A strctural model for gas-solid reactions with a moving boundary, Chem.Eng.Sci. 1970,25:1091 -1107;
    [44]R.H.Borgwardt,Method for variation of grain size in studies of Gas-Solid reactions involving CaO,Ind. Eng.Chem.Fundam,1986,25(l): 165-169;
    [45]Hartman ,M. and R.W.Coughlin, Reaction of sulfur dioxide with limestone and the model,AIChE,J, 1976,22(3):490-497;
    [46]Borgwardt ,R.H. and Bruce,K.P. .Effect of specific surface area on the reactivity of CaO with SO2,AIChE.J.,1986,32(2):239-246;
    [47]Ranade ,P.V. and Harrison,D.P.The variable property grain model applied to the zinc Oxide-Hydrogen sulfide reaction,Chem.Eng.Sci.,1981,36:1079-1089;
    [48]Georgakis,C.Cheng,C.W. and Zekely,J. A changing grain size model for gas- solid reactions"Chem.Eng.Sci., 1979,34:1072-1078;
    [49] Milne C R, Calcination and sintering models for application to high temperature, short time sulfation of calcium-based sorbents. Ind. Eng. Chem. Res. 1990,29: 129-149;
    [50]Dam-Johansen ,K.and Ostergeard,K., High-temperature reaction between sulphur dioxide and limestone-1.Comparison of limestones in two laboratory reactors and a pilot plant, Chem.Eng.Sci.,1991,46(3):822-837;
    [51]E.E.Petersen .Reaction of porous solide,AIChE.J.,1957,3(4):443-448;
    [52]Bengt Lindner and Daniel Simonsson .Comparison of structural models for Gassolid reaction in porous solides undergoing structural changes, Chem. Eng.Sci.,1981,36(4):1519-1527;
    [53]P.G Christman, T.F. Edgar; Distributed pore-size model for sulfation of lime- stone,AIChE.J.,1983,29(3):388-395;
    [54]Sotirchos, s.V.,and Zarkanitis,S.,A distributed pore size and length model for porous media reacting with diminishing porosity.Chem.Eng.Sci.,1993,48:829-833;
    [55]Simons.GA.,and German^A.R.. Small pore clousure and the dereactivation of th e limestone reaction,AIChE J., 1986,32:1491-1496;
    [56]Comelis,A.P.,Zevenhoven,K.Patrik Yrjas,and Mirro,M.Hupa,Productlayer development during sulfation and sufidation of uncalcined limestone particles at elevated press- ures,Ind.Eng.Chem.Res.,1998,37:2639-2646;
    [57]Bortz,S.J.,SO2 removal through hydroxide injection at ecnomizer temperatures in proceedings,Joint EPRI/EPA.1986,2;
    [58]Per Alvfors and Gunnar Svedberg, Modelling of the simultaneous calination , sintering and sulphation of limestone and dolomite,Chem.Eng.Sci., 1992,47 (8):1903-1912;
    
    sulphation of limestone and dolomite,Chem.Eng.Sci., 1992,47 (8):1903-1912; [59]Alvfors,P.,and Svedberg G, Modeling of the sulphation of calcined limestone and DolomiterA gas-solid reaction with structural changes in the presence of inert solid, Chem.Eng. Sci., 1988,43(5):1183-1188;[60]Wheelock,J.D. and Boylan,D.R., Reductive decomposition of gypsum by carbon monoxide, Ind.Eng.Chem.,1960,52:215-218;[61]Joke,A.A.,Carls,E.L.,Ramaswami,D.,Pollution control capabilities of fluidized bed comb- ustion. AIChEJ., 1972,68:241-251;[62]Ghardashkhani,S.Ljungstiom,E.,Release of sulfur dioxide from calcium sulfate under reducing conditions, Proc.Ind.Conf.Fluid-Bed Combustion,1989,10:611-615; [63]Tobias Mattisson and