用户名: 密码: 验证码:
Cu_2O-Cu金属陶瓷制备及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以铝电解用惰性阳极材料为主要应用背景,提出了新的Cu_2O-Cu金属陶瓷材料体系,设计和制备了含有不同形貌和尺寸Cu颗粒的Cu_2O-Cu金属陶瓷。利用X射线衍射仪(XRD)、光学显微镜(OM)和扫描电镜(SEM)等手段分析和观察了Cu_2O-Cu金属陶瓷及其腐蚀产物的相组成和微观组织特征。利用电子万能材料试验机、热膨胀分析仪、热导率测试仪和电导率测试仪等设备测试了Cu_2O-Cu金属陶瓷的力学性能和物理性能,采用热腐蚀方法考察了Cu_2O-Cu金属陶瓷在铝电解熔盐中的耐腐蚀性能,系统地研究了Cu含量、颗粒形貌及尺寸对Cu_2O-Cu金属陶瓷宏观性能的影响规律,并分析了其影响机理,为惰性阳极材料以及双相复合材料的研究提供了一定的理论依据。
     研究表明,通过选择合理的工艺参数可以获得所设计的Cu_2O-Cu金属陶瓷。金属陶瓷中的真实Cu含量与名义Cu含量一致,枝状Cu粉制备的ZR体系试样中Cu颗粒为具有较大长宽比和形状因子的蠕虫状形貌。球形Cu粉制备的QR200、QR300和QR400体系试样中的Cu颗粒基本为球形形貌。在不同体系试样中,Cu_2O晶粒基本都呈等轴状,其晶粒尺寸受引入基体中的Cu含量及颗粒尺寸影响。
     Cu_2O-Cu金属陶瓷的弹性模量、强度和韧性均随着材料中Cu含量的增加而增大。在相同Cu含量条件下,Cu颗粒的形状因子越大、尺寸越小,金属陶瓷的弹性模量越高且强韧化效果越好。Cu_2O-Cu金属陶瓷热震后的剩余弯曲强度随热震温差的增大呈现先下降后增加的趋势。在相同温差热震后的试样剩余弯曲强度随着材料中Cu含量的增加而增大。在Cu含量相同条件下,Cu颗粒的形状因子越大、尺寸越小,试样热震后的剩余弯曲强度越高。
     Cu_2O-Cu金属陶瓷的电导率随着Cu含量的增加呈现典型的渗流导电行为,其变化规律可用有效介质普适方程(GEM方程)来描述,发生渗流导通后,试样的电导率可达到10~4~10~6Ω~(-1)·m~(-1)数量级。Cu颗粒形貌对材料渗流阈值的影响较大,高形状因子的Cu颗粒可以使试样在较低Cu含量下形成渗流导通结构;Cu颗粒尺寸对材料渗流阈值的影响不大,材料的导通渗流阈值随着Cu颗粒尺寸的减小而略有降低。Cu_2O-Cu金属陶瓷在不同Cu含量下对应不同的导电机制。
     Cu_2O-Cu金属陶瓷的热膨胀系数随着温度的升高而增大,其变化过程与材料中的热应力状态和释放机理密切相关。在相同温度条件下,Cu含量越高、颗粒形状因子越大,金属陶瓷的热膨胀系数越大。Cu颗粒尺寸对试样热膨胀系数的影响与Cu含量有关。
     Cu含量和颗粒形貌对Cu_2O-Cu金属陶瓷的热导率影响显著。材料中Cu含量越高、颗粒形状因子越大,金属陶瓷的热导率越高。Cu颗粒尺寸对试样热导率的影响程度取决于材料中的Cu含量,当Cu含量较低时,颗粒尺寸对金属陶瓷的热导率影响较小,而当Cu含量较高时,小尺寸Cu颗粒可以使金属陶瓷获得较高的热导率。
     在铝电解熔盐腐蚀过程中,Cu_2O-Cu金属陶瓷在表面形成CuAlO_2保护层,从而降低了其腐蚀速率。材料中Cu含量越高、颗粒形状因子越大、尺寸越小,金属陶瓷的腐蚀速率越大。Cu_2O-Cu金属陶瓷在熔盐中的腐蚀机理主要为金属陶瓷组分的溶解、Cu_2O与Al_2O_3的化学反应以及金属Cu的物理迁移。
A new Cu_2O-Cu cermet material with different Cu shape and size was prepared as candidate inert anode material for Al production. The microstructure of the cermet and the products after corrosion tests were observed and analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and optical microscope (OM). Mechanical properties, thermal expansion coefficient, thermal conductivity and electrical conductivity of the cermets were tested. The corrosion rate of the cermets in electrolyte (Na3AlF6) was measured as well. The relationship between the properties of the cermet and the Cu content, shape and size was investigated, and the mechanisms of these relationships were demonstrated.
