用户名: 密码: 验证码:
漓江水陆交错带水文—土壤—植被相互作用机制及植被恢复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来漓江水陆交错带植被退化及其多样性下降已成为漓江旅游区生态旅游可持续发展的严重挑战,进行漓江水陆交错带植被恢复刻不容缓。本文通过对漓江水陆交错带不同淹没带植被与土壤特征空间分异规律进行分析研究,以及对典型旅游区域植被和土壤对水文影响的响应机制研究,详细分析了重点植被恢复区域的植被影响因子,探索了水陆交错带退化生态系统植被配置模式,以期为典型旅游区水陆交错带植被恢复与湿地管理提供科学依据,初步研究成果如下:
     (1)优选水文影响时间、相对高程、坡度、砾石含量和植被生物量作为划分指标。根据回归方程与主成分分析选取水文影响时间、相对高程和生物量作为主导性指标。通过聚类分析将水陆交错带分为重度淹没带、中度淹没带、轻度淹没带和微度淹没带4个不同淹没带类型。
     (2)漓江水陆交错带物种组成相对丰富,各淹没带共有植物种124种,其中乔木植物18种,灌木植物17种,草本植物89种。随着淹没带高程的增加,漓江水陆交错带植物种多样性、均匀度、优势度、覆盖度和生物量均呈现明显递增的趋势,植被情况趋于良好。
     受区域内人为干扰、水文条件影响,多样性、均匀度、优势度和覆盖度沿河流纵向上的分布规律有明显差异,均匀度指数呈现的规律基本与多样性指数相同,优势度指数呈现的规律与多样性指数和均匀度指数基本相反。随着人类干扰的减少,植被生物量从上游至下游呈现增加趋势。
     (3)水陆交错带土壤物理特征在不同淹没带分布有明显差异性。随着淹没带高程增加,水陆交错带土壤容重呈现先增后减的趋势,4个淹没带砂粒含量均远高于粉黏粒含量。砂粒含量随着淹没带高程增加呈现下降的趋势,而粉粒和黏粒则呈现相反的趋势。土壤化学特征受水文、人为干扰等多方面因素影响,在各淹没带分布具有不同的分布特点。土壤有机质含量呈现先减后增的“V”字型趋势;全氮含量由0.399g/kg增至0.556g/kg,呈现随着淹没带高程增加而升高的趋势;有效磷含量分布情况为T1(13.930mg/kg)、 T2(13.292mg/kg)淹没带远高于T3(4.317mg/kg)、 T4(4.685mg/kg)淹没带,漓江流域江边居民在江边进行洗衣等洗刷活动以及农业径流、生活污水的排放可能是造成这一非自然现象的重要原因,全钾含量在各淹没带差异不显著。
     土壤pH整体位于7.124-7.868之间,喀斯特偏碱性土壤与全氮含量呈现显著负相关,与土壤有效磷成极显著正相关,土壤有机质含量与全氮含量呈现明显正相关。
     植被各项指标与土壤粉粒含量、黏粒含量、全氮含量以及有机质含量呈现正相关,与砂粒含量、土壤容重、pH值、有效磷含量呈现负相关,土壤全氮是漓江水陆交错带对植被影响最大的土壤因子。
     (4)水文作用对草本植物的生活型产生影响,一年生草本物种在水陆交错带草本群落中占据绝对优势,经历一个水文周期后,各淹没带植物种类和植被多样性指数均呈现下降的趋势。土壤砂粒含量增加,而粉粒和黏粒含量则呈现下降趋势,土壤容重呈现上升的趋势,土壤pH、有机质、全氮、全磷和全钾含量呈现下降趋势,水文对漓江水陆交错带土壤和植被的影响基本呈负面作用。
     (5)重度淹没带和中度淹没带为植被恢复重点区域,这一区域草本植被空间自相关性与人类干扰强度呈负相关关系。受人为活动干扰程度较大的城区旅游型水陆交错带重点植被恢复区域所有植被指标具有中等程度的空间自相关性;受中等人为活动干扰强度的城郊生活型水陆交错带和基本不受人为活动干扰影响的天然型水陆交错带重点植被恢复区域的植被指标基本具有强烈的空间自相关性。
     重点植被恢复区域草本植被指标分布规律与结构因素(水文影响)、人类干扰强度和方式有密切关系。受人为活动干扰程度较强的城区旅游型水陆交错带各植被指标在东西方向呈现中间小,两侧大的分布规律,受中等人为活动干扰程度的城郊生活型水陆交错带各植被指标呈现条带状分布,但在高值分布带上出现零星斑块低值区;基本不受人为活动干扰影响的天然型水陆交错带各植被指标呈现从西向东逐渐增大的条带状分布。结构因素(水文影响)在空间异质性方面起主导作用,人类干扰起到次要作用,随机因素的影响相对较小。
     (6)以漓江桥、卫家渡和潜经村3个受不同人类干扰强度的漓江水陆交错带为例进行植被配置与恢复研究,受人为活动干扰程度较强的城区旅游型水陆交错带(漓江桥)植被配置注重景观性,受中等人为活动干扰程度的城郊生活型水陆交错带(卫家渡)注重生态价值和经济价值,基本不受人为活动干扰影响的天然型水陆交错带(潜经村)水陆交错带注重自然性。
In recent years, ecological problems such as the shortage of water and vegetation degeneration occurred in the Li River, which has become a serious challenge to sustainable development for eco-tourism of Li River, and vegetation restoration is urgently needed. In this paper, we studied the spatial distribution of vegetation and soil in different inundation zone of aquatic-terrestrial ecotones in Li River, research on the response mechanism of vegetation, soil and hydrology, and analysised vegetation impact factors of focus revegetation area, explored vegetation configuration mode of the degraded ecosystem in aquatic-terrestrial ecotone, that aims to provide a scientific basis to vegetation restoration, landscaping, wetland protection and management and its sustainable use in aquatic-terrestrial ecotones of the Li River.The preliminary research results are as follows:
