用户名: 密码: 验证码:
大型电站锅炉氮氧化物控制和燃烧优化中若干关键性问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境是制约人类发展的重要问题,兼顾能源工业的发展和环境保护的需要,是中国这样一个产煤大国可持续发展的重要课题。煤燃烧的污染排放已成为中国最大的大气污染源。本论文围绕大型电站锅炉低NOx燃烧优化开展研究,采用试验、数值模拟和现场试验相结合的方法,理论结合实践,研究完成了一整套适合中国国情具有自主知识产权的低NOx燃烧和运行优化系统技术。
     论文通过热态试验对不同煤种的生成NOx的前驱物特性进行试验研究:研究了不同煤种的NOx排放特性。编制了模拟煤中含氮组分析出、反应和NOx生成的颗粒模型,获得了不同煤种挥发氮和焦炭氮的比例,以提高后续炉内NOx生成过程模拟的准确性。对600 MW同心反切燃烧锅炉的低NOx燃烧特性进行了系统试验,并基于数值模拟方法对600 MW锅炉NOx生成过程采用了联合PDF模拟,评价了低NOx同心燃烧系统和炉内分级燃烧对炉内流动、燃烧和NOx排放的影响。
     论文创新性地引入以CaS为中间固硫产物的煤粉炉内同时脱硫脱硝思想进行热态燃烧试验,验证这一思想的可行性,并获得实现炉内同时脱硫脱硝技术所需的各种燃烧参数,定量分析各参数对炉内同时脱硫脱硝技术的影响。试验结果表明在煤粉炉内采用以CaS中间固硫产物的两段脱硫方法具备可行性,但其可行性需要建立在炉内强烈空气分级基础之上,而炉内强烈空气分级带来的锅炉结渣、高温腐蚀问题需要采用作者提出的复合型多功能直流燃烧系统来解决。
     作者提出了复合型多功能直流燃烧系统,在炉内有效地模拟低NOx燃烧过程。采用数值模拟方法分析了复合型多功能直流燃烧系统各种参数的影响。研究表明,尽管同心反切系统目前在大型电站锅炉上得到广泛应用,但是其燃烧模式在防结渣和降低NOx排放方面的能力是有限的。作者采用复合型多功能直流燃烧技术,有效地解决了一批燃用极低灰熔点(ST约为1 100℃)煤种的四角切圆锅炉的炉内防止结渣、高温腐蚀、低负荷稳燃问题,并能显著降低NOx排放,降低幅度达35%左右,是一种有前途的、可以替代同心反切系统的新一代燃烧技术。
     论文创新性地采用分离涡模拟(Detached eddy simulation,DES)这一湍流高级模拟技术,对水平浓淡燃烧器内和浓淡燃烧器出口的湍流流动和拟序结构进行数值模拟,着重描绘涡的脱落过程,观察燃烧器内部和燃烧器出口涡的形成、卷
    
    浙江大学博士学位论文
    起的拟序特征,分析涡的形成对浓淡分离效果的影响。采用DES与非稳态颗粒
    轨道模型相结合的方法,对燃烧器内和燃烧器出口的气固两相流动进行了数值模
    拟,并与常规的RANS模拟进行比较。DES方法将湍流的直接模拟技术扩展到
    了可实现的工业实际应用中,对今后的湍流流动模拟又湍流燃烧模拟和揣流.Nox
    生成的准确模拟都具有重要意义。
     以往针对气固两相射流的研究通常采用PDA等方法,但由于PDA等方法对
    颗粒浓度有所限制,难以进行高浓度的气固两相流的测量。论文首次采用基于光
    学波动法的激光光纤探针,对高浓度的低Nox燃烧器出口的气固两相流动的详
    细结构进行了试验,研究了配300 MW煤粉燃烧锅炉的燃烧器出口高浓度气固相
    射斌中颗粒浓度、粒度随射流发展的演变规律,分析了利用水平浓淡燃烧器和齿
    形燃烧器实现对低Nox燃烧有利的气固结构,并验证了基于DES方法的气固两
    相数值模拟的计算结果。
     论文针对目前大型电站锅炉低Nox优化运行急需的入炉煤粉量在线检测问
    题,创新性地开发了一种基于电磁波发射、接收原理的直吹式制粉系统煤粉管道
    内缈浓度在线侧量就,并己在“60 Mw配直吹式制粉系统的大型电站锅炉上
    得到应用与考脸,使用效果优良,有效解决了低NC坛燃烧技术中急需的管内煤
    粉浓度测量问题。
     二论文独创开发了,整套基于计算智能的锅炉低NC瓜燃烧优化运行系统,利用
    人对申经网络对哪M取和3”0 Mw燃煤锅炉的低·NOx排放特性、飞灰含碳量
    特性与锅炉翩煤冬锅炉运行参数之间的函数关系进行学习建模。在锅炉燃烧
    特性建模完成的基础上,利用遗传算法和模拟退火方法等全局寻优算法对锅炉的
    最佳燃烧工况进行寻优,获得了不同煤种的各燃烧参数的最佳设定值,可以直接
    指导运行人员运行或输入集散控制系统(DCs)参与闭环控制。系统可实现低
    Nox高效徽烧的在线控制于对提高锅炉燃烧优化控制水平,降低NOx排放和提
    高锅炉效率具有重要意义。
    关键词:锅炉;氮氧化物;数值模拟;结渣;气固两相流;燃烧优化
Energy and Environment are very important topics for human's development, especially for China - a country with great coal resource. The pollution from coal combustion has been the biggest pollution source in China. This work was involved in the low NOx combustion technology for the large capacity utility boilers, a set of low NOx pulverized coal combustion approaches have been developed in this work by the means of experiments, numerical simulation and field tests.The formation characteristics of the NOx precursor from various types of Chinese coal were investigated using a drop-tube furnace, and experiments on the NOx formation and destruction mechanisms were also studied experimentally. A particle model was developed to simulate the release of volatile fuel-nitrogen and its subsequent conversion to nitrogen oxide during the devolatilization. The different devolatilization models were employed, one is the two competing reactions model and the other is the universal model. The conversion efficiencies of volatile fuel-nitrogen to nitric oxide and the amount of char-nitrogen are presented.In this work, the detailed experiments on the NOx emission characteristics of a 600 MW capacity boiler with concentric firing system were carried out, the numerical approaches employing the joint PDF method were used to simulate the NOx formation process in the furnace. The performance of the concentric firing system on the flow field, coal combustion and NOx emission were evaluated, which shows that concentric firing system has some effects on the reduction of NOx emission, also the prevention of furnace slag, but its effect is limited.The two-stage high temperature desulphurization method using the CaS as the intermedium is developed in this work to obtain the simultaneous reduction of NOx and SOx in the pulverized coal fired furnace. The experimental results show that it is possible to perform such a two-stage high temperature desulfurization in the pulverized coal fired furnace if a deep air stage can be employed in the lower furnace. Such a deep air stage may lead to the dangerous high temperature corrosion and serious furnace slag.To avoid the high temperature corrosion and serious furnace slag caused by deep air stage, a novel low NOx combustion configure named as "the Compound multi-function combustion system" was developed by the author, it has much better
    
    performance than that of the concentric firing system. A number of boilers firing coals with low ash fusing temperature (ST is about HOOT?) met serious furnace slag problem, the compound multi-function combustion system has solved their problems and achieved a NO* emission reduction of 35%.In this work, the detached-eddy-simulation (DES) approach was employed to study the turbulent flow in the fuel rich-lean separator and the gas-solid multiphase jet from the exit of a fuel rich-lean burner. The vortex shedding process was simulated and its effect on the fuel rich-lean separate performance was evaluated. Combined with the stochastic particle tracking method, the particle motion characteristics in the gas-solid fuel rich-lean jet was tracked, which show the fuel-rich stream and the fuel lean stream will not mix quickly downstream of the exit of the nozzle, the fuel rich-lean combustion can be kept in a rather long distance from the nozzle. Compared with the Reynolds Average Navier Stocks (RANS) method, DES method can give more information about the vortex structure of the gas-solid jet. DES can be used for numerical simulation in large geometry, it will find its more wide employment in the combustion science.Usually, the Particle Doppler anemometry is employed to study the gas-solid two-phase flow, but it cannot do measurements in the gas-solid flow with high solid concentration. In this work, a novel fiber probe was employed to investigate the gas-solid two-phase flow structure downstream of the exit of two low NO* burner nozzle. The gas solid interaction was studied, the solid concentration and particle size distribution contours downstream of the nozzle were obtained. The
引文
[1] Xu Xuchang, Chen Changhe, Qi Haiyin, He Rong, You Changfu, Xiang Guangming. Development of coal combustion pollution control for SO_2 and NO_x in China. Fuel Processing Technology, 2000; 62(2-3): 153-160.
    [2] 陆延昌.在国家电力公司系统火电厂节水、节油现场工作会议上的讲话摘要.中国电力,2001:34(9):1—5.
    [3] Beér M. Combustion technology developments in power generation in response to environmental challenges. Progress in Energy and Combustion Science, 2000; 26(4-6): 301-327.
    [4] 赵惠富.污染气体NOx的形成和控制.北京:科学出版社,1993。
    [5] Smoot L D. Fundamentals of coal combustion for clean and efficient use. Amsterdam-London-New York-Tokyo: Elsevier press, 1993.
    [6] 傅维标,张永廉,王清安.燃烧学.北京:高等教育出版社,1989.
    [7] 冯志华,常丽萍,任军,谢克昌.煤热解过程中氮的分配及存在形态的研究进展.煤炭转化,2000:23(3):6—12.
    [8] Jouni P. H(?)m(?)l(?)inen, Martti J. Aho and Jouni L. Tummavuori. Formation of nitrogen oxides from fuel-N through HCN and NH3: a model-compound study. Fuel, 1994; 73(12): 1894-1898.
    [9] Solomon Peter R and Colket Meredith B. Evolution of fuel nitrogen in coal devolation. Fuel, 1978; 57(12): 749-755.
    [10] Aho Martti J, H(?)m(?)l(?)inen Jouni P and Tummavuori Jouni L. Conversion of peat and coal nitrogen through HCN and NH_3 to nitrogen oxides at 800 ℃. Fuel, 1993; 72(6): 837-841.
    [11] Friebel J, K(?)psel R F W. The fate of nitrogen during pyrolysis of German low rank coals-a parameter study. Fuel, 1999; 78(8): 923-932.
    [12] Wójtowicz Marek A, Peis Jan R and Moulijn Jacob A. The fate of nitrogen functionalities in coal pyrolysis and combustion. Fuel, 1995; 74(4): 507-516.
    [13] R. P. Van der Lans, P. Glarborg and K. Dam-Johansen. Influence of process parameters on nitrogen oxide formation in pulverized coal burners. Progress in Energy and Combustion Science, 1997; 23(4): 349-377.
    [14] Li Lian Tan, Chun-Zhu Li. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part 1. Effects of reactor configuration on the determined yields of HCN and NH_3 during pyrolysis. Fuel, 2000; 79(15): 1883-1889.
    [15] Li Lian Tan, Li Chunzhu. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part 2. Effects of experimental conditions on the yields of NOx and SOx precursors from the pyrolysis of a Victorian brown coal. Fuel, 2000; 79(15): 1891-1897.
    [16] Li Chunzhu, Li Lian Tan. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part 3. Further discussion on the formation of HCN and NH_3 during pyrolysis. Fuel, 2000; 79(15): 1899-1906.
    [17] Sch(?)fer S, Bonn B. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidized combustion. Part 1. Homogeneous reactions. Fuel, 2000; 79(10): 1239-1246.
    