     The results show that the Cu_2O-Cu cermet with branched Cu (ZR) and spherical Cu (QR) could be obtained with processing parameter controlling, and the real Cu content was well agree with the calculated Cu content. The Cu structure in Cu_2O-Cu cermet prepared with branched Cu is worm like, and the one prepared with spherical Cu (QR200, QR300, QR400) is basically spherical shape. In all Cu_2O-Cu cermet, the crystals of the Cu_2O matrix are isometric, and the size of them is affected by the Cu content and size.
     The elastic modulus, strength and toughness of the Cu_2O-Cu cermet increase with increasing Cu content. With same Cu content, the elastic modulus and toughness increase with increasing shape factor and decreasing size of the Cu phase. The thermal shock resistance property of the Cu_2O-Cu cermet has a fluctuation phenomenon with increasing of thermal shock temperature difference. The thermal shock resistance property increases with increasing of Cu content. The remaining flexural strength after thermal shock increases with increasing aspect ratio and decreasing size of the Cu phase.
     The results of the electrical conductivity tests show the typical percolation phenomenon, and the regularity of it can be described by using GEM (General Effective Method) equation. After the percolation, the electrical conductivity was about 10~4~10~6Ω~(-1)·m~(-1). The percolation threshold is largely influenced by the shape factor of the conductors. The Cu_2O-Cu cermet prepared with branched Cu has a lower percolation threshold than the one prepared with spherical Cu. The conductive mechanism of the Cu_2O-Cu cermet is different with different Cu content.
     The thermal expansion coefficient of the Cu_2O-Cu cermet increases with increasing temperature. The variation process is largely influenced by the internal thermal stress state and release mechanisms. Under the same temperature, the thermal expansion coefficient increases with increasing Cu content and aspect ratio of Cu phase. The size effect is affected by the Cu content.
     The thermal conductivity of the Cu_2O-Cu cermet is largely influenced by Cu content and Cu shape. The thermal conductivity increases with increasing of Cu content and aspect ratio of Cu phase. The size effect is affected by the Cu content. The size effect with lower Cu content is smaller than the one with higher Cu content.
     During the corrosion tests, there is a CuAlO_2 layer formed and protected the Cu_2O-Cu cermet. This protective layer decreases the corrosion rate. The corrosion rate increases with increasing content, aspect ratio, and decreasing size of the Cu phase. The corrosion mechanism of Cu_2O-Cu cermet in the electrolyte is mainly resulted from the dissolve of the cermet, the chemical reaction of Cu_2O and Al_2O_3, and the physical migration of Cu.
引文
1 X. Zhang, N. Liu. Microstructure, mechanical properties and thermal shock resistance of nano-TiN modified TiC-based cermets with different binders. International Journal of Refractory Metals and Hard Materials, 2008, 26: 575-582
    2 K.I. Takagi, Y. Yamasaki, K. Hirata. Development of high strength Mo2NiB2 ternary boride base cermets produced by reaction boronizing sintering. Materials Science Forum, 2007, 539-543: 803-808
    3 H.J. Zhang, K.Q. Liu. Development of the high temperature Mo-Al2O3 Cermet. Rare Metal Materials and Engineering, 2007, 36(suppl.1): 282-284
    4 S.D. Kim, H. Moon, S.H. Hyun, J. Moon, J. Kim, H.W. Lee. Ni-YSZ cermet anode fabricated from NiO-YSZ composite powder for high-performance and durability of solid oxide fuel cells. Solid State Ionics, 2007, 178: 1304-1309
    5 M.L. Flem, A. Allemand, S. Urvoy, D. Cédat, C. Rey. Microstructure and thermal conductivity of Mo-TiC cermets processed by hot isostatic pressing. Journal of Nuclear Materials, 2008, 380: 85-92