     (1) Preferred hydrological effect, relative elevation, slope, gravel content and vegetation biomass as the partitioning index, according to the regression equation and principal component analysis, we choose flood time, relative height and biomass as a leading indicator. Through clustering analysis, we divided aquatic-terrestrial ecotones into four inundation zone, such as, severe degree inundation zone, middle degree inundation zone, light degree inundation zone, and micro degree inundation zone.
     (2) Species composition of aquatic-terrestrial ecotones were relatively abundant, and there were124species of plants, including18species of arbor plants,17species of shrub plants,89species of herbaceous plants, that species composition were relatively abundant. With the increase of riverbank elevation, diversity trend, evenness, dominance, coverage and biomass presented an increasing trend, the number of species had become increasingly diverse, and species composition structure had become complicated.
     The vertical distribution of diversity, evenness, dominance and coverage along the river had obvious difference, evenness index showed same law with the diversity index basically, on the contrary, dominance index presented opposite withdiversity index and evenness index, vegetation biomass present a tendency of increase from upstream to downstream.
     (3) The soil physical characteristics in different inundation zone were obvious different, with the increase of riverbank elevation, Soil bulk density increased initially and then decreased. Sand content declined significantly. Silt and clay content increased significantly, Sand content was much higher than silt and clay content, which was related to the improvement effect of vegetation. Soil organic matter decreased initially and then increased. Total nitrogen content continuously increased, the content was form0.399g/kg to0.556g/kg. Available phosphorus content presented a reducing trend that was unnatural, related to non-point source pollution on the shore of Li River. Total potassium content was not significant difference in different inundation zone.
     The soil pH value was between7.124and7.868, and the alkaline soil pH of Karst ecotone was negatively correlated with total nitrogen content while it was positive correlated with available phosphorus content. Soil properties influence vegetation diversity. The results showed that vegetation diversity trend, evenness, dominance biomass and coverage were positively correlated with the content of silt, clay, total nitrogen and soil organic matter, but negatively with sand content, soil bulk density, soil pH and available phosphorus content. Furthermore, the results demonstrated that the total nitrogen content was one soil factor that had the largest influence on vegetation growth.
     (4) Under the influence of the hydrological effect, annual herb species occupied the absolute superiority in herbaceous community of aquatic-terrestrial ecotone. After a hydrological cycle, vegetation type and vegetation diversity index showed a trend of decline in all of inundation zone. Soil sand content increased, but silt and clay content showed a trend of decline. The soil bulk density showed a trend of rising, soil pH, organic matter, total nitrogen, total phosphorus and total potassium content showed a trend of decline.