Anders Lyngfelt, Reaction between limestone and SO2 under periodically changing oxidizing and reducing -the effect of temperature and limestone type, ThermochimicaActa, 1999,325:59-67;[64]Hansen P.F.B.,High temperature reaction between sulphur dioxide and limestone.V.The effect of periodically changing oxidsing and redcing conditions, Chem .Eng.Sci.,1993,48:1325-1341; [65]Tobias Mattisson and Anders Lyngfelt, The reaction between sulfur dioxide and limestone under periodically changing oxidizing under reducing conditions-the effect of reducing gas,J. of Institute Energy,1998,71(ll):190-196;[66]Tobias Mattisson and Anders Lyngfelt, Reaction between limestone and SO2 under periodically changing oxidizing and reducing the effect of short cycle times, Thermochimica Acta, 1999,325:59-67;[67]Elena Alvarez et al., High pressure thermogravimetric analysis of the direct sulfation of Spanish calcium-based sorbents, Fuel,1999(78):341-348;[68]J.B.Illerup , K.Dam-Johansen and K.Lunden;High temperature reaction between sulfur oxide and limestone -VlThe influence of high pressure,Chem.Eng.Sci., 1993b,48(ll):2151-2157; [69]Patrik Yrjas, Kristiina lisa and Mikko Hupa, Comparison of SO2 capture capacities of limestones and dolomites underpressure, Fuel,1995,74(3):395-400;[70]Laurent A.,Fenouil and Scott Lynn, Study of calcium-based sorbents for high-temperature H2S removal, 1.Kinetics of H2S sorption by uncalcined limestone, Ind.Eng.Chem.Res., 1995,34, 2324-2333;[71]Mohammad R. Hajalgol et al.Analysis of the direct sulfation of CaCO3, Ind. Eng.Chem., 1988,27:2203-2210;[72]Comelis A.P. Zevenhoven , K.Patrik Yrjas, and Mirro .M.Hupa, Product layer development during sulfation and sufidation of uncalcined limestone particles at elevated pressures, Ind.Eng. Chem.Res.,1998,37,2639-2646;[73]Patrik Yrjas, kristiina Lisa and Mikko Hupa, Limestone and dolomite as sulfur absorbents under pressurized gasification conditions,Fuel,1996,75(l):89-95; [74]F.R6biera,A.B.Furtes,J.J.Pis,V.ArtosandGMarban,Thermaochim. Acta, 1991,179:125;
    
    [75] Comelis A.P., Zevenhoven, K.Patrik Yrjas and Mirro M.Hupa, Product layer development during sulfation and sulfation of uncalcined limestone particles at elevated pressures, Ind.Eng.Chem.Res.,1998, 37, 2639-2646;
    [76] A.B.Futeres,M.J.Femandez, The effect of metallic salt additives on direct sulfation of calcium carbonate and on decomposition of sulfated samples, Thermochinica Acta,1996,276:257-269;
    [77] A.B.Futers,Gvelasco, M.J.Fernandez,T.Alvarez, Analysis of the direct sulfation of calcium carbonte, Thermochinica Acta, 1994,242:161-172;
    [78] 李荫堂,环境保护与节能,西安交通大学出版社,西安,1998,98-100;
    [79] SH,Goldthorpe,PJI,Cross and JE,Davison, System studies on CO_2 abatement from power plants, Energy Convers. Mgmt., 1992,33(5-8):459-466;
    [80] S.Nakayama and Y.Noguchi, Pulverized coal combustion in O_2/CO_2 mixtures on a power plant for CO_2 recovery, Energy Corverts. Mgnt.,1992,33(5-8):379-386;
    [81] N.Kimora, K. Omata,T.Kiga, The characteristics of pulverized coal combustion in O_2/CO_2 mixtures for recovery, Energy convers.Mgmt.,1995,36(6-9):805-808;
