用户名: 密码: 验证码:
基于AEZ模型的我国棉花气候生产潜力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据全国614个气象站点1974-2003年30年的气象基础数据,我国DEM数据,借助Excel、Access数据库软件和ArcGis 9.3软件计算、整理气象数据,通过理论分析计算得出各气象站点总生育期和各个生育阶段的太阳总辐射、光合有效辐射、日照时数、日照百分率、平均气温、极端最高和最低气温、界限积温(0℃、5℃、10℃或20℃)等气候要素数据;选用五日滑动平均法(国内常用方法之一)推算出气温稳定通过某界限温度的终日,结合棉花完成各生育阶段所需的积温,并借助用Visual Basic6.0设计的程序推算出棉花各生育阶段对应的始日,由所得的始日和终日计算出农业生态地区模型,即AEZ(Agro-ecological Zone)模型,的重要参数之一—生育期日数,再根据相关资料和文献选择适合我国棉花的其它模型参数,利用国际上广泛采用的AEZ模型估算各个气象站点各个生育阶段的棉花光合生产潜力,再用温度和水分有效系数逐级订正得到光温和降水生产潜力。
     对于上述计算所得的气候要素和气候生产潜力数据用ArcGis9.3软件分析和可视化表达。首先应用空间统计、空间自相关以及半变异函数等方法对气候要素(包括适合我国棉花生长的三个气候要素条件)数据进行空间自相关分析,探测数据分布特征和趋势面,如有必要对变量做转换,并剔出趋势面。对于符合插值条件的数据尝试运用多种空间插值方法(如反距离加权插值、多项式拟合插值、样条函数插值、克里格插值等),选择插值参数进行空间插值,并利用误差检验方法进行精度分析,选取合适的空间插值方法和参数插值生成栅格图,再通过栅格计算器运算、编辑等处理生成我国棉花种植界线面图层;把各级潜力数据的插值结果导出为矢量图层,并与所得的棉花种植界限面图层做叠置分析取交集,得到我国棉花种植区的各级气候生产潜力分布图。
     研究结果表明,我国各农业生态区棉花各级生产潜力存在明显差异,全国皮棉光合潜力平均值为62289.01kg/hm2,高值区分布于山东、云南和新疆等地,低值区分布于吉林、湖南和贵州等地,全国皮棉光温潜力平均值为4207.541kg/hm2,高值区分布于四川、河南和新疆等地,低值区分布于吉林、辽宁和天津等地,全国皮棉降水生产潜力平均值为3232.795kg/hm2,高值区分布于贵州、浙江和福建等地,低值区分布于新疆等地,导致新疆和贵州等地的降水与光温生产潜力相差悬殊的原因主要在于降水的区域性差异造成的,另一方面由于引水灌溉可以弥补降水资源不足的影响,所以新疆等地的实际皮棉单产反而较高;在棉花各生育阶段中花铃期的光温生产潜力占同期光合生产潜力的比例最大,达7.35%左右,最小比例在苗期。另外,棉花的光合生产潜力形成主要在花铃期和吐絮期,分别占31.49%和28.52%;光温生产潜力形成也主要在花铃期和吐絮期,分别占34.84%和27.62%;从各区皮棉实际平均单产来看,较高产区在内蒙古、甘肃、吉林、辽宁和新疆等地,最高达到光温生产潜力的83.35%,较低产区在四川、重庆、云南和贵州等地,最低约占光温生产潜力的8.5%。在此基础上结合我国棉花生产实际计算了我国棉花增产潜力,在阴雨云雾多的地区增产潜力较难实现,而在降水较少但是能灌溉的地区增产潜力较易实现,从全国来看,平均相对增产潜力较大(69.44%)。最后为提高我国棉花单产以保障棉花安全提供参考。
This paper is based on the weather site by the National 614 1974-2003 30-year meteorological data base, the Chinese DEM data, using Excel, Access database software and ArcGIS 9.3 software calculation, order of meteorological data. It obtains the data by calculating the meteorological stations in solar radiation, in photosynthetic active radiation, sunshine hours, sunshine percentage, average temperature, accumulated temperature and other climatic factors; using the moving average method used on the 5th (one of the methods commonly used in China)it calculates the temperature stability of the temperature through a boundary all day long , combines with the completion of different growth stages of cotton accumulated temperature, and with the design process using Visual Basic 6.0 calculates the growth stage of cotton each day corresponding to the beginning, by the day and all day from the beginning of agro-ecological regions calculated model(ie AEZ : Agro-ecological Zone model) one of the important parameters-growth period, and then chooses the other model parameters of cotton based on relevant information and documentation, using the international AEZ model widely used in all meteorological stations in the various it estimates cotton growth stage photosynthetic production potential, then by using the temperature and effective coefficient of water it revises and gets the sequential light moderate rain production potential.