     (5) We choose severe degree inundation zone and middle degree inundation zone as the key area of vegetation restoration, in this area, space correlation of herbaceous vegetation were negative related with human disturbance intensity. The results showed that the distribution of vegetation index had obvious spatial structure in the three study area, and were in accordance with different variation function theory model. Vegetation index of city tourism type had a moderate spatial correlation, except for evenness index of Weijiadu, the vegetation index of Suburban life type and natural type has a strong spatial correlation.
     Vgetation indexes of herbaceous vegetation had a close relationship with structure factors, human disturbance intensity. Vegetation index of urban tourism type presented a distribution of middle small and large of both sides. The spatial distribution of vegetation index were different in three study area. Vegetation indicators of suburban life type showed a banded distribution, but in high value distribution band, there were many low areas Vegetation indicators of natural type showed a banded distribution from west to east. The natural structure factors had significant effects on the spatial variability, while human disturbance played a secondary role, and the effects of random factors were relatively low.
     (6) Based on three different intensity of human disturbance of aquatic-terrestrial ecotone in Li River, such as Lijiangqiao, Weijiadu and Qianjingcun, vegetation configuration of urban tourism type (With a strong degree of human disturbance) will focus on landscape, vegetation configuration of suburban life type (Medium artificial disturbance) will focus on ecological value and economic value, and aquatic-terrestrial ecotone for natural type (Little human interference) will pay attention to the naturalness.
引文
1.艾训儒,易咏梅,姚兰,王柏泉,熊彪.旅游区人为干扰对森林群落物种多样性的影响[J].浙江林学院学报,2010,27(2):178-184.
    2.白宝伟,王海洋,李先源,冯义龙,智丽.三峡库区淹没区与自然消落区现存植被的比较[J].西南农业大学学报(自然科学版),2005,27(5):684-691.
    3.鲍士旦.土壤农化分析[M].中国农业出版社.
    4.蔡锡安,夏汉平,崔玉炎.广州流溪河河岸缓冲带生态治理的优良草种筛选试验[J].生态环境,2004,13(3):342-346.
    5.陈吉泉.河岸植被特征及其在生态系统和景观中的作用[J].应用生态学报,1996,7(4):439-448.
    6.陈俊意.玉米(Zea mays L.)磷效率及相关性状QTL定位.西南大学作物遗传育种,2008博士论文.
    7.池宏康,周广胜,许振柱,袁文平.草地植被盖度的近距离遥感测定[J].草业学报,2007,16(2):105—110.
    8.代力民,王青春,邓红兵,等.二道白河河岸带植物群落最小面积与物种丰富度[J].应用生态学报,2002,13(6):641-645.
    9.邓红兵,王青青,王庆礼,等.2001.河岸带植被缓冲带与河岸带管理[J].应用生态学报,12(6):951-954.
    10.范曾丽王三根.缺磷胁迫对不同玉米幼苗生长的影响[J].中国农学通报,2007,23(3):231-235.
    11.郭纯青.漓江流域上游区水资源与水环境演变及预测[M].中国水利水电出板社.
    12.葛剑雄.水文化与河流文明.[J]社会科学战线,2008,1:108-110.
    13.顾祝军,曾志远.遥感植被盖度研究[J].水土保持研究,2005,12(2):18-21.
    14.何丙辉,郝云庆,李旭光,等.红池坝炼山后生态恢复过程中群落特征研究[J].应用生态学报,2004,15(6):1105-1108.
    15.何志斌,赵文智.黑河下游荒漠河岸林典型样带植被空间异质性[J].冰川冻土,2003,25(3):591-596.
    16.贺强,崔保山,赵欣胜,等.水盐梯度下黄河三角洲湿地植被空间分异规律的定量分析[J].湿地科学,2007,5(3):208-214.
    17.黄宝龙,黄文丁.林农复合生态体系的研究[J].生态学杂志,1991,10(3):27-32.
    18.黄凯,郭怀成,刘永,等.河岸带生态系统退化机制及其恢复研究进展[J].应用生态学报,2007,18(6):1373-1382.
    19.黄瑞农.环境土壤学[M].北京:高等教育出版社,1994:145-1460.
    20.黄伟军,刘秀珍,蔡德所,等.漓江水生态系统问题研究[J].生态环境,2007,3(3):131-134.