    [18] Koh Kidena, Yoshihisa Hirose, Toshihiro Aibara, Satoru Murata, and Masakatsu Nomura. Analysis of nitrogen-containing species during pyrolysis of coal at two different heating rates.Energy & Fuels, 2000; 14{l): 184-189.
    [19] Jukka Leppalahti. Fomation of NH3 and HCN in slow-heating-rate inert pyrolysis of peat, coal and bark. Fuel, 1995; 74(9): 1363-1368.
    [20] Hamalainen Jouni P and Aho Martti J. Effect of fuel composition on the conversion of volatile solid fiiel-N to N2O and NO. Fuel, 1995; 74(12): 1922-1924.
    [21] Peck R E, Midkiff K C and Altenkirch R A. The evolution of nitrogen from pulverized, subbituminous coal burnt in a one-dimensional flame. In: Twentieth Symposium (International) on combustion, The Combustion iinstitute, 1984. pp.1373-1380.
    [22] Wu Zhiheng, Sugimoto Y, Kawashima H. Catalytic nitrogen release. during a fixed-bed pyrolysis of model coals containing pyrrolic or pyridinic nitrogen. Fuel, 2001; 80(2):251-254.
    [23] Peter Glarborg and Miller James A. Mechanism and modeling of hydrogen cyanide oxidation in a flow reactor. Combustion and Flame, 1994; 99(3-4): 475-483.
    [24] Toshimi Takagi, Toshiharu Tatsumi and Mitsunobu Ogasawaga. Nitrogen oxide formation from fuel nitrogen in staged combustio: roles of HCN and NHj. Combustion and Flame, 1979; 35(1):17-25.
    [25] Chen S L, HeapM P, Pershing D W and Martin G B. Influence of coal composition on the fate of volatile and char nitrogen during combustion. In: 19th Symposium (International) on combustion, The combustion Institute, 1982. pp. 1271-1280.
    [26] Song Yin H, Pohl John H, Beer Janos M and Sarofim Adel F. Nitric oxide formation during pulverized coal combustion. Combustion Science and Technology, 1982; 28: 31-39.
    [27] Cliff D I and Young B C. NOx generation from the combustion of Australian brown and subbituminous coals. Fuel, 1985; 64(11): 1521-1524.
    [28] Chen S L, Heap M P, Pershing D W and Martin G B. Fate of nitrogen during combustion. Fuel,1982; 61(12): 1218-1224.
    [29] Shinji Kambara, Takayuki Takayuki Takarada, Masaru Toyoshima and Kunio Kato. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion. Fuel, 1995; 74(9): 1247-1253.
    [30] Wu Zhiheng, Ohtsuka Y. Remarkable formation of N2 from a Chinese Lignite during coal pyrolyis. Fuel, 1996; 75(11): 1280-1281.
    [31] HSmaiainen Jouni P and Aho Martti J. Conversion of fuel nitrogen through HCN and NH3 to nitrogen oxides at elevated pressure. Fuel, 1995,74(12): 1377-1386.
    [32] Naoto Tsubouchi, Yasuhiro Ohshima, Chunbao Xu, and Yasuo Ohtsuka. Enhancement of N2 formation from nitrogen in carbon and coal by calcium. Energy & Fuels, 2001; 15(1):158-162.
    [33] Yasuo Ohtsuka, Wu zhiheng and Edward Furimsky. Effect of alkali and alkaline earth metals on nitrogen release during temperature programmed pyrolysis of coal. Fuel, 1997; 76(14-15):1361-1367.
    [34] Hill S C, Smoot L D. Modeling of nitrogen oxides formation and destruction in combustion systems. Progress in Energy and Combustion Science, 2000; 26(4-6): 417-458.
    [35] De Soete G G Overall reaction rates of NO and N2 formation from fuel nitrogen. In 'Fifteenth Symposium (International) on Combustion', The Combustion Institute, Pittsburgh, PA, 1975.pp. 1093-1192.
    
    [36] Abbas T, Costa M, Costen P, Godoy S, Lockwood F C, Ou J J, Romo-Millares and Zhou J. NOx formation and reduction mechanisms in pulverized coal flames. Fuel, 1994; 73(9): 1423-1436.
    [37] Miller James A and Bowman Craig T. Mechanism and modeling of nitrogen chemistry in combustion. Prngress in Energy and Combustion Science, 1989; 15(4): 287-338.
    [38] Andreas Berger and Gerd Rotzoll. Kinetics of NO reduction by CO on quartz glass surfaces. Fuel, 1995; 74(3): 452-455.
    [39] 赵宗彬.陈皓凯.李保庆.煤燃烧过程中NOx的生成和还原.煤炭转化,1999:22(4):10-15.
    [40] De Soete, G. G. In: 23th Symposium (International) on combustion, The Combustion Institute, Pittsburgh, 1990. p1257.
    [41] Smart J P and Morgan D J. The effectiveness of multi-fuel reburning in an internally fuel-staged burner for NOx reduction. Fuel, 1994; 73(9): 1437-1442.
    [42] Stanmore B R and Visona S P. Prediction of NO emissions from a number of coal-fired power station boilers. Fuel Processing Technology, 2000; 64(1-3): 25-46.
    [43] Visona S P and Stanmore B R. Modelling NO formation in a swirling pulverized coal flame. Chemical Engineering Science, 1998; 53(11): 2013-2027.
    [44] Xu M, Azevedo J L T, Carvalho M G. Modelling of the combustion process and NOx emission in a utility boiler. Fuel, 2000; 79(13): 1611-1619.
    [45] 徐明厚,郑楚光,J. L. T. Azevedo, M. G. Carvalho.燃煤锅炉燃烧过程与NOx择放的模型和数值计算。工程热物理学报,2001:22(2):249—252.
    [46] Molina, Eddings E G, Pershing D W, Sarofim A F. Char nitrogen conversion: implications to emissions from coal-fired utility boilers. Progress in Energy and Combustion Science, 2000; 26(4-6): 507-531.
    [47] Jones J M, Patterson P M, Pourkashanian M, Williams A. Approaches to modeling heterogeneous char NO formation/destruction during pulverized coal combustion. Carbon, 1999; 37(10): 1545-1552.
    [48] Thomas K Mark. The release of nitrogen oxides during char combustion. Fuel, 1997; 76(6): 457-473.
    [49] Song Yin H, Beér Jason M and Sarofim Adel F. Oxidation and devolatilization of nitrogen in coal char. Combustion Science and Technology, 1982; 28: 177-183.
    [50] Levy J M, Chan L K, Sarofim A F, Beér J M. NO/char reactions at pulverized coal flame conditions. In: 18th Symposium (International) on combustion, The Combustion Institute, 1981. pp.111-120.
    [51] Chan L K, Sarofim A F, and Beér J M. Kinetics of the NO-char reactions at fluidized bed combustor conditions. Combustion and Flame, 1983; 52(1): 37-45.
    [52] Harding W, Brown S D, and Thomas K M. Release of NO from the combustion of coal chars. Combustion and Flame, 1996; 107(4): 336-350.
    [53] L(?)zaro Marl a J, Lbarra José V, Moliner Rafael, Ana Gonz(?)lez de Andrés and Thomas K Mark. The release of nitrogen during the combustion of coal chars: the role of volatile matter and surface area. Fuel, 1996; 75(8): 1014-1024.
    [54] Visona S P and Stanmore B R. Modeling NOx release from a single coal particle, Ⅱ. Formation of NO from char-nitrogen. Combustion and Flame, 1996; 106(3): 207-218.
    [55] Kurose R, Tsuji H and Makino H. Effects of moisture in coal on pulverized coal combustion characteristics. Fuel, 2001; 80(10): 1457-1465.
    