     The calculated production potential of climate factors and climate data is expressed with the ArcGIS 9.3 analysis and visualization software . First, it applies the spatial statistics, spatial autocorrelation and semi-variogram and other methods to climate factors (including the three climatic factor conditions suited to China cotton growth) data for spatial autocorrelation analysis, the data distribution characteristics and trend surface, in which if it is necessary to change variable quantity, it can eliminate trend surface. For the conditions of the interpolation of data it tries to use a variety of spatial interpolation methods (such as inverse distance weighted interpolation, polynomial interpolation, spline interpolation, kriging interpolation ,etc.) to select the interpolation parameters of spatial interpolation, error analysis and interpolation accuracy of this model, the appropriate interpolation methods and parameters of interpolation generates grid maps. Through calculator and grid computing, editing, processing it generates surface boundary layer of cotton planting; it exports the vector layers from the data of interpolation results at all levels, and does overlay analysis to take the intersection with the income limits of surface layers of cotton cultivation .Lastly ,it gets planting area of cotton production potential at all levels of weather maps.
     The results show that the agro-ecological zones of China cotton production potential at all levels, there are significant differences in photosynthetic potential of the national average lint 62289.01 kg/hm2, high values found in Shandong, Yunnan and Xinjiang, the low area located in Jilin, Hunan and Guizhou, the country the potential of light and temperature average lint 4207.541 kg/hm2, high values found in Sichuan, Henan and Xinjiang, the low area located in Jilin, Liaoning and Tianjin, the national cotton production potential of precipitation an average of 3232.795 kg/hm2, high values found in Guizhou, Zhejiang and Fujian, and other low areas located in Xinjiang, the Xinjiang and Guizhou.The reason leading to disparity of precipitation and the production potential of light and temperature ,on one hand,is mainly due to rainfall caused by regional differences, on the other hand because of irrigation making up for the lack of precipitation, the actual lint Xinjiang, but a higher yield; at different growth stages of cotton flowering and boll production potential of the light and temperature accountes for the largest share of production potential in the same period of photosynthetic, up to about 7.35%, the smallest proportion of seedlings. In addition, the potential photosynthetic production is during the cotton flowering and boll formation period and mainly in the boll opening stage, which accountes for 31.49% and 28.52%; the production potential of light and temperature are mainly in the flowering and boll formation period and boll opening period, accounting for 34.84% and 27.62%; seen from the districts of the actual average yield to lint, high values is found in Inner Mongolia, Gansu ,Jilin , Liaoning and Xinjiang, the most up to about 83.35% of the production potential of light and temperature, the low area is located in Sichuan, Yunnan and Guizhou , the list to about 83.35% of it. On this basis, combined with the actual calculation of cotton potential of China's cotton yield, In the rain clouds and more difficult to achieve the potential of regional output, while little precipitation, but can yield potential of irrigated areas easier to achieve, from a national perspective, the average yield great opposite potential(69.44%). It provides for Chinese agricultural production and the development of strategic of cotton with basic information.
引文
[1]张小川.项目概况及研究方法[J].农业技术与方法.
    [2]Loomis R S,Williams W A. Maximum crop productivity :Anestimate[J].Crop Science, 1963,3(1):67-72.
    [3]黄秉维.我国农业生产潜力—光合潜力[A].地理集刊(17)[C].北京:科学出版社,1985,1- 522.