    21.贾三春,徐延文.土壤环境机械组成特征及其分布规律[J].中国环境监测,1997,13(3):24-26.
    22.焦菊英,马祥华,白文娟.黄土丘陵沟壑区退耕地植物群落与土壤环境因子的对应分析[J].土壤学报,2005,42(5):744-752.
    23.类正球,陈鹭真,李振基.人为干扰对生物多样性的影响[J].中国生态农业学报,2001,9(2):31-34.
    24.李冬,王青春,邓红兵.二道白河河岸带珍稀植物的分布格局[J].江西农业大学学报,2005,27(6):885-889.
    25.李海东,沈渭寿,林乃峰,袁磊,孙明,纪迪.雅鲁藏布江中游河岸交错带沙地土壤水分的空间异质性[J].农业工程学报,2012,28(6):150-155.
    26.李鹏辉,陆兆华,苗颖.黄河三角洲滨海湿地生态特征变化及影响因子分析[J].环境保护,2008,396(5B):49-52.
    27.李瑞玲,王世杰,周德全,张殿发,李凤全,周忠发,熊康宁.贵州岩溶地区岩性与土地石漠化的空间相关分析[J].地理学报,2003,58(2):314-320.
    28.李素新.汾河河岸带植被管理对策[J].山西农业科学,2007,35(12):40-42.
    29.李文华,赖世登主编.中国农林复合经营[M].北京:科学出版社,1994.
    30.李艳霞,徐理超,熊雄,苏秋红,吴娟,李帷,陈玉成.典型矿业城市农田土壤重金属含量的空间结构特征——以辽宁省阜新市为例[J].环境科学学报,2007,27(4):679-687.
    31.李忠佩,程励励,林心雄.退化红壤的有机质状况及施肥影响的研究[J].土壤,1994,26(2):70-76.
    32.刘国华,沈果,王振龙,路纪琪.放牧对锡林郭勒草原植被生物量和土壤动物群落的影响[J].中国草地学报,2013,35(3):72-76.
    33.刘霞,王丽,张光灿,等.鲁中石质山地不同林分类型土壤结构特征[J].水土保持学报,2005,12(6):49-52.
    34.卢志军,李连发,黄汉东,陶敏,张全发,江明喜.三峡水库蓄水对消涨带植被的初步影响[J].武汉植物学研究,2010,28(3):303-314.
    35.罗慧君.城市公园绿地景观格局与树种结构相关性研究——以杭州花港观鱼公园为例.硕士论文.
    36.骆永明.香港地区土壤及其环境[M].北京:科学出版社,2007.
    37.毛吉旦木·地力夏提,王勇辉,海米提·依米提.博、精河下游河岸带土壤速效养分空间异质性分析[J].水土保持研究,2012,19(6):19-28.
    38.倪喜云,杨苏树,欧阳作富.洱海湖滨带现状与生态恢复技术[J].中国生态农业学报,2001,4:69-70.
    39.潘伟彬,邓恢.4种草本水土保持植物的耐旱生理特性[J].华侨大学学报,2009,30(3):305-308.
    40.彭少麟.广东亚热带森林群落的生态优势度[J].生态学报,1987,7(1):37-42.
    41.饶良懿,崔建国.河岸植被缓冲带生态水文功能研究进展[J].中国水土保持科学,2008,6(4):121-128.
    42.宋喜文,龚束芳.生态型野生草地植被偃麦草和扁蓄蓼[J].东北林业大学学报,2008,36(10):73-74.
    43.粟维斌,康峰峰,马钦彦,等.漓江水资源环境问题的景观生态学思考[J].北京林业大学学报,2005,27(12):149-154.
    44.孙东亚,赵进勇,董哲仁,等.流域尺度的河流生态修复[J].水利水电技术,2005,36(5):11-14.
    45.孙荣,袁兴中,刘红,陈忠礼,张跃伟.三峡水库消落带植物群落组成及物种多样性[J].生态学杂志,2011,30(2):208-214.
    46.孙儒泳,李庆芬,牛翠娟,等.基础生态学[M].北京:高等教育出版社,2002:141-143.
    47.孙振钧.生态学实验与野外实习指导[M].北京:化学工业出版社,2010.
    48.孙志高,刘景双,姜艳艳,等.基于地统计学和15N技术的湿地土壤氮素空间运移理论探讨[J].中国农学通报,2005,21(6):347-351.