    6 M. Marin?ek, S. Pejovnik, J. Ma?ek. Modelling of electrical properties of Ni-YSZ composites. Journal of the European Ceramic Society, 2007, 27: 959-964
    7 D.R. Sadoway. Inert anodes for the Hall- Héroult cell: the ultimate materials challenge, JOM, 2001, 53: 34-35
    8傅献彩,沈文霞,姚天杨.物理化学(下).高等教育出版社, 1990
    9张丽鹏,于先进,高芝媛.铝电解用金属基惰性阳极材料的研究进展.硅酸盐通报, 2008, 27: 105-114
    10钮因健.对如何实现铝电解节能目标的认识.轻金属, 2007, 9: 3-5
    11 J. Yang, J.N. Hryn, G.K. Krumdick. Aluminum electrolysis tests with inert anodes in KF-AlF3-based electrolytes. Light Metals, 2006: 421-424
    12 J. Wang, Y. Lai, Z. Tian, J. Li, Y. Liu. Investigation of 5Cu-(10NiO-NiFe2O4) inert anode corrosion during low-temperature aluminum electrolysis. Light Metals, 2007: 525-530
    13 R.P. Pawlek. Inert anodes: an update. Light Metals, 2008: 1039-1045
    14吴萍沙.炭素阳极混捏成型工序的沥青烟气净化新思路.轻金属, 2006, 8: 68-71
    15 B.J. Welch. Aluminum production paths in the new millennium. JOM, 1999, 51: 24-28
    16 J. Altdorfer. Doe follows roadmap to Al technologies of the future. JOM, 2000, 52: 19-25
    17 J. Keniry. The economics of inert anodes and wettable cathodes for aluminum reduction cells. JOM, 2001, 53: 43-47
    18 C.M. Hall. Process of reducing aluminum by electrolysis. U.S. Patent, 400766, 1889
    19 Z.L. Tian, L.F. Huang, Y.Q. Lai, J. Li, Y.X. Liu. Effect of additive CaO on corrosion resistance of 10NiO-NiFe2O4 ceramic inert anodes for aluminium electrolysis. Light Metals, 2008: 1059-1063
    20 X.J. Yu, L.P. Zhang, Y.H. Dong, Z.D. Zhao. Corrosion of zinc ferrite based inert anodes in AlF3-NaF-Al2O3 melts under conditions of anodic polarization. Journal of Rare Earths, 2006, 24(Sp.): 352-354
    21 Y. Fu, X.J Zhai, B Bai, X.S. Zhang, Z.W. Wang. Molten salt electrolysis of SnO2-based inert anode. Journal of Rare Earths, 2005, 23(Sp.): 89-92
    22 E.W. Dewing, G.M. Haarberg, S. Rolseth, L. R?nne, J. Thonstad, N. Aalberg. The chemistry of solution of CeO2 in cryolite melts, Metallurgical and Materials Transactions B, 1995, 26B: 81-86
    23 R.P. Pawlek. Inert anodes for the primary aluminum industry: an update. Light Metals, 1996: 243-248
    24 Y. Zaikov, A. Khramov, V. Kovrov, V. Kryukovsk, A. Apisarov, O. Tkacheva, O. Chemesov, N. Shurov. Electrolysis of aluminum in the low melting electrolytes based on potassium cryolite. Light Metals, 2008: 505-508
    25 D.R. Sadoway. Materials systems approach to selection and testing of nonconsumable anodes for the Hall cell. Light Metals, 1990: 403-407
    26 R. Von Kaenel, V. De Nora. Technical and economical evaluation of the de Nora inert metallic anode in aluminum reduction cells. Light Metals, 2006: 397-402
    27 T. Nguyen, V. de Nora. De Nora oxygen evolving inert metallic anode. LightMetals, 2006: 385-390
    28 J.N. Hryn, M.J. Pellin. Dynamic inert metal anode. Light Metals, 1999: 377-381
    29 S.P. Ray. Inert electrode compositions. U.S. Patent, 4, 374, 050, 1983
    30 S.P. Ray, R.A. Rapp. Composition suitable for inert electrode. U.S. Patent, 4, 455, 211, 1984
    31 S.P. Ray. Effect of cell operating parameters on performance of inert anodes in Hall-Héroult cells. Light Metals, 1987: 367-380
    32 A. John. Doe follows roadmap to Al technologies of the future. JOM, 2000, 52: 19-20
    33 R.D. Peterson, N.E. Richards, A.T. Tabereaux, O.H. Koski, L.G. Morgan, D.M. Strachan. Results of 100 hour electrolysis test of a cermet anode: operational results and industry perspective. Light Metals, 1990: 385-393
    34 D.M. Strachan, O.H. Koski, L.G. Morgan, R.E. Westerman, R.D. Peterson, N.E. Richards, A.T. Tabereaux. Results from a 100 hour electrolysis test of a cermet anode: materials aspects. Light Metals, 1990: 395-401
