黄河宁夏段河道整治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,黄河宁夏段河道基本处于自然状态,主流摆动频繁,防洪问题突出,影响了当地经济发展和社会的稳定。1998年以来,国家加大投入力度,加强河道治理,但由于缺乏对该段河道的系统研究,工程建设中了出现了一些问题无法解决。因此,开展黄河宁夏段河道整治研究显得十分迫切而重要。
     黄河宁夏段属黄河上游下段,全长397km,重点治理的平原河道长266.7km,根据其特性可分为三段。其中下河沿至仁存渡河段为非稳定性分汊型河道;仁存渡至头道墩河段为弯曲型河道;头道墩至石嘴山河段为游荡型河道。河道床质也不相同,仁存渡以上河段为沙卵石,以下河段为沙质。为了探索适宜黄河宁夏段河道特性和演变规律的整治方案、工程布局、工程措施及有关参数,解决实践中存在的问题,进一步开展黄河宁夏段河道整治研究,为今后的工程建设提供理论依据。
     河道整治方案是在整治原则的指导下,根据河道特性和演变规律,综合考虑国民经济各部门的要求,结合经济水平而研究确定的。本文根据分汊型河道河床演变特点,通过分析已建工程的效果,总结经验教训,提出了下河沿至仁存渡河段宜采用“工程导送为主,塞支强干、挖引疏浚为辅,多种措施相结合”的整治方案。同时,提出了仁存渡至石嘴山河段适宜采用微弯整治的方案。造床流量是对塑造河床形态所起作用比较大的流量级,是河道规划设计首先必须确定的参数。本文在对平
    
     西安理工大学工程硕士专业学位论文
     滩流量法、输沙能力法、输沙量法。挟沙能力法等计算方法进行分析的基础上,结
     合宁夏实际情况,提出了造床流量,进而确定了黄河宁夏段的整治流量,下河沿至
     青铜峡河段为 2500m’/s,青铜峡至石嘴山河段为 2200m’/s。通过模型试验验证,确
     定了宁夏段河湾半径最大为4450m,最小为1450m,平均为3206m。中心角最大为
     96”,最个为 36丫平均为 64·9“。经过理论计算和模型试验观测,提出了仁存渡以
    /.“飞下7y质河床,T坝最大冲刷坑7k深为10~13m,个别受主流持续顶仲的丁坝,最大
     Yi
     冲刷坑水深可达20m。根据整治方案,结合实际情况,提出了工程布局的原则以及
     坝垛形式、坝长、坝间距、坝轴线与主流的夹角等具体参数。推荐了网罩护根防冲
     和混凝土四脚体护脚这两种比较有效的护根措施。以上研究,既可为黄河宁夏段治
     理提供理论支撑,又可为进一步优化工程设计方案提供帮助指导。
The Ningxia reach of the Yellow River is historically natural status and its main channel sways frequently. Flood control becomes an important problem that limits development of local economy and society. The government has invested much in reconstruction of the Ningxia reach since 1998, but many problems appeared in the reconstruction process. Therefore, it is rather necessary to study the problems related to reconstruction of the Ningxia reach.
    The Ningxia reach of the Yellow River is 397 km long, and the main reconstruction reach located in plain region is 266.7 km long, which is divided into three reaches: the first is unsteady biforked channel between Xiayanhe and Rencundu, the second is bend-type channel between Rencundu and Toudaodun, and the third sway-type channel between Toudaodun and Shizuishan. The upperstream bed of Rencundu is consist of cobblestones and gravels, and the downstream bed of Rencundu is consist of sand.
    River reconstruction scheme is determined based on reconstruction guidance, river features, evolution tendency, economic level, etc. By analyzing river evolution features, this paper proposes a reconstruction scheme: mainly guiding flow by engineering constaiction, properly strengthening main channel and weakening sub-channels, and
    
    
    combining other assistant methods. It is shown that a slightly-bending reconstruction scheme is suitable for the reach between Rencundu and Shizuishan. By comparing several calculating methods, the following reconstruction flow rates are proposed: 2500 m3/s for the reach between Xiayanhe and Qingtongxia, and 2200 m3/s for the reach between Qingtongxia and Xiayanhe. Modelling tests show that largest radius of the river bend along the Ningxia reach is 4450 m, smallest radius is 1450 m, averaged radius is ', 3206 m, largest central angle is 96? smallest central angle 36?and an averaged angle 64.9? Theoretical calculation and modeling test show that depths of scoured pit near the T-type dam may reach -10-13 m for the downstream of Rencundu with sand bed. For the
    deepest case, largest scoured pit depth may reach 20 m. Based on the present research result, some detailed measures and methods of reconstruction are proposed.
引文
[1] 张俊华,许雨新,张红武,朱太顺,王严平,陈书奎,曹丰生.河道整治及堤防管理.黄河水利出版社.1998
    [2] 胡一三,张红武,刘贵芝,王恺忱,彭瑞善,刘月兰等.黄河下游游荡性河道整治.郑州:黄河水利出版社.1998
    [3] 钱宁,张仁,周志德.河床演变学.北京:科学出版社.1987
    [4] 钱意颖,程秀文,陈世丹,傅崇进等.多沙河流上修建水库水沙调节指标研究.见:黄委会水科院科学研究论文集(第三集).北京:中国环境科学出版社.1992
    [5] 张红武,马继业,张俊华,常国俊,刘有录.河流桥渡设计.中国建材工业出版社.1993
    [6] 谢鉴衡,丁君松,王运辉.河床演变及整治.北京:水利电力出版社.1990
    [7] 赵业安,潘贤娣等.黄河下游河道冲淤情况及基本规律.见:黄委会水利科学研究所科学研究论文(第一集).郑州:河南科学技术出版社.1989
    [8] 张红武,张清.黄河水流挟沙力的计算公式.人民黄河.1992(11)
    [9] 赵连军,张红武.黄河下游河道水流摩阻特性的研究.人民黄河.1997(9)
    [10] 张柏山、赵连军.黄河下游丁坝局部冲刷深度的计算.河南省首届泥沙研究研讨会论文集.黄河水利出版社.1995
    [11] 姚乐人主编.防洪工程.中国水利出版社.1997
    [12] 宁夏黄河整治规划.宁夏水利设计院.1994
    [13] 赵业安,周文洁,曹祥俊,胡春华,申冠卿,陈建国.黄河下游河道演变基本规律.1998
    