    [4]田永中.基于栅格的我国陆地生态系统食物供给功能评估[D].北京师范大学,2004.
    [5]Odum E P1生态学基础[M].北京:人民教育出版社,1981:42-61.
    [6]Blackman G E, Nblack J.植物环境分析中生理生态研究[A].作物产量交异的生物基础译文集[C].北京:科学出版社.1965.
    [7]Lieth H,等.生物圈的第一性生产力[M].北京:科学出版社,1985.
    [8]Loomis R S,Williams W A. Maximum crop productivity :Anestimate[J].Crop Science, 1963,3(1):67-72.
    [9]Hanks R J.Y ield and Water2Use Relationships:An Overview[A].Tayloretal H M. Limitations to E fficient Water Use In Crop Production[C].1983.
    [10]Schulze R. Transcending scales of space and time in impace studies of climate and climate change on agrohydrological response.Agriculture[J].Ecosystems and Environ- ment,2000,82:185-212.
    [11]Olesen J E,Bocher P K, Jensen T. C omparis on of scales of climate and s oil data for aggregating simulated yields of winter wheat in Denmark[J].Agriculture,Ecosystems and Environment 2000,82:213-228.
    [12]James WH,James WJ.Scaling 2up Crop Models for Climate Prediction Applications [A].Sivakumar MVK,eds. Climate Predication and Agriculture [C].Washington DC,USA: International START Secretariat,2000,77-117.
    [13]竺可桢.论我国气候的几个特点极其粮食作物生产的关系[J].地理学报,1964,(1):1-13.
    [14]陈明荣,龙斯玉.我国气候生产潜力区划的探讨[J].自然资源,1983,17(3):72-79.
    [15]于沪宁,赵丰收.光热资源和农作物的光热生产潜力[J].气象学报,1982,(8).
    [16]李世奎,等.我国农业气候资源和农业气候区划[M].北京:科学出版社,1983.
    [17]孙惠南.自然地理学中的农业生产潜力研究及我国生产潜力的分布特征[A].地理集刊[C].北京:科学出版社,1985.
    [18]侯光良,刘充芬.我国气候生产潜力及其分区[J].自然资源,1985,19(3):52-59.
    [19]田国良.呼伦贝尔草原的太阳分光辐射能和光合潜力[J].地理学报,1980,35(1):76-82.
    [20]于沪宁.光热资源和农作物的光热生产潜力[J].气象学报,1982,40(3):321-327.
    [21]赵名茶.作物可利用的光能—对光合潜力公式的检验和探讨[A].地理集刊(17)[C].北京:科学出版社,1985:35-48.
    [22]李世奎.我国农业气候资源和农业气候区划[M].北京:科学出版社,1988:124-144.
    [23]陶毓汾,王立祥.我国北方旱农地区水分潜力及开发[M].北京:气象出版社,1993.
    [24]尚新明.定西地区气候资源生产潜力及土地人口承载力分析评价[J].农业系统科学与综合研究,1997,13(4):293-294.
    [25]谢俊奇.我国土地资源的食物生产潜力和人口承载潜力研究[J].浙江学刊,1997,2:41- 44.
    [26]高亮之.苜蓿生产的农业气候计算机模拟—ALFAMOD[J].江苏农业学报,1985(2):1-11.
    [27]刘建栋,傅抱璞,卢其尧,等.冬小麦光合生产潜力数值模拟[J].地理研究,1998,17(1):56 -65.
    [28]刘建栋,于强,傅抱璞.黄淮海地区冬小麦光温生产潜力数值模拟研究[J].1999,14 (2):169-174.
    [29]党安荣,阎守邕,吴宏歧,等.基于GIS的我国土地生产潜力研究[J].生态学报,2000,20 (6):910-915.
    [30]李忠武,蔡强国,Scott Mitchell,等.基于GIS的黄土丘陵沟壑区作物生产力模拟研究[J].生态学报,2002,3:311-317.
    [31]熊伟.用GIS和作物模型对作物生产进行区域模拟方法[J].我国农业气象,2004,25 (2):28-32.