    [82] Alan M. Wolsk, Edward J.Daniels, Bassam J.Jody, Recovering CO_2 from large and mediunsize stationary combustors, Air Waste Manage. Assoc.,1991, 41:449-454;
    [83] Yamadea,T., Kiga, T.,Okaua,M., Characteristics of pulverized coal combustion in CO_2 Reco-very Power Plant Applied O_2/CO_2, JSME International Journal, 1998, 41:1017-1022;
    [84] Y.Hu, S.Naito, N.Kobayashi, M.Hasatani,CO_2, NOx and SO_2 emission from the combustion of coal with high oxygen concentration ases, Fuel, 2000,79:1925-1932;
    [85] J.C.Schouten and C.M.Van den Bleek,The influence of oxygen-stoiehtometry on desulfurization during FBC:A simple sure modeling approach, Chem.Eng. Sci., 1988,43(8):2051-2059;
    [86] K.Okazak, and T.Ando,NOx reduction mechanism in coal combustion with recycled CO_2,Energy, 1997,22(213):207-215;
    [87] Croiset E., Thambimuthu K. Palmer A.,Coal combustion in O_2/CO_2 mixtures compares with air.Canadian Journal of Chemical Engineering,2000,78(2):402-407;
    [88] 张礼知,王宏,O_2/CO_2气氛下燃烧的钙基脱硫规律的实验研究,燃料化学学报,2000,28(6):508-512;
    [89] 王宏,张礼知,陆晓华等,O_2/CO_2煤粉燃烧钙基吸收剂在脱硫过程中的微观结构变化研究,工程热物理学报,2001,22(1):127-129;
    [90] 王宏,张知礼,邱建荣等,高CO_2浓度下钙基吸收剂脱硫的实验研究,中国工程热物理学会燃烧学学术会议,2000:413-417;
    [91] Hosada et al. and Hirama,T.,NOx and N_2O emission in bubbling fluidized-bed coal combustion with oxygen and recycled flue gas, Mareroseopic characteries of their formation and reduction, Energy & Fuels,1998,12,102-108;
    [92] Li YH, Radovic L R, Lu GQ, et al., A new kinetic model for the NO-carbon reaction,Chem. Engng. Sci.,1999,54(19):4125-4136;
    [93] Koyata,K.,Oki,H.,Tanaka,T.,Kita, Coal combustion characteristics in oxygen enriched atmosphere,Central Research Institute of Electric Power Industry Research Report,Japan,1991;
    [9
    
    [94] Bo Fent,Takashi Ando and Ken Okazaki, NO destruction and regeneration in CO_2 enriched CH_4 flame, JSME, series B,1998, 41(4): 959-965;
    [95] 徐敏,邱建荣,李骏,CH_4火焰中CO_2对NO行为影响的实验研究,华中科技大学学报,2002,30(10):17-19;
    [96] Edward J. Daniels,Bassam J. Jody, Recovering CO_2 from large-and medium-size stationary combustion, Alan M. Wolsky, J. Air Waste Manage. Assoc.,1991,41:449-454;
    [97] L. D. 斯穆特,P.J.史密斯[美],傅维标等译,周力行校,煤的燃烧与气化,科学出版社,北京,1992,38-80;
    [98] 傅维标,卫景彬编著,燃烧物理学基础.机械工业出版社.北京.1981.29-49;
    [99] SH, Goldthorpe, PJI, Cross and JE Davison, System studies on CO_2 abatement from power plants, Energy Convers Mgmt., 1992,33(5-8):459-466;
    [100] 刘彦丰,阎维平,宋之平,碳/碳粒在O_2/CO_2气氛中燃烧速率的研究,工程热物理学报,1999,20(6):699-772;
    [101] Matyasscayk M.S., Przeliorz R., Therrnochemistry of coal oxidation, Thermochemical Acta,1985,96:169-175;
    [102] 朱跃,郭文靖等,煤的热天平分析试验结果与工业分析数据的相关性,黑龙江电力技术,1998,20(5):257-264;
    [103] C.Duval, Inorgnic Thermogravimetric Analysis, Elservier, Amsterdam,1963;
    [104] Coats A.W., Redeferm J.P., Kinetic parameters from therogravimetric data, Nature (London), 1964,201(1):68-69;
    [105] 孙学信,燃煤锅炉燃烧实验技术与方法,中国电力出版社,北京,2002,77;
    [106] 聂其红,孙绍增,燃烧科学与技术,褐煤混煤燃烧特性的热重分析研究,2001,7(1):74-75;
    [107] 刘妮,赵敬德,骆仲泱等,钙基固硫剂高温固硫反应特性的TGA试验研究,中国电机工程学报,2002,10(10):153-156;