    [56] Kurose R, Ikeda M, Makino H. Combustion characteristics of high ash coal in a pulverized coal combustion. Fuel, 2001; 80(10): 1447-1455.
    [57] Abbas T, Costen P, Lockwood F C, and Romo-millares C A. The effect of particle size on NO formation in a large-scale pulverized coal-fired laboratory furnace: measurements and modeling. Combustion and Flame, 1993; 93(3): 316-326.
    [58] Maier H, Spliethoff H, Kieherer A, Fingerle A and Hein K R G. Effect of coal blending and particle size on NOx emission and burnout. Fuel, 1994; 73(9): 1447-1452.
    [59] Barratt D J and Roberts P T. The suitability of ultrafine coal as an industrial boiler fuel. Combustion and Flame, 1989; 77(1): 51-68.
    [60] Qiu Jianrong, Zhu Quanli, Li Fan, Liu Yinghui, Zheng Chuguang, Zeng Hancai. Fuel-NOx release during coal blending combustion. FACT-Vol. 23, 1999 Joint Power Generation Conference, Volume 1, ASME, 1999. pp. 191-196.
    [61] 邱建荣,马毓义,曾汉才,吕焕尧,喻秋梅.混煤氮的热解析出特性及燃料NOx的形成规律.工程热物理学报,1995;16(1):115-118.
    [62] 李永华,李松庚,冯兆兴,李振中,张经武,黄其励.褐煤及其混煤燃烧NOx生成的试验研究.中国电机工程学报,2001;21(8):34-36,41.
    [63] Sadakata Masayoshi and Hirose Yasuo. Scaling law for pollutant emission from a combustion furnace. Fuel, 1994; 73(8): 1338-1342.
    [64] John P Smart, Willem L Van de Kamp and Mark E. Morgan. The effect of burner scale on NOx emissions from a swirl stabilized pulverized coal burner. Fuel, 1990; 69(11): 1350-1355.
    [65] Man C K, Pendlebury K J and Gibbins J R. Laboratory measurement of N release under combustion conditions and comparison with plant NOx formation. Fuel Processing Technology, 1993; 36(1-3): 117-122.
    [66] Xiang Jun, Sun Xuexin, Hu Song, Yu Dunxi. An experimental research on boiler combustion performance. Fuel Processing Technology, 2000; 68(2): 139-151.
    [67] 向军,邱纪华,熊友辉,孙学信.锅炉氮氧化物排放特性试验研究.中国电机工程学报,2000;20(9):80-83.
    [68] Gulyurtlu. A comparison of NOx levels from R&D studies with values measured at different plants. Fuel, 1995; 74(2): 253-257.
    [69] Rogers W M and Durilla M. High temp SCR competes with DLN combustors. Power, 1996; 3: 55-56.
    [70] Tree D R and Clark A W. Advanced reburning measurements of temperature and species in a pulverized coal flame. Fuel, 2000; 79(13): 1687-1695.
    [71] Johannes Suhlmann and Gerd Rotzoll. Experimental characterization of the influence of CO on the high-temperature reduction of NO by NH_3. Fuel, 1993; 72(2): 175-179.
    [72] Smoot L D, Hill S C and Xu H. NOx control through reburning. Progress in Energy and Combustion Science, 1998; 24(5): 385-408.
    [73] Folsom B A, Sommer T M, Engelhardt D A, Moyeda D K, Rock R G, D. T. O'Dea, Scott Hnsicker, J. U. Watts. Coal reburning for cost-effective NOx complince. In: 5th Annual Clean Coal Technology Conference, Tempa, Florida, 1997.
    [74] 钟北京,施卫伟,傅维标.煤和煤焦还原NO的试验研究.工程热物理学报,2000;21(3):383-387.
    [75] Burch Thomas E, Chen Weiyin, Lester Thomas W, Sterling Arthur M. Interaction of fuel nitrogen with nitric oxide during reburning with coal. Combustion and Flame, 1994; 98(4): 391-401.
    [7
    
    [76] Liu Hao, Hampartsoumian Edward and Gibbs Bernard M. Evaluation of the optimal fuel characteristics for efficient NO reduction by coal reburning. Fuel, 1997; 76(11): 985-993.
    [77] U. S. Department of Energy. Micronized coal reburning demonstration for NOx control: a DOE assessment. National Energy Technology, Laboratory, DOE/NETL-2001/1148, 2001.
    [78] John Macphail and Les King. New laws prompt focus on low NOx options. Modern Power Systems, 1999; 11: 29-33.
    [79] McCahey S, McMullan J T, Williams B C. Techno-economic analysis of NOx reduction technologies in p.f. boilers. Fuel, 1999; 78(14): 1771-1778.
    [80] Stefan Ahman and Anders Wiktorsson. NID proves attractive for flue gas desulphurisation where size matters. Modern Power Systems, 2000; 11: 27-29.
    [81] Marika Ryypp(?) and Llari Ekman. Improving the performance of LIFAC FGD in Chinese boilers. Moder Power System, 2000; 11: 31-32.
    [82] Markarytchev S V, Cen K F and Luo Z Y. Staged desulphurization by direct sorbent injection in pulverized-coal boilers. Energy, 1994; 19(9): 947-956.
    [83] Ordonez Rowena J Torres, Wall Terry F, Longweil John P and Sarofim Adel F. Sulphur retention as CaS (s) during coal combustion: a modeling study to define mechanism and possible technologies. Fuel, 1993; 72(5): 633-642.
    [84] 许玲,武增华,寇鹏,薛芳渝.以CaS为燃煤固硫产物的热力学可行性和试验探索.环境保护,2000;11:16-18.
    [85] Markarytchev S V, Cen K F and Luo Z Y and Li X T. High-temperature sulphur removal under fluidized bed combustion conditions-a chemical interpretation. Chemical Engineering Science, 1995; 50(9): 1401-1407.
    [86] 赵惠富,赵启伟.吕清刚.还原和氧化气氛下CaS固硫:模型及其应用技术的研究.中国工程热物理学会第十届年会燃烧学会议集,2001.pp.394-398.
    [87] Anders Lyngfelt and Bo Leckner. Sulphur capture in fluided bed boilers: the effect ofreductive decomposition of CaSO_4. The Chemical Engineering Journal, 1989; 40(2): 59-69.
    [88] Garc i a B, Yamazaki Y, Takarada T. Oxidation behavior of CaS produced from Ca ion-exchanged coal. Fuel, 1999; 78(8): 883-890.
    [89] Savannah, Georgia. Sulphur capture under periodically changing oxidizing and reducing conditions in PFBC. Proceedings of the 15th International Conference on Fluidized Bed Combustion, No. FBC99-0102, 1999.
    [90] Qiu, Mattisson T, Steenari B M, Lindqvist O. Thermogravimetric combined with mass spectrometric studies on the oxidation of calcium sulfide. Thermochimica Acta, 1997; 298(1-2): 87-93.
    [91] Anders Lyngfelt, Vratislav Langer, Britt-Marie Steenari, and Kazimiera Purom(?)ki. Calcium suphide formation in fluidized bed boilers. The Candian Journal of Chemical Engineering, 1995; 73: 228-233.
    [92] Qiu Kuangrong, Lindqvist Oliver, Mattisson Tobias. Oxidation behaviour of desulphurization residues from gasification and fuel-rich combustion. Fuel, 1999; 78(2): 225-231.
    [93] Zhong Zhaoping, Lan Jixiang, Jin Baosheng, Li Daji and Zhang Mingyao. Research on kinetics of limestone desulphurization reaction under a reducing atmosphere. International Journal of Energy Research, 1999; 23: 207-215.
    [94] Ozawa S, Morita Y, Huang L, Matsuda H, Hasatan M. Oxidation of coal char/CaS mixture at high temperature. Energy & Fuels, 2000; 14(1): 138-141.
    
    [95] Oregorio Marbdn, Marta Garci a-Calzada, Antonio B. Fuertes. Kinetics of oxidation of CaS particles in the regime of low SO2 release. Chemical Engineering Science, 1999; 54(1): 77-90.
    [96] GTegorio Marbdn, Marta Garci a-Calzada, Antonio B. Fuertes. Kinetics of oxidation of CaS particles in the regime of high SO2 release. Chemical Engineering Science, 1999; 54(4):495-506.
    [97] Diego Barletta, Antonio Marzocchella, Piero Salatino. Modelling the SO2-limestone reaction under periodically changing oxidizing/reduction conditions: the influence of cycle time on reaction rate. Chemical Engineering Science, 2002; 57(4): 631-641.
    [98] Rajeev Agnihotri, Shriniwas S. Chauk, Suhas K. Mahuli, Liang-shih Fan. Mechanism of Cao reaction with H2S: diffusion through CaS product layer. Chemical Engineering Science, 1999;54(15-16):3443-3453.
    [99] Marta Garci a-Calzada, Gregorio Marbdn, Antonio B. Fuertes. Stability and oxidative stabilization of sulphided calcareous sorbents from entrained flow gasifiers. Chemical Engineering Science, 2000; 55(18): 3697-3714.
    [100] Shi Ying Lin, Hitoki Matsuda, Masanobu Hasatani. Effect of CaS product layer sintering on limestone-H2S reaction. Journal of chemical Engineering of Japan, 1997;30(4): 647-653.
    [101] Wang Wuying and Bjerle Ingemar. Modeling of high-temperature desulfurization by Ca-based sorbents. Chemical Engineering Science, 1998; 53(11): 1973-1989.
    [102] Anders Lyngfelt and Bo Leckner. SO2 capture in fluidized-bed boiles: re-emission of SO2 due to reduction of CaSO4. Chemical Engineering Science, 1989; 44(2): 207-213.
    [103] Shigeyuki Uemiya, Toshihide Kobayashi, Toshinori Kojima. Desulfurization behavior of Ca-based absorbents under periodically changing condition between reducing and oxidizing atomosphere. Energy Conversion & Management, 2001; 42(15-17): 2029-2041.
    [104] Savannah, Georgia. Oxidation mechanism of calcium sulflde sorbent. Proceedings of the 15th International Confererence on Fluidized Bed Combustion, No. FBC99-0070, 1999.
    [105] Marta Garci a-Calzada, Gregorio Marbdn, Antonio B. Fuertes. Decomposition of CaS particles at ambient conditions. Chemical Engineering Science, 2000; 55(9): 1661-1674.
    [106] Robert H. Brogwardt. Sintering of nascent calcium oxide. Chemical Engineering Science, 1989;44(1): 53-60.
    [107] Borgwardt R H, Bruce K R. Effect of specific surface area on the reactivity of CaO with SO2.AICHE Journal, 1986; 32(2): 239-246.
    [108] Borgwardt R H. Calcination kinetics and surface area of dispersed limestone particle. AICHE Journal, 1985; 31(1): 103-111.
    [109] Per Alvfors and Gunnar Svedberg. Modelling of the simultaneous calcinations, sintering and sulphation of limestone and dolomite. Chemical Engineering Science, 1992; 47(8): 1903-1912.
    [110] Mai M C, Edgar T F. Surface area evolution of calcium hydroxide during calcination and sintering. AICHE Journal, 1989; 35(1): 30-36.
    [111] Bruce Kevin R, Gullett Brian K, Beach Laura O. Comparative SO2 Reactivity of CaO derived from CaCO3 and Ca(OH)2. AICHE Journal, 1989; 35(1): 37-41.
    [112] Campbell F R, Hills A W D, Paulin A. Transport properties of porous lime and their influence on the decomposition of porous compacts of calcium carbonate. Chemical Engineering Science,1970; 25(6): 929-942.
    [113] Agnew, Hampartsoumian E, Jones J M, Nimmo W. The simultaneous calcination and sintering of calcium based sorbents under a combustion atmosphere. Fuel, 2000; 79(12): 1515-1523.
    [1
    