    35 T.R. Alcorn, A.T. Tabereaux, N.E. Richards, C.F.Jr. Windisch, D.M. Strachan, J.S. Gregg, M.S. Frederick. Operational results of pilot cell test with cermet“Inert”anodes. Light Metals, 1993: 433-443
    36 C.F.Jr. Windisch, D.M. Strachan, C.H.Jr. Henager, T.R. Alcom, A.T. Tabereaux, N.E. Richards. Materials characterization of cermet anodes tested in a pilot cell. Light Metals, 1993: 445-454
    37 J.S. Gregg, M.S. Frederick, A.J. Vaccaro, T.R. Alcom, A.T. Tabereaux, N.E. Richards. Pilot cell demonstration of cerium oxide coated anodes. Light Metals, 1993: 465-473
    38 S.P. Ray, R.W. Woods. Controlled atmosphere for fabrication of cermet electrodes. U.S. Patent, 5, 794, 112, 1997
    39 S.P. Ray. Electrolysis with an inert electrode containing ferrite, copper and silver. U.S. Patent, 5, 865, 980, 1997
    40张雷,周科朝.铝电解用NiFe2O4型金属陶瓷惰性阳极的研究进展.材料导报, 2005, 19: 48-51
    41 G.J. Li, R.R. Ren, X.X. Huang, J.K. Guo. Microstructure and mechanical properties of Al2O3/Ni composites. Ceramics International, 2004, 30:977-982
    42 M.L. Lee, Y. Li, C.A. Schuh. Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass. Acta Materialia, 2004, 52: 4121-4131
    43 N. Liu, X. Liu, X. Zhang, L. Zhu. Effect of carbon content on the microstructure and mechanical properties of superfine Ti(C, N)-based cermets. Materials Characterization, 2008, 59: 1440-1446
    44 A. Azadmehr, E. Taheri-Nassaj. An in situ (W, Ti)C-Ni composite fabricated by SHS method. Journal of Non-Crystalline Solids, 2008, 354: 3225-3234
    45 Y. Li, N. Liu, X. Zhang, C. Rong. Effect of Mo addition on the microstructure and mechanical properties of ultra-fine grade TiC-TiN-WC-Mo2C-Co cermets. International Journal of Refractory Metals & Hard Materials, 2008, 26: 190-196
    46 Y. Wang, M.E. Walter, K. Sabolsky, M.M. Seabaugh. Effects of powder sizes and reduction parameters on the strength of Ni-YSZ anodes. Solid State Ionics, 2006, 177: 1517-1527
    47 M.F. Sigl, P.A. Matga, B.J. Dalgleish, R.M. McMeeking, A.G. Evans. On the toughness of brittle materials reinforced with a ductile phase. Acta Metallurgica, 1988, 36: 945-953
    48 G. Zhang, J. Li, Y. Lai, Z. Tian. Effect of metallic phase content on mechanical properties of (85Cu-15Ni)/(10NiO-NiFe2O4) cermet inert anode for aluminum electrolysis. Transactions of Nonferrous Metals Society of China, 2007, 17: 1063-1068
    49刘代军,罗发,李鹏,朱冬梅,周万城. Al2O3/Ni金属陶瓷力学性能和介电性能的研究.功能材料, 2008, 39: 62-64
    50 S.E. Landwehr, G.E. Hilmas, W.G. Fahrenholtz, I.G. Talmy, S.G. DiPietro. Microstructure and mechanical characterization of ZrC-Mo cermets produced by hot isostatic pressing. Materials Science and Engineering A, 2008, 497: 79-86
    51 A.A. Knan, J.C. Labbe. Aluminium nitride-molybdenum ceramic matrix composites: influence of molybdeum concentration on the mechanical properties. Journal of Materials Science, 1997, 32: 3829-3833
    52 D.T. Rankin, J.J. Stiglichetal, D.R. Petpak, R. Ruh. Hot-pressing andmechanical properties of A12O3 with an Mo-dispersed phase. Journal of the American Ceramic Society, 1971, 54: 277-281
    53 M. Nawa, T. Sekino, K. Niihara. Fabrication and mechanical behavior of A12O3/Mo nano-composites. Journal of Materials Science, 1994, 29: 3185-3192
    54 Y. Waku, M. Suzuki, Y. Oda, Y Kohtoku. Improvement of fracture toughness of A12O3 composites by micro-dispersion of flaky refractory metals Mo, Ta and Nb. Journal of the ceramic Society of Japan, 1995, 103: 713-719
    55 M. Nawa, K. Yamazaki, T. Sekino, K. Niihara. A new type of nanocomposite in tetragonal zironia polycrystal-molybdenum system. Materials Letters, 1994, 20: 299-304
    56 J.L. Guichand, O. Tillement, A. Mocellin. Alumina-chromium cermets by hot-pressing of nano-composite powders. Journal of the European Ceramic Society, 1998, 18: 1743-1752
    57 J.F. Bartolome, M. Diaz, J. Requena, J.S. Moya, A.P. Tomsia. Mullite/ Molybdenum ceramic-metal composites. Acta Materialia, 1999, 47: 3891- 3899