    [108] 陈勤妹,黄瀛华,任德庆等,应用TG-DTA-T-DTG和EGD-GC评价煤粉的燃烧特,华东理工大学学报,1997,6(23):286-291;
    [109] 徐跃年,低质烟煤的燃烧特性研究,煤炭转化,1995,2(18):53-56;
    [110] 夏少武,活化能及其计算,高等教育出版社,北京,1989:1-125;
    [111] 陈镜泓,立传儒,热分析方法及应用,科学出版社,北京,1985,124-127;
    [112] 任有中,钱剑青,房殿奇等,180t/h煤粉炉内脱硫试验,锅炉技术,2002,33(4):29-32;
    [113] 高翔,骆仲泱,倪明江,岑可法,喷钙脱硫系统中增湿活化装置的脱硫性能研究-模型的建立,中国电机工程学报,1999,19(1):26-30;
    [114] L.-S.Fan, P. Jiang, R. Agnihotri, Dispersion and ultra-fast reaction of calcium-based sorbent powders for SO_2 and air toxics removal in coal combustion, Chem. Eng. Sci, 1999,54:5585-5597;
    [115] 程军,曹欣玉,宋玉彩等,层燃炉内高温燃烧脱硫热工环境的验机,中国电机工程学报,2002,22(10):42-47;
    [116] 刘建忠,周俊虎,程军等,燃煤炉预混-喷钙二段脱硫技术研究,中国电机工程学 报,2003,23(2):53-57;
    [1
    
    [117] 陈冬林,李立,欧阳昌盛,煤质特性差异对混煤燃烧锅炉结渣特性的影响,锅炉技术,1995,12:6-9;
    [118] 硅酸盐辞典,中国建筑工业出版社,北京,1984,15-68;
    [119] [日]素木泽一 著,刘达权,陈世参合译,硅酸盐手册,轻工业出版社,北京,1982:301-336;
    [120] 武增华,寇鹏,杨海波等,烧结程度对CaO固硫反应转化率及动力参数的影响,燃料化学学报,2001,29(3):273-276;
    [121] 曾汉才,钟文英,吕焕尧等,煤粉炉内直接喷钙脱硫的试验研究,动力工程,1991,11(5):12-17;
    [122] 邱宽容,蒋芬,张洪,CaO颗粒脱硫化学反应研究,中国矿业大学学报,1996,25(4):93-97;
    [123] 钟秦,炉膛干粉喷射脱SO_2的研究,中国环境科学,北京,1991,14(6):445-460;
    [124] Kirshnan,S.,V. and S. V.,Sotirchos, Sulfation of high purity limestones under simulated PFBC conditions, Can. J. Chem. Eng.,1993,71,244-245;
    [125] Elena Alvarez,Huan F. Gonólez, High pressure thermogravimetric analysis of the direct sulfation of Spanish calcium-based sorbents, Fuel 1999,78:341-348;
    [126] K.Parik Yrjaa,Cornelis A. P. Zenvenhoven, and Mikko M.Hupa, Hydrogen sulfide capture by limestone and dolomite at elevated pressrure, 1. Sorbent performance, Ind.Eng.Chem.Res., 1996,35, 176-183;
    [127] Simons,G.A.,Garman,A.R., Small pore closure and the deactivation of the limestone sulfation reaction, AIChE J., 1986,32(9): 1491-1499;
    [128] S. K. Bhatia,D.D.,Perlmutter, The effect of pore structure on fluid-solide reactions:Application to the SO_2-lime reaction, AIChE J.,1981,27(2):226-234;
    [129] R.Siegel and J.R. Howell, Thermal radiation heat transfer, Hemisphere Publishing Corporation, Washington D.C., 1992;
    [130] T.Kaljuvee,A.Trikkel,R.Kuusik, Comparative reactivity of some calcareous rocks as sorbents towards sulphur dioxide, Proc.Estonian Acad.Sci.Chem., 1994,43(4): 146-156;
    [131] Bortz,S.J., and Flment ,E, Recent IFRT fundamental and pilot scale studies on the direct sorbent injection process,Proceedings First Joint Symposium on Dry SO_2 and Simultaneous SO_2/NO_x Control Technologies, I EPA-600/9-85-020a(NTIS), 1985,PB85-232353;
    [132] Sicox,G.D.,Krarnlieh,J.C.,and Pershing,D.W., A mathematic model for the flash calcinations of dispersed CaCO_3 and Ca(OH)_2 particles,Ind.Eng.Chem.Res.,1989,28:523-528;
    [133] M.J.Munoz-Guillena,A.Linares-Solano,C.Salinas-Martinez de Lecea, A study of CaO-SO_2 interaction, Applied sulface Science,1994,81:409-415;
    [134] Hartman,M. and Martinovshy, A., Thermal stability of the magnesian ad calcareous compounds for desulfurization processes,Chem.Eng.Commun.,1992,111:253-258;
    [135] J.A. Shearer, I. Johnson and C.B. Turner, Effects of Sodium chloride on limestone calcinations and sulfation in Fluidized-Bed combustion, Environ. Sci. Tech.,1979,13: 1113-1117;