    [114] Hansen P F B, Dam-Johansen K and Ostergaard K. High-temperature reaction between sulphur dioxide and limestone-V. The effect of periodically changing oxidizing and. reducing conditions. Chemical Engineering Science, 1993; 48(7): 1325-1341.
    [115] Ghosh-Dastidar, Mahuli S, Agnihotri R and Fan L S. Ultrafast calcination and sintering of Ca(OH)_2 powder: experimental and modeling. Chemical Engineering Science, 1995. 50(13): 2029-2040.
    [116] Silcox Geoffrey D, Kramlich John C, and Pershing David W. A mathematical model for the flash calcination of dispersed CaCO_3 and Ca(OH)_2 particles. Industrial & Engineering Chemistry Research, 1989; 28(2): 155-160.
    [117] Suhas K. Mahuli, Rajeev Agnihotri, Raja Jadhav, Shriniwas Chauk, and L. S. Fan. Combined calcination, sintering and sulfation model for CaCO_3-SO_2 reaction. AICHE Journal, 1999; 45(2): 367-382.
    [118] Borgwardt R H, Bruce K R, and Blake J. An investigation of product-layer diffusivity for CaO sulfation. Industrial & Engineering Chemistry Research, 1987; 26(10): 1993-1998.
    [119] Hsia C and Pierre G R, Raghunathan K and Fan L S. Diffusion through CaSO_4 formed during the reaction of CaO with SO_2 and O_2. AICHE Journal, 1993; 39(4): 698-700.
    [120] Hsia C. St. Pierre G. R. and Fan L. S. Isotope study on diffusion in CaSO_4 formed during sorbent-flue-gas reaction. AICHE Journal, 1995; 41 (10): 2337-2340.
    [121] 朱文心.火电厂除硫脱氮技术发展概况.中国电力,1997;30(11):56-58.
    [122] Mahuli Suhas K, Agnihotri Rajeev, Chauk Shriniwas, Ghosh-Dastidar Abhijit, Wei S H and Fan Liang-Shih. Pore-structure optimization of calcium carbonate for Enhanced sulfation. AICHE Journal, 1997; 43(9): 2323-2335.
    [123] 卢啸风,王致均.燃煤流化床新型脱硫剂的研究.中国环境科学,1992;12(1):40-43
    [124] 吴晓蓉.工业废料用作高温燃烧固硫剂的实验研究.浙江大学硕士学位论文,1998.
    [125] 庞亚军.掺加粉煤灰提高生石灰脱硫作用的研究.东北电力学院学报,1998;18(2):13-18.
    [126] Cheng Jun, Zhou Junhu, Liu Jianzhong, Zhou Zhijun, Huang Zhenyu, Cao Xinyu, Zhao Xiang, Cen Kefa. Sulfur removal at high temperature during coal combustion in furnaces: a review. Progress in Combustion and Energy Science, 2003; 29(5): 381-405.
    [127] Ramachandran P A and Doraiswamy L K. Modeling of noncatalytic gas-solid reactions. AICHE Journal, 1982; 28: 881-900.
    [128] Szekely J and Evans J W. A structural model for gas-solid and reactions with a moving boundary. Chemical Engineering Science, 1970; 25(6): 1091-1107.
    [129] Bjerle Ingemar, Xu Fuming, and Ye Zhicheng. Useful experimental technique for the study of heterogeneous reactions. Chemical Engineering Technology, 1992; 15: 151-161.
    [130] Pigford R L and Slicer G. Rate of diffusion-controlled reaction between a gas and a porous solid sphere. Ind. Eng. Chem. Res. Dev., 1973; 12: 85-91.
    [131] Hartrnan M and Coughlin R W. Reaction of sulfur dioxide with limestone and the grain model. AICHE Journal, 1976; 22: 490-497.
    [132] Dam-Johansen and (?)stergaard K. High-temperature reaction between sulphur dioxide and limestone-1. Comparison of limestones in two laboratory reactors and a pilot plant. Chemical Engineering Science, 1991; 46(3): 827-837.
    [133] Dam-Johansen K and (?)stergaard K. High-temperature reaction between sulphur dioxide and limestone- Ⅱ. An improved experimental basis for a mathematical model. Chemical Engineering Science, 1991; 46(3): 839-845.
    [1
    
    [134] Dam-Johansen K and (?)stergaard K. High-temperature reaction between sulphur dioxide and limestone-Ⅲ. A Grain-micrograin model and its verification. Chemical Engineering Science, 1991; 46(3): 847-853.
    [135] Dam-Johansen K and (?)stergaard K. High-temperature reaction between sulphur dioxide and limestone-Ⅳ. A discussion of chemical reaction mechanisms and kinetics. Chemical Engineering Science, 1991; 46(3): 855-859.
    [136] Lindner B and Simonsson D. Comparison of structural models for gas-solid reactions in porous solids undergoing structural changes. Chemical Engineering Science, 1981; 36(9): 1519-1527.
    [137] Alvfors P, Svedberg G. Modeling of the simultaneous calcinations, sintering and sulfation of limestone and dolomite. Chemical Engineering Science, 1992; 47(8): 1903-1912.
    [138] Milne C R, Silcox G D, Pershing D W, Kirchgesner D A. High-temperature, short-time sulfation of calcium-based sorbents. 1. Theoretical sulfation model. Industrial & Engineering Chemistry Research, 1990; 29(11): 2192-2201.
    [139] Milne C R, Siicox G D, Pershing D W, Kirchgesner D A. High-temperature, short-time sulfation of calcium-based sorbents. 2. Experimental data and theoretical model predictions. Ind. Engng Chem. Res., 1990; 29: 2201-2214.
    [140] Milne C R, Silcox G D, Pershing D W, Kirchgesner D A. Calcination and sintering models for application to high-temperature, short-time sulfation of calcium-based sorbents. Industrial & Engineering Chemistry Research, 1990; 29(2): 139-149.
    [141] Ramachandran P A and Smith J M. Effect ofsintering and porosity changes on rate of gas-solid reactions. The Chemical Engineering Journal, 1977; 14(2): 137-146.
    [142] Christman, P G and Edgar T F. Distributed pore-size model for sulfation of limestone. AICHE Journal, 1983; 29: 388-395.
    [143] Simons G A, Garman A R and Boni A A. The kinetic rate of SO_2 sorption by CaO. AICHE Journal, 1987; 33: 211-217.
    [144] Simons G A, Garman A R and Boni A A. Small pore closure and the deactivation of the limestone sulfation reaction. AICHE Journal, 1986; 32: 1491-1499.
    [145] 李绚天.循环流化床脱硫脱硝及灰渣冷却佘热利用的研究.浙江大学博士学位论文,1992.
    [146] Li X, Luo Z, Ni M, Cen K. Modeling sulfur retention in circulating fluidized bed combustors. Chemical Engineering Science, 1995; 50 (14): 2235-2242.
    [147] 缪明烽,沈湘林.脱硫剂分形孔结构特性机器硫化活性的研究.环境科学学报,2001;21(5):519-524.
    [148] 范浩杰,章明川,胡国新,王峻哗,姚强,曹欣玉,岑可法.炉内喷钙脱硫的模拟.环境科学学报,1999;19(5):483-488.
    [149] 郑瑛,郑楚光等.煤粉炉膛喷钙脱硫过程的总体模型与模拟.工程热物理学报,1999;20(3):393-396.
    [150] 禚玉群,徐旭常等.炉内喷钙脱硫过程数值模拟.工程热物理学报,1997;18(3):375-379.
    [151] Steciak Judith, Levendis Yiannis A, Wise Donald L. Effectiveness ot calcium Magnesium Acetate as dual SO_2-NOx emission control agent. AICHE Journal, 1995; 41 (3): 712-722.
    [152] Wang Wuyin, Zhong Qin, Ye Zhicheng and Bjerle Ingemar. Simultaneous reduction of SO_2 and NOx in an entrained-flow reactor. Fuel, 1995; 74(2): 267-272.
    [153] 李绚天,骆仲泱,倪明江,岑可法.煤燃烧过程中加石灰石脱硫对NOx排放影响的研究. 燃料化学学报,1991;19(1):71-6.
    [1
    