    58 N. Chen, H.X. Zhang, G.H. Mu, M.Y. Gu. The effect of internal stress on the thermal expansion coefficient of Al/SiCp composite. Journal of Composite Materials, 2007, 41: 2691-2699
    59 P.L. Wu, Z. Tian, L.D. Wang, W.D. Fei. Effect of changing rate of residual stress on thermal expansion behavior of magnesium borate whisker- reinforced aluminum composite. Thermochimica Acta, 2007, 455: 7-10
    60 C.F. Deng, Y.X. Ma, P. Zhang, X.X. Zhang, D.Z. Wang. Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Materials Letters, 2008, 62: 2301-2303
    61 C.L. Hsieh, W.H. Tuan. Thermal expansion behavior of a model ceramic-metal composite. Materials Science and Engineering A, 2007, 460-461: 453-458
    62 Z.H. Karadeniz, D. Kumlutas. A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials. Composite Structures, 2007, 78: 1-10
    63 Q. Zhang, G.H. Wu, G.Q. Chen. Thermal expansion and mechanicalproperties of high content SiCp/Al composites fabricated by squeeze casting technology. Composites Part A, 2003, 34: 1023-1027
    64 S. Leminux, S. Elmoari. Thermal expansion of isotropic durlcan metal matrix composites. Journal of Materials Science, 1998, 33: 4381-4387
    65 S. Elomari, M.D. Skibo, A. Sundarriajan, H. Richards. Thermal expansion behaviors of particulate metal-matrix composites. Composites Science and Technology, 1998, 58: 369-376
    66 S. Skirl, M. Hoffman, K. Bowman, S. Wiederhorn, J. Rodel. Thermal expansion behavior and macrostrain of Al2O3/Al composites with interpenetrating networks. Acta Materialia, 1998, 46: 2493-2499
    67 J.M. Molina, J. Narciso, L. Weber, A. Mortensen, E. Louis. Thermal conductivity of Al-SiC composites with monomodal and bimodal particle size distribution. Materials Science and Engineering A, 2008, 480: 483-488
    68 N. ?zdemir, F.Yakuphanoglu. The effects of particle size and volume fraction of Al2O3 on electronic thermal conductivity ofα-Al2O3 particulate reinforced aluminum composites (Al/Al2O3-MMC). The International Journal of Advanced Manufacturing Technology, 2006, 29: 226-229
    69 J.J. Wang, X.S. Yi. Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites. Composites Science and Technology, 2004, 64: 1623-1628
    70 H.S. Tekce, D. Kumlutas, I.H. Tavman. Effect of particle shape on thermal conductivity of copper reinforced polymer composites. Journal of Reinforced Plastics and Composites, 2007, 26: 113-121
    71 H.Y. Ng, X.H. Lu, S.K. Lau. Thermal conductivity of boron nitride-filled thermoplastics: effect of filler characteristics and composite processing conditions. Polymer Composites, 2005, 26: 778-790
    72 G.W. Lee, J.I. Lee, S.S. Lee, M. Park, J. Kim. Comparisons of thermal properties between inorganic filler and acid-treated multiwall nanotube/polymer composites. Journal of Materials Science, 2005, 40: 1259- 1263
    73 G.W. Lee, M. Parka, J. Kim, J.I. Lee, H.G. Yoon. Enhanced thermal conductivity of polymer composites filled with hybrid filler. Composites Part A, 2006, 37: 727-734
    74 W.Y. Zhou, S.H. Qi, C.C. Tu, HZ ZHAO, CF WANG, JL KOU. Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. Journal of Applied Polymer Science, 2007, 104: 1312-1318
    75 A.G. Every, Y. Tzou, D.P. H. Hasselman, R. Raj. The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metallurgica et Materialia, 1992, 40: 123-129
    76 D.M. Liu, W.H. Tuan, C.C. Chiu. Thermal diffusivity, heat capacity and thermal conductivity in A12O3-Ni Composite. Materials Science and Engineering B, 1995, 31: 287-291
    77 A.D. Vita, S. Roitti, I. Barbariol, O. Sbaizero. Electrical conductivity of an alumina matrix and FeAl particles composites. Key Engineering Materials, 2004, 264-268: 977-980
    78 JH Yu, GW Park, S Lee, SK Woo. Microstructural effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode. Journal of Power Sources, 2007, 163: 926-932