    [136] 陈小华,郑英,郑楚光等,CaO再碳化的研究,华中科技大学学报,2003,31(4):54-56;
    
    [137] 宋玉宝,章明川,范卫东等,神木煤钙基矿物高温自身脱硫特性的研究,热能动力工程,2001,16(11):598-560;
    [138] 姚文达,刘彤,陈金明,沉降炉试验和模拟数值计算,动力工程,1996,16(2):5-8;
    [139] Kelemen S R, Vaughn SN, Gorbaty M.O. et al.,Transformation kinetics of organic sulfur forms in premium coals during pyrolysis, Fuel, 1993,72(5):645-653;
    [140] Sinninghe J.S., de Leeuw H.W., Organically bound sulphur in coal-a molecular approach, Fuel Processing Technology, 1992,30(2): 109-178;
    [141] 催国文 编著,缺陷扩散与烧结,清华大学出版社,北京,1991:42-60;
    [142] Dam-Johansen K, φ stergard K. High-temperature reaction between sulfur dioxide and lime ston-Ⅳ. A discussion of chemical reaction mechanism and kinetics, Chem. Eng. Sic.,1991,46 (3):847-853;
    [143] Hartman M.,Tmka O., Influence of the temperature reaction on the reactivity of limestone particles with sulfur dioxide, Chem. Eng. Sci.,1980,35:1189-1194;
    [144] Hartman M., Martionovsky A., Thermal stability of the magnesian and calcareous compounds for desulfurization progress., Chem. Eng. Comm.,1992,111:149-160;
    [145] 王宏,钱枫,张溱芳,喷钙脱硫灰在高温条件下的稳定性研究,环境污染与防治,2002,24(2):87-89;
    [146] Lyngfelt A. and Leckner B., Sulphur capture in fluidized bed boilers-the effect of reductive decomposition of CaSO_4, Chem. Engng. J., 1989, 40:59-69;
    [147] Jib Talukdar, Parbir Basu and H. Greenblatt., Reduction of calcium sulfate in a coal-fired fieculation fluidized bed furnace, Fuel, 1996,75 (9): 1115-1123;
    [148] K. H.Lau, D.Cubicciotti, and D.L. Hildenbrand, Effusion studies of the thermal decomposition of magnesium and calcium sulfates, The Journal of Chemical Physics, 1977, 10(15):4532-4539;
    [149] 胡英,吕润东,刘国杰等编(上册),高等教育出版社,北京,1979,281-314;
    [150] M.F.Grarivilile, Student misconception in thermodynamics, J.Chem.Educ.,1985,62 (10):847-848;
    [151] 傅献彩,沈文霞,姚天扬编,物理化学(第四版),高等学校出版社,北京,1990,74-79;
    [152] 物理化学教研室编,物理化学例题与习题,人民教育出版社,北京,1979:469-493;
    [153] John A. Dean, Lange's Handbook of Chemistry, 15~(th) Ed, McGraw-Hill Inc., 1999:6.87-6.117;
    [154] 叶大伦,胡建华编著,实用无机热力学数据手册(第2版),冶金工业出版社,北京,2001;
    [155] 刘长俊,相律及相图热力学,高等教育出版社,北京,1995,1-80;
    [156] Seung O.J.Wheelock T.D., Reductive decomposition of Calcium sulfate with carbon monoxide: reduction mechanism, Ind. Engng.Chem.Res,1990,29:544-550;
    [157] 天津大学物理化学教研室编,宋世谟,王正烈,李文斌修订,物理化学(第三版),高等教育出版社,北京,1993,270-274;
    [158] [德]H.J.比特里希,D.哈伯篮德,G.尤斯特著,陆震维译,化学动力学计算方法,高等教育出版社,北京,1987,1-60;
    
    [159] Ron Zevenhoven, Patrik Yrjas and Mikko Hupa, Surfur dioxide capture under PFBC conditions: the influence of sorbent particle structure, Fuel,1998,77(4):285-291;
    [160] 邱龙会,王励生,金作美.钾长石-石膏-碳酸钙热分解烧成物中硫酸钾的浸取过程,高校化学工程学报,2000,14(5):465-469;
    [161] 郭锋,武增华,崔爱莉,复合钙基固硫剂的固硫反应动力学研究,高校化学工学报,2003,1(24):100-104;
    [162] R.Van Selow,R.Howe, Chemistry and Physics of solid surface Ⅳ,Springer-Verlag Heidelbery New York, 1982,281-313;
    [163] I Bericre and C.R.A.Catlow, Mass transfer in solides, Plenum Press, New York,1983;
    [164] 薛世达,节能的低NOx燃烧器,煤气与热力,1984(2):34-37;