    [154] Liu Hao and Gibbs Bernard M. The influence of limestone addition at different positions on gaseous emissions from a coal-fired circulating fluidized bed combustor. Fuel, 1998; 77(14): 1569-1577.
    [155] Liu H, Gibbs B M. The influence of calcined limestone on NOx and N_2O emissions from char combustion in fluidized bed combustors. Fuel, 2001; 80(9): 1211-1215.
    [156] Kill S, Bhatia S K and Dam-Johansen K. Modeling of catalytic oxidation of NH_3 and reduction of NO on limestone during sulphur capture. Chemical Engineering Science, 1996; 51(4): 587-601.
    [157] Jensen Anker, Johnsson Jan Erik, and Dam-Johansen Kim. Catalytic and gas-solid reactions involving HCN over limestone. AICHE Journal, 1997; 43(11): 3070-3084.
    [158] Jensen Anker, Johnsson Jan Erik and Dam-Johansen Kim. Nitrogen chemistry in FBC with limestone addition. In: 26th Symposium (International) on combustion, The combustion Institute, 1996. pp. 3335-3342.
    [159] Lin Weigang, Johnsson Jan E, Dam-Johansen Kim and Cot M Van den Bleek. Interaction between emsissions of sulfur dioxide and nitrogen oxides in fluidized bed combustion. Fuel, 1994; 73(7): 1202-1208.
    [160] 姚洪,周建平,徐涛,徐明厚,袁建伟,曾汉才.炉内喷钙脱硫试验研究及其影响.发电设备,1997:6:12—16.
    [161] Hampartsoumian E, Nimmo W, Gibbs B M. Nitrogen sulphur interactions in coal flames. Fuel, 2001; 80(7): 887-897.
    [162] Tseregounis Spyros I and Smith Owen I. Enhancement of fuel-nitrogen oxidation by fuel-sulfur in fuel rich flames. Combustion Science and Technology, 1983; 30:231-239.
    [163] Lisa D. Pfefferle, Stuart W. Churchill. Effect of fuel sulfur on nitrogen oxide formation in a thermally stabilized plug-flow burner. Industrial & Engineering Chemistry Research, 1989; 28(7): 1004-1010.
    [164] Francesco Miccio, Gerhard L(?)ffler, Verina J. Wargadalam, Franz Winter. The influence of SO_2 level and operating conditions on NOx and N_2O emissions during fluidized bed combustion of coals. Fuel, 2001; 80(11): 1555-1566.
    [165] Eaton M, Smoot L D, Hill S C, Eatough C N. Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Progress in Energy and Combustion Science, 1999; 25(4): 387-436.
    [166] Yakhot V and Orszag S A. Renormalization Group Analysis of Turbulence. I. Basic Theory. Journal of Scientific Computing, 1986; 1(1): 3-51.
    [167] Jones J M, Patterson P M, Pourkashanian M, Williams A, Arenillas A, Rubiera F, Pis J J. Modelling NOx formation in coal particle combustion at high temperature: an investigation of the devolatilisation factors. Fuel, 1999; 78(10): 1171-1179.
    [168] Smoot L D, Smith P J. Coal combustion and gasification. New York: Plenum Press, 1985.
    [169] Smith P J, Smoot L D, Hill SC. Effects of Swirling Flow on Nitrogen Oxide Concentration in Pulverized Coal Combustors. AICHE Journal, 1986; 32 (11): 1917-1919.
    [170] 郭印诚,林文漪,周力行.煤粉燃烧过程中NOx生成的数值模拟.燃烧科学与技术,1998;4(1):18-23.
    [171] 周力行.NOx生成湍流反应率数值模拟的进展.力学进展,2000;30(1):77-82.
    [172] 林洪昌,陈义良,赵巍.湍流射流扩散火焰中NOx排放量的数值模拟.工程热物理学报, 1997; 18(1): 108-112.
    [1
    
    [173] 郭印诚,周力行,王希麟,林文漪.NOx生成的有限反应速率二阶矩封闭模型.工程热物理学报,1998;19(3):382-386.
    [174] Zhou X, Chen X L, Zheng C G, Yin J. Second-order moment turbulence-chemistry models for simulating NOx simulation in gas combustion. Fuel, 2000; 79(11): 1289-1301.
    [175] 岑可法,樊建人,池作和,沈珞婵.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算.北京:科学出版社.1994.
    [176] Lee F C C, Lockwood F C. Modelling ash deposition in pulverized coal-fired applications. Progress in Energy and Combustion Science, 1999; 25(2): 117-132.
    [177] Fan J R, Zha X D, Sun P. Cen K F. Simulation of ash deposit in a pulverized coal-fired boiler. Fuel, 2001; 80(5): 645-654.
    [178] Huang L Y, Norman J S, Pourkashanian M and Williams A. Prediction of ash depostion on superheater tubes from pulverized coal combustion. Fuel, 1996; 75(3): 271-279.
    [179] Walsh Peter M, Sayre Alan N, Loehden David O, Monroe Larry S, Beèr J(?)nos M, and Sarofim Adel F. Deposition of bituminous coal ash on an isolated heat exchanger tube: effects of coal properties on deposit growth. Progress in Energy and Combustion Science, 1990; 16(4): 327-346.
    [180] Melennan R, Bryant G W, Stanmore B R, and Wall T F. Ash formation mechanisms during pf combustion in reducing conditions. Energy & Fuels, 2000; 14(1): 150-159.
    [181] Brink H M Ten, Smart J P, Vleeskens J M and Williamson J. Flame transformations and burner slagging in a 2.5MW furnace firing pulverized coal. 1. Flame transformations. Fuel, 1994; 73(11): 1706-1711.
    [182] Brink H M Ten, Smart J P, Vleeskens J. M and Wiiliamson J. Flame transformations and burner slagging in a 2.5MW furnace firing pulverized coal. 2. Slagging. Fuel, 1994; 73(11): 1712-1717.
    [183] Bouris D, Papadakis G, Bergeles G. Numerical evaluation of alternate tube configurations for particle deposition rate reduction in heat exchanger tube bundles. International Journal of Heat and Fluid flow, 2001; 22(5): 525-536.
    [184] 阎维干,梁秀俊,周健,叶学民,郑占国.300MW燃煤电厂锅炉积灰结渣计算机在线监测与优化吹灰.中国电机工程学报,2000;20(9):84-88.
    [185] Wall T F, Bhattachrya S P, Zhang D K, Gupta R P and He X. The properties and thermal effects of ash deposits in coal-fired furnace. Progress in Energy and Combustion Science, 1993; 19(6): 487-504.
    [186] Hatt Roderick M. Fireside deposit in coal-fired utility boilers. Progress in Energy and Combustion Science, 1990; 16(4): 235-241.
    [187] Harry M. Ten Brink, Simon Eenkhoorn and Gerrit Hamburg. A mechanistic study of the formation of slags from iron-rich coals. Fuel, 1996; 75(8): 952-958.
    [188] Rezaei H R, Gupta R P, Bryant G W, Hart J T, Liu G S, Bailey C W, Wall T F, Miyamae S, Makino K, Endo Y. Thermal conductivity of coal ash and slags and models used. Fuel, 2000; 79(13): 1697-1710.
    [189] Bouds D and Bergeles G. Numerical calculation of the effect of deposit formation on heat-exchanger efficiency. International Journal of Heat and Mass Transfer, 1997; 40(17): 4073-4084.
    [190] Konstandopouios Athanasios G. Deposit growth dynamics: Particle sticking and scattering phenomena. Powder Technology, 2000; 109(1-3): 262-277.
    [1
    
    [191] Hiroyuki Chikuma, Masaaki Kurimura, Kazuyoshi Ichikawa, Takeshi Takahashi and Saburo Hara. Study on growth behavior and heat transfer of ash deposit. JSME International Journal Series B, 1998; 41(3): 765-768.
    [192] Robinson Allen L, Buckley Steven G, and Baxter Larry L. Experimental measurements of the thermal conductivity of ash deposits: Part 1. Measurement technique. Energy & Fuels, 2001; 15(1): 66-74.
    [193] Robinson Allen L, Buckley Steven G, Yang Nancy, and Baxter L L. Experimental measurements of the thermal conductivity of ash deposits: Part 2. Effects of sintering and deposit microstructure. Energy & Fuels, 2001; 15 (1): 75-84.
    [194] Srinivasachar S, Helble J J, Ham and Dowazetis G. A kinetic description of vapor phase alkali transformations in combustion systems. Progress in Energy and Combustion Science, 1990; 16(4): 303-309.
    [195] Baxter Larry L. The evolution of mineral particle size distributions during early stages of coal combustion. Progress in Energy and Combustion Science, 1990; 16(4): 261-266.
    [196] Wall T F, Lowe A, Wibberley L J and Stewar I. Mineral matter in coal and the thermal performance of large boilers. Progress in Energy and Combustion Science, 1979; 5(1): 1-29.
    [197] Benson S A, Steadman E N, Jones M L and Kalmanovitch D P. In suit determination of temperature distribution in ash depositions in ash deposits in a pilot-scale furnace. In: R. W. Bryers and K. S. Vorees Eds., Mineral matter and ash deposition from coal, Engineering foundation, New York, NY, 1990.
    [198] 浙江大学,广东省电力试验研究所.CAT辅助解决韶关电厂8号炉结焦问题试验研究.鉴定报告.1993.
    [199] 池作和,燃用劣质煤电站锅炉低负荷稳燃、防结渣及减轻烟温偏差研究.浙江大学博士学位论文,1996.
    [200] 甘肃省电力工业局靖远电厂,电力试验研究所.靖远电厂一期工程锅炉燃烧系统改造方案的可行性研究报告.1996.
    [201] 王丽英.北仑电厂亚临界箱式锅炉技术特点和经济性评述.电站系统工程.1999;15(1):29-32.
    [202] 周吴,孙平,池作和,蒋啸,岑可法.600MW偏转二次风系统锅炉炉内结渣特性的数值模拟.燃烧科学与技术,2002;328-332.
    [203] 周昊,池作和,蒋啸,徐璋,岑可法.燃用劣质煤锅炉采用水平浓淡稳燃防结渣技术改造.中国电力,1997;30(6):66—67.
    [204] 秦裕琨,李争起,孙锐,陈力哲,孙绍增.朱群益,李瑞扬,高继慧.吴少华.风包粉系列浓淡煤粉燃烧技术的研究.中国工程科学,2002;4(11):42-47,66.
    [205] 浙江大学热能工程研究所.纳雍电厂燃无烟煤锅炉喷嘴模型试验报告.2002.
    [206] P. R. Spalart. Strategies for turbulence modeling and simulations. International Journal of Heat and Fluid Flow, 2000; 21(3): 252-263.
    [207] 刘有军.平面突扩流动非稳定性的大涡模拟.计算力学学报,1998;15(2):186-191.
    [208] Squires Kyle D, Forsythe James R and Spalart Philippe R. Detached-eddy simulation of the separated flow around a forebody cross-section, http://www.eas.asu.edu/~squires/publications. html.
    [209] Rodi Wolfgang. Large-eddy simulation of the flow past bluff bodies: state-of-the art. JSME Journal Series B, 1998; 41(2): 361-374.
    