    79 Z.M. Elimat. AC electrical conductivity of poly(methyl methacrylate)/carbon black composite. Journal of Physics D: Applied Physics, 2006, 39: 2824-2828
    80 J.S. Leng, W.M. Huang, X. Lan, Y.J. Liu, S.Y. Du. Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite. Appl. Phys. Lett., 2008, 92, 204101: 1-3
    81 T.H. Ding, L.H. Wang, P. Wang. Changes in electrical resistance of carbon- black-filled silicone rubber composite during compression. Journal of Polymer Science Part B: Polymer Physics, 2007, 45: 2700-2706
    82 W. Zhu, C.R. Xia, D. Ding, X.Y. Shi, G.Y. Meng. Electrical properties of ceria-carbonate composite electrolytes. Materials Research Bulletin, 2006, 41: 2057-2064
    83 S.P Li, Y.J Qin, J.H Shi, Z.X. Guo, Y.F. Li, D.B. Zhu. Electrical properties of soluble carbon nanotube/polymer composite films. Chemistry of Materials, 2005, 17: 130-135
    84 S. Kirkpatrick. Percolation and conduction. Reviews of Modern Physics, 1973, 45: 574-588
    85 H. S. Dahiya, N. Kishore, R.M. Mehra. Effect of percolation on electrical and dielectric properties of acrylonitrile butadiene styrene/graphite composite. Journal of Applied Polymer Science, 2007, 106: 2101-2110
    86 E. Kymakis. Electrical properties of single-wall carbon nanotube-polymer composite films. Journal of Applied Physics, 2006, 99, 084302: 1-7
    87 S.G. Ayodele, T. Akomolafe. DC electrical properties and conduction mechanisms of Al-clay based composite resistors. Journal of Materials Science, 2005, 40: 6131-6138
    88 G.J. Hu, C.G. Zhao, S.M. Zhang, M.S. Yang, Z.G. Wang. Low percolation thresholds of electrical conductivity and rheology in poly (ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer, 2006, 47: 480-488
    89 K. Miyasaka. Conductive mechanism of conductive polymer composites. International Polymer Science and Technology, 1986, 13: 41-45
    90 D.S. McLachlan, M. Blaszkiewicz, R.E. Newnham. Electrical resistivity of composites. Journal of the American Ceramic Society, 1990, 73: 2187-2203
    91 K. Wang, T. Fujita, M.W. Chen, T.G. Nieh, H. Okada, K. Koyama, W. Zhang, A. Inoue. Electrical conductivity of a bulk metallic glass composite. Applied Physics Letters, 2007, 91, 154101: 1-3
    92 R.L. Barton, J.M. Keith, J.A. King. Electrical conductivity modeling of multiple carbon fillers in liquid crystal polymer composites for fuel cell bipolar plate applications. Journal of New Materials for Electrochemical Systems, 2008, 11: 181-186
    93 I. Alig, T. Skipa, D. Lellinger, M. Bierdel, H. Meyer, Dynamic percolation of carbon nanotube agglomerates in a polymer matrix: comparison of different model approaches. Physica Status Solidi B, 2008, 245: 2264-2267
    94王晨,李明,邓海金,南策文.亚微米Zn粉/PVDF复合材料的湿法制备与电性能研究.自然科学进展, 2005, 15: 892-896
    95 Q. Zheng, L. Shen, W.C. Li, Y.H. Song, X.S. Yi. Nonlinear conductive properties and scaling behavior of conductive particle filled high-density polyethylene composites. Chinese Science Bulletin, 2005, 50: 385-395
    96 T. Slupkowski. Electrical conductivity of mixtures of conducting and insulating particles. Physica Status Solidi A, 1984, 83: 329-334
    97 C. Pierre, R. Deltour. Electrical-conduction mechanisms in polymer-copper- particle composites ?. Temperature and high-magnetic-field dependence of the conductivity. Physical Review B, 1990, 42: 3380-3386
    98 P. Sheng, E.K. Sichel, J.I. Gittleman. Fluctuation-induced tunneling conduction in carbon-polyvinylchloride composites. Physical Review Letters, 1978, 40: 1197-1200
    99章明秋,曾汉民. HDPE导电复合材料的交流开关效应研究.复合材料学报, 1991, 8: 1-6
    100 V. Ambegaokar, B.I. Halperin, J.S. Langer. Hopping conductivity in disordered systems. Physical Review B, 1971, 4: 2612-2620
    101 G.C. Psarras. Hopping conductivity in polymer matrix-metal particles composites. Composites Part A, 2006, 37: 1545-1553