    [165] 张永照,牛长山,环境保护与综合利用,北京,机械工业出版社,北京,1982:1-262;
    [166] 徐文彬,NO_x大气化学概论及全球NO_x释放源综述,地质地球化学,1999,27:86-91;
    [167] 毕玉森,电站锅炉NO_x排放现状、预测及技术政策,中国电力,1998,31:59-62;
    [168] Y.Hu, S.Naito, N.Kobayashi, M.Hasatani,CO_2,NOx and SO_2 emission from the combustion of coal with high oxygen concentration ascs, Fuel, 2000,79:1925-1932;
    [169] J. Leppalahti and E. Kurkela, Behaviour of nitrogen compounds and tars in fluidizcd bed air gasification of peat, Fuel, 1991, 70: 491-497;
    [170] M. J. Aho, J. P. Hamalainen and J. L. Turnmavuori, Conversion of peat and coal nitrogen through HCN and NH_3 to nitrogen oxides at 800℃, Fuel, 1993, 72: 837-841;
    [171] Hosoda,H.,and Hirama,T., NOx and N_2O emission in bubbling Fluidized-Bcd coal combustion with oxygen and recycled flue gas: macroscopic characteristics of their formation and reduction, Energy & Fuels,1998,12: 102-108;
    [172] Feng, B., Zhou,Y.B., Shi,X.F. et al.,Numerical simulation of NOx emission from char combustion with detailed gas phase mechanisems, Dev.Chem.Eng.Mineral Process.,1999, 7:513-524;
    [173] M. C. Drake, S. M. Correa, R. W. Pitz, W. Shyy, and C. P. Fenimore, Superequilibrium and thermal nitric oxide formation in turbulent diffusion flames,Combustion and Flame, 1987, 69:347-365;
    [174] F. J. Bames, J. H. Bromly, T. J. Edwards, and R. Madngezewsky, NOx emissions from radiant gas burners, Journal of the Institute of Energy,1988, 155:184-188;
    [175] M. C. Drake and R. J. Blint, Relative importance of nitrogen oxide formation mechanisms in laminar opposed-flow diffusion flames. Combustion and Flame, 1991,83:185-203;
    [176] Wendt, J.O.L., Mechanisms governing the Formation and destruction of NOx and other nitrogenous species in low NOx coal combustion systems, Combust. Sci. and Tech., 1995,108(323): 4-6;
    [177] Solomon PR, Fletcher TH., Twenty-fifth Symposium (International)on Combustion, Combustion Institute, Pittsburgh, 1994, 463-466;
    [178] Y. H. Song, J.H. Pohl, J. M. Beer and A. F. Sarofim, Nitric oxide formation during pulverized coal combustion, Combustion Science and Technology, 1982, 28:31-39;
    
    [179] Y. H. Song, J. M. Beer and A. F. Sarofim, Oxidation and devolatilization of nitrogen in coal char, Combustion Science and Technology, 1982, 28:177-183;
    [180] Palmer HB,Seery DJ, Statistical-mechenicsof simple polar fluids, Annual Review of Physical Chemistry, 1973, 24(62):301-323;
    [181] White D.J., Batakis A., Leeren R.T., Yacobucci H.G, Low NOx combustion systems for burning heavy residual fuels and high-fuel-bound nitrogen fuels,Journal of Engineering for Power, 1982,104, 377-385;
    [182] G.G.De Soete. Overall reaction reates of NO and N_2 formation from fuel Nitrogen, In 15~(th) Symp. on Combustion, 1975,1093;
    [183] Wendt J.O.L., Wootane.C.,Corley T.L., Postflame behavior of nitrogenous species in the presence of fuel sulfur. I. Rich, moist, CO/Ar/O_2 flames,Combustion and Flame,1983,49: 261-274;
    [184] P. F. Nelson, M. D. Kelley and M. J. Womat, Conversion of fuel nitrogen in coal volatiles to NO_x precursors under rapid heating conditions, Fuel, 1991, 70: 403-407:
    [185] Li Chunzhu, A. N. Buckley and P. F. Nelsonm Effects of temperature and molecular mass on the nitrogen functionality of tars produced under high heating rate conditions, Fuel, 1998, 77: 157-164;
    [186] Wu Zhibeng and Y. Ohtsuks, Nitrogen distribution in a fixed-bed pyrolysis of coals with different ranks: formation and source of N_2, Fuel, 1997, 76: 477-482;
    [187] De Soete, G. G, Croiset, E. and Richard, J. R., Heterogeneous Formation of Nitrous Oxide from Char-Bound Nitrogen, Combustion and Flame, 1999, 117:140-154;
    [188] 李绚天,骆仲泱,倪明江,岑可法,煤燃烧过程中加石灰石脱硫对NOx排放影响的研究,燃料化学学报,1991,19:71-76;
    [189] 郑瑛,王海彬,史学锋等,煤粉燃烧过程中SO_2和NO_x生成规律的研究,煤炭转化,1998,21:46-48;
    [190] 李绚天,倪明江,岑可法,煤的燃烧过程中燃料NOx的析出特性,工程热物理学报,1990,11:338-341;
    [191] Spalding,D.B.,Concentration fluctuations in ad round turbulent free jet, Chemical Engineering Science,1971,26:95-107;
    [192] Libby, P. A. and Willams,F.A. (Ed.),Turbulent Reacting Flows,Springer-verlag, 1979;
    [193] Boussinesq J.Theories de l'e coulement tourbillant,Mem Acad Sci,1877, 46:23;
    [194] Prandtl L.Bericht Uber Untersuchungen Zur Ausgebideten Turbulenz,Z andgew Math Mech (ZAMM), 1925,5(2): 136-139;
    [195] 岑可法,樊建人著,工程气固多相流动的理论及计算,浙江大学出版社,杭州,1989,6:32-50;
    [196] Launder BE, Spalding DB, Mathematical Models of Turbulence, A review, Combustion Sci. & Tech., Special Issue on Turb. Reactive Flows,1976,13:1-25;
    [197] Launder BE,Spalding DB., The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engg, 1972,51:301;
    [1
    
    [198] B. E. Launder.,Second-Moment Closure and Its Use in Modeling Turbulent Industrial Flows,International Journal for Numerical Methods in Fluids, 1989,9:963-985;
    [199] Yang,S.L., Peachke,B.D. and Hanjalic,K.,Second-monent closure model for IC engine flow similation using KIVA code,J, of Engingeering for Gas Turbine and Power,2000,122: 355;
    [200] Leonard,A., Energy cascade in large eddy simulation of turbulent fluid flows, Adv. Geophys., 1974,68A:273;
    [201] Dearodorff, J.W., A numerical study of three dimensional turbulent channel flow at large rehnolds number, J. Fluid Mech.,1970,41:453;
    [202] Girimaji,S.S.,A simple recipe for modeling reaction-rates in turbulent diffusion flames, Com- bustion and Flames, 1982,44:319-336;
    [203] Guo, Y.C. and Chan,C.K.,A multi-fluid for simulating turbulent gas-particle flow and pulverized coal combustion, Fuel, 2000,79:1467-1476;
    [204] Khalil,E.E.,Modeling of furnaces and combustors, Abacus Press,1982:1-260;
    [205] Spalding D B., Mathematical Models of Continuous combustion, Plenum Press, 1972;
    [206] 周力行,燃烧理论和化学流体力学,科学出版社,合肥,1986,35-81;
    [207] F.Harlow, and A. Amedon, Numerical calculation of multiphase fluid flow, J. of computational Physics,1975,17:205-210;
    [208] Crowe, C.T.,The State-of-the Art in the Development of Numerical Models for Dispersed Phase Flows, Proc. Int'l. Conf. on Multiphase Flows, Tsukuba, Japan, 1991, 3:49-60;
    [209] 赵坚行著,燃烧的数值模拟,科学出版社,北京,2002,6:96-105;