    [210] Yamamoto Y, Potthoff M, Tanaka T, Kajishima T, Tsuji Y. Large-eddy simulation of turbulent gas-particle flow in a vertical channel: effect of considering inter-particle collision. Journal of Fluid Mechanism, 2001; 442: 303-334.
    [211] Suksangpanomrung N Djilai, Moinat P. Large-eddy simulation of separted flow over a bluff rectangular plate. International Journal of Heat and Fluid Flow, 2000; 21 (5):655-663.
    [212] Wang Meng, Catalano Pietro, Iaccarino Gianluca. Prediction of high Reynolds flow over a circular cylinder using LES with wall modeling, http://ctr.stanford.edu/ResBriefs01/wang.pdf.
    [213] Travin Andrei, Shur Michael, Strelets Michael and Spalart Philippe. Detached-eddy simulations past a circular cylinder. Flow, Turbulence and Combustion, 2000; 63(1-4): 293-313.
    [214] Marcel Lesieur. Looking for turbulence structures: a numerical exploration. Flow, Turbulence and Combustion, 2001; 66(4): 477-494.
    [215] 刘奕,郭印诚,张会强,王希麟,林文漪.射流温度场与拟序结构间相互作用的大涡模拟.工程热物理学报,2001;22(3):394-396.
    [216] 刘奕,郭印诚,张会强,王希麟,林文漪.平面自由射流中燃料扩散的大涡模拟.燃烧科学与技术,2001;7(2):153-157.
    [217] Michael Breuer. Numerical and modeling influences on large eddy simulations for the flow past a circular cylinder. International Journal of Heat and Fluid Flow, 1998; 19(5): 512-521.
    [218] Michael Breuer. A challenging test case for large eddy simulation: high Reynolds number circular cylinder flow. International Journal of Heat and Fluid Flow, 2000; 21 (5): 648-654.
    [219] Spalart P R, Jou W Y, Strelets M, Allmaras S R. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z. (Eds), First AFOSR International Conference on DNS/LES, Ruston, LA. Advances in DNS/LES, Greyden Press, Columbus, OH. 1997.
    [220] Kirby Robert M, George Em Kamiadakis. Under-resolution and diagnostics in spectral simulations of complex geometry flows, http://www.dam.brown.edu/scicomp/publications/Reports/Y2001/BrownSC-2001-23.pdf
    [221] 郑有取.气固两相混合层湍流拟序结构的直接数值模拟和试验验证.浙江大学博士学位论文,2001.
    [222] 姚军.气固两相圆柱绕流的直接数值模拟和肋条弯管抗磨机理的数值试验研究.浙江大学博士学位论文,2002.
    [223] 金晗晖.气粒两相湍流拟序结构的大涡模拟研究.浙江大学博士学位论文,2002.
    [224] 刘奕,郭印诚,张会强,王希麟,林文漪.大涡模拟及其在湍流燃烧中的应用.力学进展,2001;31(2):215-226.
    [225] Piomelli U. Large-eddy simulation: achievements and challenges. Progress in aerospace science, 1999; 35(4): 335-362
    [226] Durcros, F., Comte, P., Lesieur, M.. Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. Journal of Fluid Mechanism 1996; 326: 1-36.
    [227] Akselvoll K, Moin, P.. Large eddy simulation of a backward facing step flow. Engineering. Turbulence Modelling and Experiments-2, Rodi & Martelli Eds, Elsevier, 1993.
    [228] Shur, Spalart P R, Strelets M., Travin A. Detached-eddy simulation of an airfoil at high angle of attack. Engineering. Turbulence Modelling and Experiments-4, Rodi & Laurence Eds, Elsevier, 1999.
    [2
    
    [229] Strelets M. Detached eddy simulation of massively separated flows. AIAA 2001-0879. 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2001.
    [230] Spalart Philippe R. Young-person's guide to detached-eddy simulation grids. NASA/CR-2001-211032, 2001.
    [231] 张政,谢灼利.流体—固体两相流的数值模拟.化工学报,2001;52(1):1-12.
    [232] McLaughlin J B. Particle size effects on Lagrangian turbulence. Physics of Fluids, 1988; 31(9): 2544-2553.
    [233] Hadj Ounis, Goodarz Ahmadi, and John B. McLaughlin. Browian particle deposition in a directly simulated turbulent channel flow. Phys. Fluids A, 1993; 5(6): 1427-1432.
    [234] Shivshank Sundaram and Lancer Collins. Jounral of Fluid Mechanism, 1997; 335: 75-109.
    [235] Mclaughlin J B. Numerical coputation of particles-turbulence interaction. International Journal of Multiphase Flow, 1994 (Suppl); 20: 211-232.
    [236] Fan, J. R., Zheng, Y Q., Luo, Z. H. and Cen, K. F.. Direct simulation of particle dispersion in a three-dimensional temporal mixing layer. Proceedings of the Royal Society of London Series A, 2001; 457: 2151-2166.
    [237] Wang, Q. and Squires, K. D.. Large eddy simulation of particle-laden turbulent channel flow. Phys. Fluids, 1996; 8: 1207-1223.
    [238] Oesterle B., Petitjean A.. Simulation of particle-to-particle interactions in gas-solid flows. International Journal of Multiphase Flow, 1993; 19(1): 199-211.
    [239] Lun, C. K. K. and Bent, A. A.. Numerical simulation of inelastic frictional spheres in simple shear flow. Journal of Fluid Mechanism, 1994; 258: 335-353.
    [240] Hoomans, B. P. B.; Kuipers, J. A. M.; Briels, W. J.; Van Swaaij, W. E M.. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach. Chemical Engineering Science, 1996; 51 (1): 99-118.
    [241] Lun, C. K. K. and Liu, H. S.. Numerical simulation of dilute turbulent gas-solid flows in horizontal channels. International Journal of Multiphase Flow, 1997; 23(3): 575-605.
    [242] 樊建人,姚军,张新育,岑可法.气固两相流中颗粒—颗粒随机碰撞新模型.工程热物理学报,2001;22(5):629-632.
    [243] Tsuji Y, Tanaka T, Yonemura S. Cluster patterns in circulating fluidized beds predicted by numerical simulations (discrete particle model versus two-fluid model). Powder Technology, 1998; 95: 254-264.
    [244] Martin Sommerfeld, Yutaka Tsuji, Clayton T. Crowe. Multiphase Flows with Droplets and Particles. CRC Press, Boston, New York, Washington, London. 1997.
    [245] 周力行.湍流气粒两相流动和燃烧的理论与数值模拟.北京:科学出版社,1994.
    [246] Fan Jianren, Zhno Hua, Jin Jun. Two-phase velocity measurements in particle-laden coaxial jets. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996; 63(1): 11-17.
    [247] Xu Minghou, Sheng Changdong and Yuan Jianwei. Two-phase flow measurements and combustion tests of burner with continuously variable concentration of coal dust. Energy & Fules, 2000; 14(3): 533-538.
    [248] Yimaz Ali and Edward K. Levy. Particle velocity and concentration measurements in lean phase pneumatic conveying using a fiber optic probe. Proceedings of FEDSM'98. 1998 ASME Fluids Engineering Division Meeting, FEDSM98-5282, Washington, 1998.
    
    [249] Ali Yilmaz and Edward K. Levy. Formation and dispersion of ropes in pneumatic conveying. Powder Technology, 2001; 114(1-3): 168-185.
    [250] Ali Yilmaz, Edward K. Levy. Roping phenomena in pulverized coal conveying lines. Powder Technology, 1998, 95(1): 43-48.
    [251] Harun Bilrgen, Edward K. Levy. Mixing and dispersion of particle ropes in lean phase pneumatic conveying. Powder Technology, 2001; 119(2-3): 134-152.
    [252] Schallert R, Levy E. Effect of a combination of two elbows on particle roping in pneumatic conveying. Powder Technology, 2000; 107(3): 226-233.
    [253] 蔡小舒,潘咏志,欧阳新,吴伟亮,俞基安,胡杰.电厂煤粉管道中煤粉运行状况诊断研究.中国电机工程学报,2001;21(7):83-86.
    [254] 蔡小舒,潘咏志,吴伟亮,欧阳新,苏明旭,俞基安.胡杰.电厂煤粉粒径、浓度和速度的在线测量技术研究.动力工程,1999;19(6):466-469.
    [255] 郑刚,蔡小舒,卫敬明,王乃宁.消光法测量微粒尺寸的测量下限的研究.仪器仪表学报,1998;19(5):504-507.
    [256] 吴伟亮,蔡小舒,王乃宁,尉世民.应用激光透射信号随机波动特性求取颗粒尺寸及浓度.上海理工大学学报,1999;21(2):177-179.
    [257] Green G R, Thorn R. Sensor systems for lightly loaded pneumatic conveyors. Powder Technology, 1998; 95(1): 79-92.
    [258] 岑可法.锅炉燃烧试验研究方法及测量技术.北京:水利电力出版社,1987.
    [259] 王凯,赵海生,陈增宏.煤粉浓度监测系统.动力工程,1994;14(3):45-48.
    [260] Ma J, Yah Y. Design and evaluation of electrostatic sensors for the measurement of velocity of pneumatically conveyed solids. Flow measurement and Instrumentation, 2000; 11(3): 195-204.
    [261] 袁竹林,卢作基.用传热法测量燃煤锅炉气力输送中煤流量的研究.燃烧科学与技术,1999;5(1):52-56.
    [262] Hans Georg Conrads. Greater efficiency by on line coal measurement. Modem Power System, 2000; 10: 49-53.
    [263] Millen M J, Sowerby B D, Coghiii P J, Tickner J R, Kingsley R, Grima. Plant tests of an on-line multiple-pipe pulverized coal mass flow measuring system. Flow measurement and Instrumentation, 2000; 11(3): 153-158.
    [264] Yah Y, Reed A R. Experimental evaluation of capacitance transducers for volumetric concentration measurement of particulate solids. Flow measurement and Instrumentation, 1999; 10(1): 45-49.
    [265] 周克毅,邵爱菊,葛聪.国外电站性能监测与诊断概况.动力工程,1999;19(1):58-63.
    [266] 马欣欣.火电厂优化软件的应用及前景.中国电力,1999;6:41-44.
    [267] 马欣欣.火电厂优化软件的应用及前景(续).中国电力,1999;7:52-56.
    [268] 王凯,赵海生.煤粉浓度检测系统.动力工程,1994;14(3):45-48.
    [269] 栾江霞.锅炉热效率优化运行专家系统.浙江大学硕士学位论文,2000.
    [270] Jason Makansi. Plants gain confidence in optimization software. Power, 1998; 9/10: 59-64.
    [271] Peter Patterson and Michael S. Krueger. Optimization saves money, reduces NOx. Power Engineering, 1997; 9: 21-23.
    [272] Jaques Reifman, Earl E. Feldman, and Thomas Y. C. Wei. An intelligent emissions controller for fuel lean gas rebum in coal-fired power plants. Journal of Air & Waste Management Association, 2000; 50: 240-251.
    [273] Kalogirou S A. Artificial intelligence for the modeling and control of combustion processes: a review. Progress in Energy and Combustion Science, 2003; 29(6):515-566.
    [2
    