    [32]刘布春,王石立,马玉平.国外作物模型区域应用研究进展[J].气象科技,2002(8):193- 203.
    [33]程林仙.棉花气象研究近况[J].棉花气象,1990(6):49-52.
    [34]农业气候生长期,我国农业百科全书,农业气象卷,农业出版社,1986,10:256.
    [35]贾文华,刘桂珍,霍晓妮,马宗斌,朱伟.棉花的生育特性与种子生产[J].种子,2009(7):120-122.
    [36]棉花气候区划,我国农业百科全书,农业气象卷,农业出版社,1986,10:141.
    [37]陈万隆.农业气候指标保证率的理论计算[J].气象科技,1985(8):21-23.
    [38]竺可桢.论我国气候的几个特点及其与粮食作物生产的关系[J].科学通报,1964(3):189-199.
    [39]刘绍民,李银芳.新疆月太阳总辐射气候学计算方法的研究[J].干旱区地理,1997,20 (3):75-81.
    [40]封志明.气候资源:气候资源评价与气候生产力[D].资源科学导论,科学出版社,2004,1:108-109.
    [41]伊宏.利用经验公式由日照记录计算中国东部总辐射的分布[J].气象学报,1957 (5):101-107.
    [42]彭曼,H.L.我国农业百科全书农业气象卷[D].农业出版社,1986,10:209.
    [43]左大康,王懿贤,陈建绥.我国地区太阳总辐射的空间分布特征[J].气象学报,1963,33(1):78-96.
    [44]王炳忠,张富国,李立贤.我国的太阳能资源及其计算[J].太阳能学报,1980 ,1(1) :1-9.
    [45]农业气象原理光合有效辐射,我国农业百科全书农业气象卷[D].农业出版社,1986,10:80.
    [46]封志明.气候资源:气候资源评价与气候生产力[D].资源科学导论,科学出版社,2004,1:110.
    [47]黄秉维.自然条件与作物—光合潜力[M].农业现代化概念.北京:中国科技科学技术情报所,1978(3):45-63. [48 ]王树廷,王伯民.气象资料的整理和统计方法[D].气象出版社,1984,7:133.
    [49]农业气象原理感光性,我国农业百科全书农业气象卷[D].农业出版社,1986,10:69.
    [50]王树廷.关于日平均气温稳定通过各级界限温度初终日期的统计方法[J].
    [51]农业气候资源热量资源,我国农业百科全书,农业气象卷,农业出版社,1986,10:237.
    [52]郝云理,赵玉金.山东省棉花生态气候分析和区划.山东气象学会文集(1983).
    [53]农业气候无霜冻期,我国农业百科全书农业气象卷[D].农业出版社,1986,10:324.
    [54]农业气象原理积温,我国农业百科全书农业气象卷[D].农业出版社,1986,10:103-104.
    [55]农业专业气象棉花气象,我国农业百科全书农业气象卷[D].农业出版社,1986,10:141-142.
    [56],[57]孔云峰,仝文伟.降雨量地面观测数据空间探索与插值方法探讨[J].地理研究,2008,9:1097-1108.
    [58]汤国安,杨昕.ArcGis地理信息系统空间分析实验教程[D].科学出版社,2008,6:388-428.
    [59] Higgins G M, Kassam A H, Shah M. Land, food and population in the developing world[J]. Resources and Nature,1984,20(3):2-10.
    [60] Higgins G M. Kassam A H. Regional assessment of land potential: a follow up to the FAO/UNESCO Soil Map of the world[J]. Nature and Resources,1981,17(4):11-23.
    [61] De Wit C T. Simulation of assimilation, respiration and transpiration of crops[J]. Simulation Monographs Pudoc Wageningen,1978,140:100-150.
    [62]联合国粮食与农业组织.产量与水的关系[D].粮农组织灌溉及排水丛书,1979,33:14-17.
    [63]千怀遂,秦耀辰.豫东平原的粮食生产潜力和增产途径[J].河南大学学报,1989,3:39-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700