    [210] Spalding,D.B.,Concentration fluctuations in a round turbulent free jet, Chemical Engineering Science,1971,26:95-107;
    [211] Spalding DB.,Mixing and Chemical reaction in steady confined turbulent flames,13~(th) Symp. (Int.)on Comb.,1971:649-655;
    [212] Pope SB.,The probability approach to the modeling of turbulent reacting flows,Combustion and Flame,1976,27:299;
    [213] Chen,X.L.,Zhou,L.X. and Zhang J., Numerical simulation of methane-air turbulent flame using a new-second-order moment model,Acta Mechanica Sinica(English Series), 2000,16:41;
    [214] 范维澄编著,流动及燃烧模型计算,合肥,1992,208-216;
    [215] 王应时,范维澄,周力行,徐旭常,燃烧过程数值计算,科学出版社,北京,1976;
    [216] Hottel HC,Cohen ES.Radiate.Heat tranfer in gas filled enclosure:Allowance for not-uniformity of gas temperature, Amer Inst. Chem Eng J, 1958,4:3;
    [217] Hoeel GC,Sarofim AF, Radiative transfer, NewYork:McGraw-Hill, 1967;
    [218] Howell JR.Application of monte carlo to heat transfer problems, Adv. Heat Transfer,1968,5;
    [219] Heaslet MA, Warming RF, Int J Heat Mass Transfer, 1965;8:979-994;
    [220] M.M.Baum and P.J.Stree, Prediction the combustion behavior of coal particles, Combust. Sci. Tech.,1971,3(5):231-243;
    
    [221]T.H. Fletcher and A.R.Kerstein.,Chemical percolation model for devolatilization:3.Direct use of ~(13)C NMR data to predict effects of coal type. Energy and Fuels,1992,6:414;
    [222]M.A.Field Ratte of combustion of size-graded fractions of char from a low bank coal etween1200-2000K, Combust. Flame,1969,13:237-252;
    [223]I.W. Smith.,The combustion rates of coal chars: a review, In19th Symp.(Int'l.)on combustion, The combustion Institute, 1982,1045-1065;
    [224]James A.,Miller and Craig T. Bowman, Mechanism and modeling of nitrogen chemistry in combustion, Prog.Energy combust.Sci.,1989,15:287-338;
    [225]F.C. Lockwood and C.A. Romo-Millanes, Mathematical modeling of fuel-NO emissions from burners, J. Int. Energy,1992, 65:144-152;
    [226]S.C.Hill,L.Douglas Smoot, Modeling of nitrogen oxides formation and destruction in comb- ustion systems ,Progress in Energy and Combustion Science,2000,26:417-458;
    [227]Russel J H.,Proceedings of International Membrane Technology Conference, ICOM'90 Chicago USA,1990,1:1167-1168;
    [228]MichaeLs A S,Desalination, 1990,77(13):5-34;
    [229]郑领英,大学化学,天津,1991,6(5):1-7;
    [230]袁权,郑领英,展望21世纪的膜分离技术,水处理技术,1995,6:125-131;
    [231]袁权,郑领英,膜分离技术,化工进展,1992,6:1-10;
    [232]S.L. Matson, ET al., Separation of gas with synthetic membranes, Chem. Eng. Sci.,1953, 38(4):503-524;
    [233]S.L. Matson ,et al., Membrane oxygen enrichment, J. Membrane. Sci.,1986,29:79-96;
    [234]陈燕淑,曹义呜,金圣德,蒋固梁等,富氮膜分离过程的理论分析和实验研究,化工学报,1991,6:647-652;
    [235]姜安全,赵玉巷,李丽,李德强,膜分离技术的应用与进展,黑龙江大学自然科学学报,2002,9,98-103;
    [236]卢国俭,液膜分离技术与应用,甘肃有色金属,2002,3:45-46;
    [237]吴揩,气体膜分离技术及其在工业窑炉中的应用,中国科技信息,1993,6:51-52;
    [238]董子丰,蒋国梁,气体膜分离技术,低温与特气,1993,4:57-61;
    [239]梅庆祥,有机硅富氧膜国外新进展,化工新型材料,1990,7:8-13;
    [240]邓麦村,曹义鸣,袁权,气体膜分离技术在我国的发展现状与展望,膜现代化,1996,10:13-18;
    [241]陈熬淑,王学松,渗透蒸发技术现状及其进展,化工进展,1991,2:10-16;
    [242]王秀臣,气体膜分离技术的应用-氧气富化器,医疗卫生装备,1993,4:21-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700