    [274] Tulay Adali, Beta Baka, Sonmez M K, and Reza Fakory. NO_x and CO prediction with variable tapped delay line neural networks. Journal of Intergrated Computer-aided Engineering, special issue on neural techniques for industrial applications, 1999; 6:27-39
    [275] Reifman J and Feldman E E. Identification and control of NO_x emission using neural netoworks. Journal of Air & Waste Management Association, 1998;48:408-471.
    [276] Tronci S, Baratti R, Servida A. Monitoring pollution emission in a 4. 8 MW power plant through neural network. Neurocomputing 2002; 43(1-4):3-15.
    [277] Ohtsuks Y and Wu Zhiheng. Nitrogen release during fixed-bed gasification of several coals with CO_2:factors controlling formation of N_2. Fuel, 1999;78(5):521-527.
    [278] Wu Zhibeng and Ohtsuks Y. Nitrogen distribution in a fixed-bed pyrolysis of coals with different ranks:formation and source of N_2. Fuel,1997;76(6):477-482.
    [279] Li Chunzhu, Buckley A N and Nelsonm P F. Effects of temperature and molecular mass on the nitrogen functionality of tars produced under high heating rate conditions. Fuel, 1998;77(3):157-164.
    [280] Nelson P F, Kelley M D and Womat M J. Conversion of fuel nitrogen in coal volatiles to NO_x precursors under rapid heating conditions. Fuel, 1991;70(3):403-407.
    [281] Nelson P F and Buckmy A N. Functional forms of nitrogen in coals the release of coal nitrogen as NO_x precursors (HCN and NH_3), 24~(th) Symp. (Int.) Combustion, The Combustion Institute, 1992, 1259-1267.
    [282] Leppalahti J and Kurkela E. Behaviour of nitrogen compounds and tars in fluidized bed air gasification of peat. Fuel, 1991;70(4):491-497.
    [283] Laughlin M K, Gavin D G and Reed G P. Coal and char nitrogen chemistry during pressurized fluidized bed combustion. Fuel, 1994;73(7):1027-1033.
    [284] Middleton S P, Patrick J W and Walkr A. The release of coal nitrogen and sulfur on pyrolysis and partial gasification in a fluidized bed. Fuel, 1997;76(13):1195-1200.
    [285] Kopsel R F W and Halang S. Catalytic influence of ash elements on NO_x formation in char combustion under fluidized bed conditions. Fuel, 1997;76(4):345-351.
    [286] 闫志勇,魏恩宗,张慧娟,宋长忠,张虹.煤粉锅炉分级燃烧降低NO_x捧放的试验结果分析.热力发电,2001:30(1):24—26,35.
    [287] 徐秀峰,顾永达,陈诵英.煤燃烧中SO_2、NO的逸出规律研究.燃料化学学报,1998;26:356-361.
    [288] 朱全利,曾汉才,聂明局,徐涛.滴管炉中煤粉燃烧NO_x生成量的实验研究.华中理工大学学报,1999;27:104-106.
    [289] 中华人民共和国国家标准,GB 7487—87.
    [290] 中华人民共和国国家标准,GB/T 14679—93.
    [291] 茅建波.沉降炉中不同煤种N_(ox)生成特性实验研究.浙江大学硕士学位论文,2001.
    [292] 丘纪华.煤粉在热分解过程中比表面积和孔隙结构的变化.燃料化学学报,1994;22:316-320.
    [293] 顾璠,许晋源,沈红梅,煤颗粒燃烧的孔隙特性研究.燃料化学学报,1993,21:425-429.
    [294] Pohl J H and Sarofim A F. Devolatilization and oxidation of coal nitrogen. 16~(th) Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1977, p.491.
    [295] Peck R E, Altenkirch R A and Midkiff K C. Fuel-nitrogen transformations in one-dimension coal-dust flames. Combustion and Flame, 1984, 55(3):331-340.
    
    [296] 李绚天,倪明江,岑可法.煤的燃烧过程中燃料NO_x的析出特性.工程热物理学报,1990;11:338-341.
    [297] 翁安心,周昊,王正华,池作和,蒋啸,岑可法.大型四角切圆煤粉炉常用煤种及其混煤燃烧时NO_x排放特性研究.热力发电,2003;32(10):18-21.
    [298] Visona S P and Stanmore B R. Modeling NO_x release from a single coal particle I. Formation of NO from volatile nitrogen. Combustion and Flame, 1996, 105(1-2):92-103.
    [299] Fu Weibiao, Zhang Yanping, Han Hongqiao and Wang Difei. A general model of pulverized coal devolatilization. Fuel, 1989;68(4):505-510.
    [300] 傅维标,卫景彬.燃烧物理学基础.北京:机械工业出版社,1984.
    [301] Wendt J O L, Stemling C V, Matovich M A, Reduction of Sulfur Trioxide and Nitrogen Oxides by Secondary Fuel Injection, Fourteenth Symposium (international) on Combustion. The Combustion Institute, Pittsburgh, PA, 1973. pp:897-904.
    [302] Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers. www. netl. doe. gov/publications/others/topicals/topic_14. pdf.
    [303] Demonstration project for the abatement of nitrogen oxides emissions using reburn technology for cogeneration plants in Taiwan. EPA-600/R-03-006, 2003.
    [304] 沈伯雄,姚强.再燃脱硝的动力学模拟和组分影响分析.环境科学学报,2002;22(5):677—682.
    [305] 钟北京,傅维标.再燃过程中HCN对NO_x还原的重要性.燃烧科学与技术,2000;6(1):77—84.
    [306] 阎维平,高正阳,刘忠,王春昌.煤粉细度对再燃还原烟气氮氧化物影响的实验研究.电力科学与工程,2003;3:1—4.
    [307] 钟北京,施卫伟,傅维彪.煤粉再燃过程中NO异相还原机理的重要性.燃烧科学与技术,2002;8(1):6—8.
    [308] Cremer M A, Adams B R, O'Connor D C, Bhamidipati V, Broderick R G Design and Demonstration of Rich Reagent Injection (RRI) for NO_x Reduction at Coneetiv's B. L. England Station, presented at the U.S. EPA/DOE/EPRI MegaSymposium 2001, Chicago, Illinois, August, 20-23 2001. http://www. reaction-eng. com/downloads/rri_mega. pdf.
    [309] 李永兴,陈春元.电站锅炉炉膛截面热负荷及炉内最小燃尽高度选取方法研究.电站糸统工程,1993;9(3):51-57.
    [310] Zhou Junhu, Cheng Jun, Cao Xinyu, Liu Jianzhong, Zhao, Xiang, Huang Zhenyu, Cen Kefa. Experimental research on two-stage desulfurization technology in traveling grate boilers. Energy, 2001;26(8):759-774.
    [311] 李定凯,吕子安.煤焦中的硫化钙在循环流化床燃烧室中的反应模型.中国电机工程学报,2003;23(7):196-200.
    [312] 中华人民共和国标准GB/T 215-1996.
    [313] 中华人民共和国标准GB/T 16489-1996.
    [314] 张国勋.吹气装置对水中硫化物测定的影响.环境监测管理与技术,1999;11(4):33-35.
    [315] 宋延博,周成,李亚凡.硫化物预处理方法的几点改进.山东环境,1999;4:26,23.
    [316] 周昊,童汇源,孙平,岑可法.600MW锅炉偏转二次风系统炉内流动和NO_x排放特性.中国电机工程学报,2000;20(11):68-71,76.
    [317] 陈刚,丘纪华,郑楚光.偏转二次风对炉内结渣影响的研究.锅炉技术,2003;34(1):12-15.
    [318] 钟北京,姚海军,何裕昆,周明德,傅维镳.超细CaO粉炉内喷射脱硫的实验研究.工程热物理学报,2002;23(1):127-129.
    