    49.汤胜,潘百红.退化河岸带生态景观的恢复研究[J].现代农业科技,2009(2):234-235.
    50.唐炎林,邓晓保,李玉武,等.西双版纳不同林分土壤机械组成及其肥力比较[J].中南林业科技大学学报(自然科学版),2007,27(1):70-75.
    51.王国梁,刘国彬,许明祥.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应[J].水土保持通报,2002,2(1):1-5.
    52.王海梅,李政海,韩国栋,等.黄河三角洲土地利用及景观格局的动态分析[J].水土保持通报,2007,27(1):81-85.
    53.王海珍,陈德辉,王全喜.水生植被对富营养化湖泊生态恢复的作用[J].自然杂志,2002,24(1):33-36.
    54.王家生,孔丽娜,林木松,闵凤阳.河岸带特征和功能研究综述[J].长江科学院院报,2011,28(11):28-35.
    55.王婧静.金属矿山废弃地生态修复与可持续发展研究[J].安徽农业科学,2010,38(15):8082-8084,8087.
    56.王凯博,时伟宇,上官周平,等.黄土丘陵区天然和人工植被类型对土壤理化性质的影响[J].农业工程学报,2012,8(15):80-86.
    57.王欣,高贤明.模拟水淹对三峡库区常见一年生草本植物种子萌发的影响[J].植物生态学报,2010,34(12):1404-1413.
    58.王业春,雷波,张晟.三峡库区消落带不同水位高程植被和土壤特征差异[J].湖泊科学,2012,24(2):206-212.
    59.王勇,吴金清,黄宏文,刘松柏.三峡库区消涨带植物群落的数量分析[J].武汉植物学研究,2004,22(4):307-314.
    60.王昭艳,左长清,曹文洪,等.红壤丘陵区不同植被恢复模式土壤理化性质相关分析[J].生态学报,2011,7(4):715-723.
    61.魏孝荣,邵明安.黄土沟壑区小流域土壤pH值的空间分布及条件模拟[J].农业工程学报,2009,25(5):61-67.
    62.吴江涛,许文年,陈芳清,戴方喜,郑江英.库区消落带植被生境构筑技术初探[J].中国水土保持,2007,1:27-30.
    63.夏红霞,朱启红,宫渊波.岷江上游干旱河谷-山地森林交错带植被退化机制分析[J].重庆文理学院学报(自然科学版),2012,31(1):39-42.
    64.夏继红,胡玲.生态河岸带功能区划定性与定量研究[J].水利学报,2007(增刊1):542-546.
    65.夏继红,林俊强,姚莉,王丹.河岸带的边缘结构特征与边缘效应[J].河海大学学报(自然科学版),2010,38(2):215-219.
    66.夏继红,严忠民,蒋传丰.河岸带生态系统综合评价指标体系研究[J].水科学进展,2005,6(3):345-348.
    67.夏继红,严忠民.生态河岸带综合评价理论与修复技术[M].北京:中国水利水电出版社,2009.
    68.夏品华,林陶,邓河霞,薛飞,蒋瑶,李秋华.贵州红枫湖水库消落带类型划分及其生态修复试验[J].中国水土保持,2011,6:58-60.
    69.徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002:105-121.
    70.徐涛涛.河流生态系统与人类经济发展之间的关系[J].中国水运,2006,6(10):81-82.
    71.许丽,周新澄,王冬梅.煤矸石废弃地复垦研究进展[J].中国水土保持科学,2005,3(3):117-122.
    72.杨海军,张化永,赵亚楠,等.用芦苇恢复受损河岸生态系统的工程化方法[J].生态学杂志,2005,24(2):214-216.
    73.杨慧玲,高鹏,王华伟,等.大黑山生态修复区不同植被类型土壤颗粒的分形特征[J].中国水土保持科学,2009,7(5):52-57.
    74.杨胜天,王雪蕾,刘昌明,等.岸边带生态系统研究进展[J].环境科学学报,2007,27(6):894-905.
    75.殷国梅,王明盈,薛艳林,赵和平.草甸草原区不同放牧方式对植被群落特征的影响[J].中国草地学报,2013,35(2):89-93.
    76.尹澄清,邵霞,王星.白洋淀水陆交错带对氮磷截留量的初步研究[J].生态学杂志,1999,18(5):7-11.