    102 E.K. Sichel, J.I. Gittleman, P. Sheng. Transport properties of the composite material carbon-poly(vinyl chloride). Physical Review B, 1978, 18: 5712- 5716
    103 A. Aharony, A.B. Harris, O. Entin-Wohlman. Was superlocalization observed in carbon-black-polymer composites? Physical Review Letters, 1993, 70: 4160
    104 E.M. Abdel-Bary, M. Amin, H.H. Hassan. Factors affecting electrical conductivity of carbon black-loaded rubber II. Effect of concentration and type of carbon black on electrical conductivity of SBR. Journal of Polymer Science: Polymer Chemistry Edition, 1979, 17: 2163-2172
    105张雄伟,黄锐.高分子复合导电材料及其应用发展趋势.功能材料, 1994, 25: 492-499
    106 P. Sheng. Fluctuation-induced tunneling conduction in disordered materials. Physical Review B, 1980, 21: 2180-2195
    107 X.S. Yi, G.Z. Wu, Y. Pan. Properties and applications of filled conductive polymer composites. Polymer International, 1997, 44: 117-124
    108 P.J. Mather, K.M. Thomas. Carbon black/high density polyethylene conducting composite materials Part I: structural modification of a carbon black by gasification in carbon dioxide and the effect on the electrical and mechanical properties of the composite. Journal of Materials Science, 1997, 32: 401-407
    109 D.H. Deyoung. Solubilities of oxides for inert anodes in cryolite-based melts. Light Metals, 1986, 2: 299-307
    110 Q.B. Diep, E.W. Dewing, A. Sterten, The solubility of Fe2O3 in cryolite- alumna melts. Metallurgical and Materials Transactions B, 2002, 33: 140-142
    111 J.A. Sekhar, J. Liu, H. Deng. Reduction conditions encountered in cryolite baths. Light Metals, 1999: 383-387
    112 E.W. Dewing. The chemistry of the alumina reduction cell. Canadian Metallurgical Quarterly, 1991, 30: 153-161
    113王化章, J. Thonstad.二氧化锡基惰性阳极的耐腐蚀性研究.有色金属, 1990, 42: 54-58
    114 G.P. Tarcy. Corrosion and passivation of cermet inert anodes in cryolite-type electrolytes. Light Metals, 1986: 309-320
    115 C.F.J. Windisch, S.C. Marschman. Electrochemical polarization studies on Cu and Cu-containing cermet anodes for the aluminum industry. Light Metals, 1987: 351-355
    116 K. Han, M. Tao. Electrochemically deposited p-n homojunction cuprous oxide solar cells. Solar Energy Materials & Solar Cells, 2009, 93: 153-157
    117 S.S. Jeong, A. Mittiga, E. Salza, A. Masci, S. Passerini. Electrodeposited ZnO/Cu2O heterojunction solar cells. Electrochimica Acta, 2008, 53: 2226- 2231
    118 L.J. Fu, J. Gao, T. Zhang, Q. Cao, L.C. Yang, Y.P. Wu, R. Holze, H.Q. Wu. Preparation of Cu2O particles with different morphologies and their application in lithium ion batteries. Journal of Power Sources, 2007, 174: 1197-1200
    119 Y.H. Lee, I.C. Leu, C.L. Liao, S.T. Chang, M.T. Wu, J.H. Yen, K.Z. Fung. Fabrication and characterization of Cu2O nanorod arrays and their electrochemical performance in Li-ion batteries. Electrochemical and Solid State Letters, 2006, 9: A207-A210
    120 L.O. Grondahl. The copper-cuprous oxide rectifier and photoelectric cell. Reviews of Modern Physics, 1933, 5: 141-168
    121孙晓昆,谢保华,电点火技术用Cu2O型和SiC型半导体陶瓷材料.火花塞与特种陶瓷, 1996, 3: 25-26
    122肖尊文,孙国梁,邓美兰. Cu2O半导体陶瓷釉的研究.火花塞与特种陶瓷,1996, 4: 12-17
    123 M. Nofar, H.R. Madaah Hosseini, N. Kolagar-Daroonkolaie. Fabrication of high wear resistant Al/Al3Ti metal matrix composite by in situ hot press method. Materials & Design, 2009, 30: 280-286
    124 J.G. Xu, G.J. Jiang, W.L. Li, H.R. Zhuang, B.L. Zhang, L.D. Chen. In situ synthesis of SiCW/MoSi2 composite through SPS process. Journal of Alloys and Compounds, 2008, 462: 170-174
    125 G.T. Villasenor, R.B. Paredes, S.V. Radcliffe. The mechanical behaviour of cuprous oxide. Journal of Materials Science, 1978, 13: 2164-2170
    126李国军,黄校先,郭景坤. Al2O3/Ni金属陶瓷显微结构和力学性能的研究.无机材料学报, 2004, 19: 546-552