    [319] 钟北京,姚海军,傅维镳.超细CaO粉炉内喷射脱硫的数值模拟.燃烧科学与技术,2002;8(4):289-292.
    [320] Qiu Kuangrong. Sulfur capture and oxidation of calcium sulfide in PFBC. Thesis for the degree of doctor of philosophy, Chalmers University of Technology. G(?)teborg, Sweden, 2000.
    [321] 李宁.煤高温燃烧过程中脱硫反应机理的研究及其工业性应用.浙江大学博士字位论文,2000.
    [322] Lin Weigang, Johnsson Jan E, Dam-Johansen Kim and Van den Bleek Cor M. Interaction between emissions of sulfur dioxide and nitrogen oxides in fluidized bed combustion. Fuel, 1994;73(7):1202-1208.
    [323] Van der Lans R P, Glarborg P, Dam-Johansen K, Knudsen P, Hesselmarm G, Hepburn P. Influence of coal quality on combustion performance. Fuel, 1998;77 (12):1317-1328.
    [324] Jytte Boll lllernp, Kim Dam-Johansen and Peter Glarborg. Characterization of a full-scale, single-burner pulcerized coal boiler:temperatures, gas concentrations and nitrogen oxides. Fuel, 1994;73(4):492-499.
    [325] Walsh Peter M, Xie Jianyang, Douglas Robert E, Battista Joseph J and Zawadzki Edward A. Unburned carbon loss from pulverized coal combustors. Fuel, 1994;73(7):1074-1081.
    [326] 王应时,范维澄,周力行,徐旭常.燃烧过程数值计算.北京:科学出版社,1986.
    [327] 傅维镳.煤燃烧理论及其宏观通用规律.北京:清华大学出版社,2003.
    [328] 岑可法,樊建人.工程气固多相流理论及计算.杭州:浙江大学出版社,1990.
    [329] 赵坚行.燃烧的数值模拟.北京:科学出版社,2002.
    [330] Spalding D B. Concentration fluctuations in a round turbulent free jet. Chemical Engineering Science, 1971;26(1):95-107.
    [331] Pope S B. PDF methods for turbulent reactive flows. Progress in Energy and Combustion Science, 1985;11 (2):119-192.
    [332] 向军,熊友辉,郑楚光,孙学信.PDF—ARRHENIUS方法模拟煤粉燃烧氮氧化物生成.中国电机工程学报,2002;22(6):156-160.
    [333] Fan J R, Sun P, Zheng Y Q, Ma Y L, Cen K F. Numerical and experimental investigation on the reduction of NO_x emission in a 600MW utility furnace by using OFA. Fuel, 1999;78(12):1387-1394.
    [334] Coimbra C F M, Azevedo J L T and Carvalho M G 3-D numerical model for predicting NO_x emission from an industrial pulverized coal combustor. Fuel, 1994;73(7):1128-1134.
    [335] Lavoie G A, Heywood J B and Keck J C. Experimental and theoretical study of nitric oxide formation in internal combustion engines. Combustion Science and Technology, 1970;1:313-326.
    [336] Bowman, C T. Kinetcis of pollutant formation and destruction in combustion. Progress in Energy and Combustion Science, 1975;l(l):33-45.
    [337] Bowman C T. Chemistry of gaseous pollutant formation and destruction. In Bartok W and Sarofim A F, editors, Fossil FuelCombustion. J. Wiley and Sons, Canada, 1991.
    [338] 岑可法,周昊,池作和.大型电站锅炉安全及优化运行技术.北京:中国电力出版社,2003.
    [339] Fan J R, Xia ZH, Zhang X Y, Cen K F. Numerical investigation on two-phase flow in rich/lean pulverized coal nozzles. Fuel, 2000;79(14):1853-1860.
    [340] Tabakoff W, Kotwal R and Hamed A. Erosion Study of Different Materials Affected by Coal Ash Particles. Wear, 1979;52(1):161-173.
    [341] 秦裕琨,范卫东,林正春等.百叶窗浓缩器气固两相流动的试验研究.工程热物理学报,2000;21(4):501-504.
    
    [342] 夏振海,张新育,樊建人,岑可法.可调浓度煤粉浓淡燃烧器的数值模拟.燃烧科学与技术,2000;6(3):214-217.
    [343] 王少平,曾扬兵,沈孟育等.用RNG k-ε模式数值模拟180°道内的湍流分离流动.力学学报,1996;28(3):257-263.
    [344] 苏铭德,康钦军.亚临界雷诺数下圆柱绕流的大涡模拟.力学学报,1999;31(1):100-105.
    [345] 刘建忠,曹欣玉,姚强等.气体示踪法研究燃烧器横向湍流混合扩散特性.力学学报,1995;28(3):347-351.
    [346] Krohn, D A. Fiber optic sensors-fundamentals and applications, 2nd edition. Instrument Society of America. 1992.
    [347] Huang L Y, Norman J S, Pourkashanian M, Williams A. Prediction of ash deposition on superheater tubes from pulverized coal combustion. FUEL, 1996; 75 (3), 271—279.
    [348] 孙平.600MW电站锅炉炉内多相流动、传热、燃烧过程及炉内偏差、污染、结渣的数值 试验研究.浙江大学博士学位论文,1999.
    [349] 陈立勋,曹子栋.锅炉本体布置及计算.西安:西安交通大学出版社,1990.
    [350] 浙江大学热能工程研究所.1 号炉“3.10"事故原因及对策的研究.1993.
    [351] 广东省电力试验研究所.C厂1#锅炉大修后燃烧调整及优化试验报告.2003.
    [352] 周吴,孙平,岑可法.偏转二次风系统600MW燃煤锅炉NO_x排放特性及数值模拟.环境科学学报2001;2:198-202.
    [353] Yin C G, Caiilat S, Hadon J L, Baudoin B, Perez E. Investigation of the flow, combustion, heat-transfer and emission from a 609MW utility tangentially fired pulverized-coal boiler. Fuel, 2002;81(8):997-1006.
    [354] Haykin S. Neural networks:a comprehensive foundation, 2~(nd) ed. New Jersey:Prentice-Hall.1999.
    [355] 赵振宇,徐用懋.模糊理论和神经网络的基础与应用.北京:清华大学出版社,1996.
    [356] 殷春根.非线性理论在洁净煤技术研究中的应用.浙江大学博士学位论文,1998.
    [357] Yin C G, Luo Z Y, Ni M J, Cen K E Predicting coal ash fusion temperature with a back-propagation neural network model. Fuel, 1998;77(15):1777-1782.
    [358] Salehfar H, Benson S A. Electric utility coal quality analysis using artificial neural network techniques. Neurocomputing, 1998;23(1-3):195-206.
    [359] Guo B, Shen Y, Li D, Zhan F. Modelling coal gasification with a hybrid neural network. Fuel, 1997;76(12):1159-1164.
    [360] Zhu Q, Jones J M, Williams A, Thomas K M. The predictions of coal/char combustion rate using an artificial neural network approach. Fuel, 1999;78(14):1755-1762.
    [361] Blasco J A, Fueyo N, Dopazo C and Ballester J. Modelling the temporal evolution of a reduced combustion chemical system with an artificial neural network. Combustion and Flame, 1998;113(1-2):38-52.
    [362] Kalogirou S A. Applications of artificial neural networks in energy systems-A review. Energy conversion & management, 1999;40(10):1073-1087.
    [363] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed. Springer-Verlag Berlin Heidelberg, New York, 1996.
    [364] Goldberg D. Genetic Algorithms in Search, Optimization and Machine Learning, Reading, MA:Addison-Wesley, 1989.
    [365] Carroll David L. Chemical Laser Modeling with genetic algorithms. AIAA Journal, 1996;34:338-346.
    
    [366] Carroll David L. Genetic algorithms and optimization chemical oxygen-iodine lasers. In:Develpments in Theoretical and Applied Mechanics, Vol. X VI, eds. H. Wilson, R. Batra, C.Bert, A. Davis, R. Schapery, D. Stewart, and F. Swinson, Tuscaloosa: School of Engineering,The University of Alabama, 1996. pp. 411-424.
    [367] Krishnakumar K. Micro-genetic algorithms for stationary and non-stationary function optimization. SPIE: Intelligent Control and Adaptive Systems, Vol. 11%, Philadelphia, PA.1989.
    [368] Wolpert D H. Stacked generalization. Neural Networks, 1992; 5:241 -259.
    [369] Lanouette Robert, Thibault Jules, Valade Jacques L. Processing modeling with neural networks using small experimental datasets. Computers and Chemical Engineering, 1999; 23(9):1167-1176.
    [370] Specht D F. A general regression neural network. IEEE Transactions on Neural Networks, 1991;2: 568-576.
    [371] Teo Lian Seng, Marzuki Khalid and Rubiyah Yusof. Adaptive GRNN for the Modeling of Dynamic Plants. Proceedings of the 2002 IEEE International Symposium on Intelligent Control, 2002; 11:27-30.
    [372] Hong Yang, Zbigniew Ring, Yevgenia Briker, Norma McLean, Wally Friesen, Craig Fairbrige.Neural network prediction of cetane number and density of diesel fuel from its chemical composition determined by LC and GC-MS. Fuel, 2002; 81(l):65-74.
    [373] Hansen James V, Meservy Rayman D. Learning experiments with genetic optimization of a generalized regression neural network Decision Support Systems. 1996; 18:317-325.
    [374] Cohen Guy and Francos Joseph M. Linear Least Squares Estimation of Regression Models for Two-Dimensional Random Fields. Journal of Multivariate Analysis, 2002; 82:431-444.
    [375] Frenich A Garrido, Galera M Martinez, Vidal J L Martinez, Garcia M D Gil. Partial least-squares and principal component regression of multi-analyte high-performance liquid chromatography with diode-array detection. Journal of Chromatography A, 1996; 727:27-38.
    [376] Maurizia Seggiani and Gabriele Pannocchia. Prediction of coal ash thermal properties using partial least-squares regression. Industrial & Engineering Chemistry Research, 2003; 42(20):4919-4926.
    [377] Andrews Darren T. Comments on the relationship between principal components analysis and weigthed linear regression for binariate data sets. Chemometrics and Intelligent Laboratory Systems, 1996; 34:231-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700