    77.余先旭,孙石,朱宝平,胡永康.磷与湖泊富营养化[J].云南环境科学,2005,24(增刊):36-38.
    78.张凤荣.土壤地理学[M].北京:中国农业出版社,2002.98-99.
    79.张光富,王剑伟.三峡库区开县前置库植物多样性及其消落带的生态恢复原则[J].南京师大学报(自然科学版),2007,30(3):87-92.
    80.张继义,赵哈林.植被(植物群落)稳定性研究评述[J].生态学杂志,2003,22(4):42-48.
    81.张建春,彭补拙.河岸带及其生态重建研究[J].地理研究,2002,21(3):273-281.
    82.张建春,彭补拙.河岸带研究及其退化生态系统的恢复与重建[J].生态学报,2003,23(1):56-63.
    83.张金屯.全球气候变化对自然土壤碳、氮循环的影响[J].地理科学,1998,18(5):463-471.
    84.张绪良,叶思源,印萍,等.黄河三角洲自然湿地植被的特征及演化[J].生态环境学报,2009,18(1):292-298.
    85.张维朋,刘晓文.运用方差分析验证聚类结果的可靠性[J].中国科技信息,2009,17:45-47.
    86.赵常明,陈伟烈,黄汉东,田自强,陈玥,谢宗强.三峡库区移民区和淹没区植物群落物种多样性的空间分布格局[J].生物多样性,2007,15:510-522.
    87.赵哈林,李玉霖.人类放牧活动与气候变化对科尔沁沙质草地植物多样性的影响[J].草业学报,2008,17(5):21-23.
    88.赵军霞.土壤酸碱性与植物的生长[J].内蒙古农业科技,2003,(6):33-42.
    89.左小安,赵学勇,赵哈林,云建英,王少昆,苏娜,冯静.沙地退化植被恢复过程中植被的空间异质性[J].生态环境学报,2010,19(7):1513-1518.
    90. Bornette, G.&C. Amoros. Disturbance regimes and vegetation dynamics:role of floods in riverine wetlands. Journal of Vegetation Science,1996,7:615-622.
    91. Bornman T G, Adams J B, Bate G C. Environmental factors controlling the vegetation zonation patterns and distribution of vegetation types in the Olifants Estuary, South Africa [J]. South African Journal of Botany,2008,74(4):685-695.
    92. Brown J H. Peeies diversity in Mayer AA and Giller P S (eds). Analytical biography. London:Chapman and Hall.1988.
    93. Castro J et al. Seed predation and dispersal in relict Scots pine forests in southern Spain [J]. Plant Ecology 1999,145:115-123.
    Chauhan S, Ganguly A. Standardizing rehabilitation protocol using vegetation cover for bauxite waste (red mud)in eastern India [J]. Ecological Engineering,2011,37(3):504-510.
    Delgado A N, Periago, E L, Diaz2Fierros Viqueira F. Vegetatedfilter strips forwastewaterpurification: a review [J]. BioresTechno,1995,15:113-122.
    Dennis F W. Ecological issues related to wetland preservation, restoration, creation and assessment [J]. The Science of the Total Environment,1999, (240):31-40.
    Ervin H Z, David S and Steven F. Desert riparian landscapes:Values and Change,1981-1996 [J]. Landscape and Urban Planning,1998, (42):81-89.
    Fu Xiaoli, Shao Mingan, Wei Xiaorong, et al. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China [J]. Geoderma,2010,155(1/2):31-35.
    Goodwid CN, HawkinsCP, Kershner JL. Riparian restoration in the western United States:Overview and perspective. Restoration Ecology,1997,5:4-14.
    Greenwood H, O'Dowd DJ, Lake PS. W illow(Salixxrubens) invasion of the riparian zone in south eastern Australia:Reduced abundance and altered composition of terrestrial arthropods [J]. Diversity and Distributions,2004,10:485-492.
    Gregory S V, Swanson F J, Mckee W A, et al. An Ecosystem Perspective of Riparian Zones [J]. Bioscience,1991,41(1):540-551.
    Gurnell A M, Edwards P J, Petts G E, et al. A Conceptual Model for Alpine Proglacial River Channel Evolution under Changing Climatic Conditions [J]. Catena,1999,38(2):223-242.