    127 D.V. Hille, S. Bengtsson, R. Warren. Quantitative metallographic study of fibre morphology in a short alumina fiber reinforced aluminium alloy matrix. Composites Science and Technology, 1989, 35: 195-206
    128余永宁,刘国权.体视学-组织定量分析的原理和应用.冶金工业出版社, 1989
    129周玉.陶瓷材料学.哈尔滨工业大学出版社,1995
    130 HX Peng, Z Fan, JRG Evans. Bi-continuous metal matrix composites. Materials Science and Engineering A, 2001, 303: 37-45
    131毕敬,马宗义,申红伟,吕毓雄,高荫轩. SiC颗粒尺寸及含量对SiCp/2024A1复合材料性能的影响.材料工程, 1992, 2: 21-23
    132潘蕾,陶杰,刘子利,陈照峰.超声复合法制备的SiCP/ZA27复合材料的力学性能.南京航空航天大学学报, 2005, 37: 653-658
    133陈国钦,朱德智,武高辉,张强,修子扬.电子封装用SiCp/Cu复合材料制备与性能.电子与封装, 2006, 6: 5-8
    134 Y.Z. Zhan, G.D. Zhang.The effect of interfacial modifying on the mechanical and wear properties of SiCp/Cu composites.Materials Letters,2003,57:4583-459l
    135 J. Selsing. Internal stress in ceramics. Journal of the American Ceramic Society, 1961, 44: 419-419
    136 N.J. Petch. The cleavage strength of crystals. Journal of Iron and Steel Institute, 1953, 174:25-30
    137 R.L. Stewart, M. Lwasa, R.C. Bradt. Room-temperature KIc values forsingle-crystal and polycrystalline MgAl2O4. Journal of the American Ceramic Society, 1981, 64: C22-C23
    138李荣久,茹红强,孙旭东.陶瓷-金属复合材料.冶金工业出版社, 1995
    139孙康宁,尹衍升,李爱民.金属间化合物/陶瓷基复合材料.机械工业出版社, 2003
    140 D. Stauffer, A. Aharony. Introduction to percolation theory. 2nd edn. Taylor and Francis Inc., 1984
    141 F. Carmona, R. Canet, P. Delhaes. Piezoresistivity of heterogeneous solids. Journal of Applied Physics, 1987, 61: 2550-2557
    142 W.Z. Shao, N. Xie, L. Zhen, L.C. Feng. Conductivity critical exponents lower than the universal value in continuum percolation systems. Journal of Physics-Condensed Matter. 2008, 20: 395235
    143 K. Nagata, H. Iwabuki, H. Nigo. Effect of particle size of graphite on electrical conductivity of graphite/polymer composite. Composite Interfaces. 1999, 6: 483-493
    144 C.W. Nan. Physics of inhomogeneous inorganic materials. Progress in Materials Science, 1993, 37: 1-116
    145刘金世,薛庆忠.导电高分子复合材料的有效电导率模型.石油大学学报(自然科学版), 2005, 29: 140-143
    146王广济. Cu2O单晶电导率跃变的起因.纺织基础科学学报. 1994, 7: 45-47
    147 J.S. Anderson, N.N. Greenwood. The semiconducting properties of cuprous oxide. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990), 1952, 215:353-370
    148邵文柱,沙德生, V.V.伊万诺夫,杨德庄.氧化亚铜基金属陶瓷导电性的试验研究.材料科学与工艺, 1999, 7: 109-112
    149 D. Stroud, P.M. Hui. Nonlinear susceptibilities of granular matter. Physical Review B, 1988, 37: 8719-8724
    150 P.M. Hui. Enhancement in nonlinear effects in percolating nonlinear resistor networks. Physical Review B, 1990, 41: 1673-1675
    151 Y.S. Li, P.M. Duxbury. Size and location of the largest current in a random resistor network. Physical Review B, 1987, 36: 5411-5419
    152 L. Benguigui. Simulation of dielectric failure by means of resistor-diode random lattices. Physical Review B, 1988, 38: 7211-7214
    153 W. Feldman. The electrical conductivity and isothermal hall effect in cuprous oxide. Physical Review, 1943, 64: 113-118
    154 R.S. Toth, R. Kilkson, D. Trivich. Electrical conductivity of singe-crystal cuprous oxide at high temperature. Physical Review, 1961, 122: 482-488
    155 R.U. Vaidya, K.K. Chawla. Thermal expansion of metal-matrix composites. Composites Science and Technology, 1994, 50: 13-22
    156叶大伦.实用无机物热力学数据手册.冶金工业出版社, 1981
    157 O.A. Lorentsen. Behaviour of nickel, iron and copper by application of inert anodes in aluminium production. Dissertation for the Doctoral Degree of Norwegian University of Science and Technology, 2000
    158 Z.H. Deng, X.B. Zhu, R.H. Tao, W.W. Dong, X.D. Fang, Synthesis of CuAlO2 ceramics using sol-gel. Materials Letters, 2007, 61: 686-689
    159赵大庆,姚为. P型CuAlO2半导体陶瓷的烧结研究.粉末冶金技术, 2004, 22: 333-336

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700