    Harris R, Olson C. Applying a two stage system to prioritize riparian restoration at the San Luis Rey River, San Diego County, California. [J]. Restoration Ecology,1997, (5):43-55.
    Hawkins C P, Bartz K L, Neale C M. Vulnerability of riparian vegetation to catastrophic flooding: Implications for riparian restoration [J]. Restoration Ecology,1997,5:75-84.
    Heathwaite A L, Griffiths P, Parkinson R J. Nitrogen and phosphorus in runoff from grassland with buffer strips following application of fertilizers and manures [J]. SoilUse Manage,1998,14:142-148.
    Jacobs T C, Gilliam J M. Riparian losses of nitrate from agricultural drainage waters [J]. Journal of Environmental Quality-Abstrac,1985,14(4):472-478.
    Journel A G, Huijbregts C J. Mining Geostatistics London:Academic Press,1978-3041.
    Julie C F Z, Laura E D, Peter G R. Vegetation diversity in an interconnected ephemeral riparian system of north central Arizona, USA [J]. Biological Conservation,1999, (90):217-228.
    Kuznetsova T, Rosenvald K, Ostonen I. Survival of black alder (Alnus glutinosa L.), silver birch
    (Betula pendula Roth.)and Scots pine (Pinus sylvestris L.)seedlings in a reclaimed oil shale mining area [J]. Ecological Engineering,2010,36 (4):495-502.
    Landers D H. Riparian restoration:Current status and the reach to the future [J]. Restoration Ecology, 1997,5(4S):113-121.
    Lodge D M. Biological invasions:lessons for ecology [J].Trends in Ecology and Evolution,1993,8: 133-137.
    Lowrance R, Leonard R, Sheridan J. Managing riparian ecosystems to control nonpoint pollution [J], Journal of Soil and Water Conservation,1985,40(1):87-91.
    Lowrance R, Leonard R, Sheridan J.Managing riparian ecosystems to control nonpoint pollution [J].Journal of Soil and Water Conservation,1985,40(1):87-91.
    Magee TK, Kentula ME. Response of wetland plant species to hydrologic conditions [J]. Wetlands Ecology and Management,2005,13:163-181.
    15. Mariet M Hefting, Jean Christophe Clement, Piotr Bienkowski.2005. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe [J]. Ecological Engineering,24:465-482.
    16. Mcneish R E, Eric Benbow M, Mcewan R W. Riparian forest invasion by a terrestrial shrub (Lonicera maackii) impacts aquatic biota and organic matter processing in headwater streams [J]. Biological Invasions,2012,14:1881-1893.
    17. Meeban W R, Swanson F J, Sedell J R.1977. Influences of riparian vegetation on aquatic ecosystems with particular references to salmonoid fishes and their food supplies[A].//Johnson R R, Jones D A eds. Importance, preservation and management of floodplain wetland s and other riparian ecosystem s [C]. Washington:USDA Forest Service General Technical Report,137-145.
    18. Molles J, Mannel C and Crawford C. Managed flooding for riparian ecosystem restoration [J]. Bioscience,1998,48(9):742-749.
    19. N ilsson C, Berggrea K. Alterations of riparian ecosystems caused by river regulation [J]. Bioscience, 2000,50(9):783-793.
    20. Naiman R J, Decamp S H, Pollock M. The role of riparian corridors in maintaining regional biodiversity [J]. Ecology Applications,1993,3(2):209-212.
    21. Naiman R J, Decamp S H, Mcclain M E. Riparian:Ecology Conservation and Management of Streamside Communities[M]. Burlington, USA:Elsevier Academic Press,2005.
    22. Naqinezhad A, JaliliA, AttarF, etal. Floristic characteristics of thewetland site on dry southern slopes of the AlborzMts. N. Iran:The role of altitude in floristic composition [J]. Flora,2008,204(4):254-269.
    23. Natural Resource Conservation Service, USDA. Buffer Strips:commensense conservation [R], Washington, D. C.1998.
    24. Nilsson C, Jansson R, Zinko U. Longterm responses of river margin vegetation to water level regulation [J]. Science,1997,276:798-800.
    25. Nilsson C, Grelsson G, Johansson M, et al. Patterns of Plant Species Richness along Riverbanks [J]. Ecology,1989,70(1):77-84.
    26. O'Neill M P, Schmidt J C, Dobrowolski JP, etal. Identifying sites for riparian wetland restoration: Application of a model to the upper Arkansas River basin [J]. Restoration Ecology,1997,5:85-102.
    27. Odum W E. Comparative ecology of tidal freshwater and salt marsh [J]. Annual Review of Ecology and Systematics,1988,19:147-176.
    28. Palone R S, Todd A H. Chesapeake Bay Riparian Handbook:A Guide for Establishing and Maintaining Riparian Forest Buffers [M]. Radnor, Pennsylvania:US Department of Agriculture, Forest Service,1998.
    29. Paula Selby. From Cropland to Wetland to Classroom [J]. Land and Water,2000,44(5):55-57.
    30. Pierre Y. Julien. River mechanics [M]. England:Cambridge University Press,2002:200-250.
    31. Planty, Tabacchi A, Tabacchi E, Naiman RJ, et al. Invasibility of species rich communities in riparian zones [J]. Conservation Biology,1996,10:598-607.
    32. Pysek P, Prach K. Plant invasions and the role of riparian habitats:a comparison of four species alien to central Europe [J]. Journal ofBiogeography,1993,20:413-420.
    33. Ravindra N C, Chen H J. From gene shuffling to the restoration of riparian ecosystems.Trends Plant Science,1999, (4):337-338.
    34. Rebecca C M, Joy B Z. Responses of native and invasive wetland plants to hydroperiod and water depth [J]. Plant Ecology,2003,167:57-69.
    Rood S B, Gourley C R, Ammon E M, et al. Flows for flood plain forests:A successful riparian restoration [J]. BioScience,2003 (53):647-656.
    Sainju U M, Whitehead W F, Singh B P. Cover crops and nitrogen fertilization effects on soil aggregation and carbon and nitrogen pools.Can [J]. Soil Sci,2003,83(2):155-165.
    Sandra S P, Nancy R D. Mountain, Maryland, the power plant research program, and the Chesapeake Baywatershed [J]. The Science of the Total Environment,1999, (240):171-188.
    SHANG Z B, GAO Q. Watershed ecology-a new research area of ecology [J]. Acta Ecologica Sinica, 2001,21(3):468-473.
    STROMBERG J C. Restoration of riparian vegetation in the south western United States:Importance of flow regimes and fluvial dynamism [J]. Journal of Arid Environments,2001(49):17-34.
    Stromberg JC. Restoration of riparian vegetation in the south western United States:Importance of flow regimes and fluvial dynamism [J]. Journal ofArid Environments,2001,49:17-34.
    Sunil N, Zhou Y C and John R J. Application of remote sensing and geographic information systems to the delineation and analysis of riparian buffer zones [J].Aquatic Botany,1997, (58):393-409.
    Syversen Nina. Effect and design of buffer zones in the Nordic climate:The influence of width, amount of surface runof, f seasonal variation and vegetation type on retention efficiency for nutrient and particle runoff [J]. Ecological Engineering,2005,24:483-490.
    Thomas A R, Jeffrey B. Geomorphic survey of eastern cascade streams before and after 1995 ~ 1996 floods [J]. Forest Ecology and Management,2001, (143):57-64.
    Thomas J W, Maser C, Rodiek J E. Riparian zones [A].//Thomas J W. Wild life habitats in managed forests:The blue mountains of Oregon and Washington[C]. Washington:USDA Forest Service Agricultural handbook,1979,41-47.
    Tiner R W. A Guide to Wetland Identification Delineation Classification and Mapping [M]. Boca Raton, USA:LewisPublishers/CRC Press,1999,56-57.
    VanCollerA L, RogersKH, HeritageG L. Riparian vegetation-environment relationships: Complimentarity of gradients versus patch hierarchy approaches [J]. Journal of Vegetation Science, 2000,11:337-350.
    W issmar R C, Beschta RL. Restoration and management of riparian ecosystems:A catchment perspective [J]. FreshwaterBiology,1998,40:571-585.
    Wu J G. Landscape ecology:pattern, process, scale and hierarchy [M]. Beijing:Higher Education Press,2000.1-258.
    Xu Xiangcheng, Zhang Jihong, Tong Guoliang, et al. Calculating by approximate method the amount of oragnic manure required to increase soil fertility. In:Current Progress in Soil Research in People's Republic of China [M]. Nanjing:Jiangsu Science and Technology Publishing House,1986:189-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700