    
    [14] 张红武等.河流力学研究.郑州:黄河水利出版社.1999
    [15] 河流泥沙工程.武汉水利电力学院.北京:水利出版社.1981
    [16] 江恩惠.黄河下游游荡性河道整治模型试验研究.人民黄河.2000(9)
    [17] 胡一三.节点论.人民黄河.2002(4)
    [18] 刘月兰.黄河下游游荡性河道整治对河道冲淤的影响.人民黄河.1996(10)
    [19] 胡一三.黄河下游游荡性河道整治措施的研究.人民黄河,1996(10)
    [20] 刘贵芝,周景芍,黄树阁.黄河下游游荡性河段现有整治工程的研究.人民黄河.1996(10)
    [21] 耿明全,赵彦彦,赵明河.黄河下游抢险坝垛结构探讨.人民黄河.1999(1)
    [22] 张晓华,赵业安.近期黄河下游河道演变研究.人民黄河.1997(9)
    [23] 胡一三.黄河河道整治原则.人民黄河.2001(1)
    [24] 周景芍,郝守英,符建明.河道整治工程对洪水河势的控制作用.人民黄河.1998(4)
    [25] 张书农,华国祥.河流动力学.北京:水利电力出版社.1988
    [26] 武汉水利电力学院河流泥沙工程学教研室.河流泥沙工程学.北京:水利出版社.1980
    [27] 国外丁坝研究综述.长江水利水电科学研究院河流研究室.人民长江.1979(3)
    [28] 黄河宁夏段数学模型研究.清华大学黄河研究所.2002年
    [29] Suzuki H, Inoue Y, Nishimura T, et al. Unsteady flow in a channel obstructed by a square rod (crisscross motion of vortex). Int. [J]. Heat Fluid Flow, 1993, 1(14): 2-9.
    [30] Chun Bo Jiang, Qing Hai Zhang, Xiao Mi An. River flow simulations using parallel computing techniques [M]. ⅩⅩⅨ IAHR Congress Proceeding, Theme D. 2001.
    
    
    [31] Rajartnam, N., and Muralidhar, D. Boundary Shear Stress Distribution in Rectangular Open Channels, [J]. LaHouille Blanche, Paris, France, Vol. 6, 1969, pp. 603-609.
    [32] Ghosh, S. N., and Roy, N. Boundary Shear Stress Distribution in Open Cha-nnel Flows, [J]. ASCE. J. of Hydr. Div, Vol. 96, Hy. 4, April, 1970, pp. 839-851.
    [33] Knight, D. W., and Macdonald, J. A. Hydraulic Resistance of Artificial Strip Roughness [J]. ASCE. J. of Hydr. Div, Vol. 105, Hy. 7, June, 1979, pp. 675-690.
    [34] Knight, D. W. Boundary Shear in Smooth and Rough channels, [J]. ASCE. J. of Hydr. Div, Vol. 107, Hy. 7, July, 1981, pp. 839-851.
    [35] Knight, D. W., Demetriou, J. D., and Hamed, M. E. Boundary Shear in Smooth Rectangular Channels, [J]. ASCE. J. of Hydr. Div, Vol. 110, Hy. 4, April, 1984, pp. 405-422.
    [36] Andrews,E.D.(1982). Bank stability and channel width adjustment, EastFork River, Wyoming. Water Resour. Res., 18(4), 1184-1192.
    [37] Ariathurai,R., Arelanandan, k.(1978).Erosion rates of cohesive soils.J. Hydr. Div., ASCE, 104(3),279-283.
    [38] Chin Ted Yang.M. Advanced Course on Fluvial And Sediment Hydraulics, 1988.12.
    [39] Yang, C.T.(1973). Incipient motion and sediment transport. J.Hydr. Div.. ASCE,99(10), 1679-1704.
    [40] Yang, C.T.(1984).Unit stream power equation for gravel.J.Hydr. Engrg.. ASCE, 110,1783-1797.
    [41] Yang,C.T.,Wan, S.(1991). Comparison of selected bed-material formulas. J.Hydr. Engrg..ASCE, 117,973-989.
    [42] Wark,J. B.,Samuels,P.G., Ervine,D.A .(1990).A practical method of
    
    estimating velocity and discharge in a compound channel. River flood hydraulics. W.R.White,ed.,John Wiley & Sons,Inc., Chichester, U.K., 163-172
    [43] White,W.R., Bettess, R.,Paris E.(1982). Analytical approach to river regime. J.Hydr. Div..ASCE, 108(10), 1179-1193.
    [44] Yang,C.T., Song,C.C.S., Woldenberg, M.J.(1981).Hydraulic geometry and minimum rate of energy dissipation. Water Resour. Res., 17(4), 1014-1018
    [45] Ackers, P., White,W.R.(1973).Sediment transport:New approach and analysis. J. Hydr. Div., ASCE,99(11),2041-2060.
    [46] Jianjun Zhou and bingnan Lin. One-Dimensional Mathematical Model for Suspended Sediment by Lateral Integration, Journal of Hydraulic Engineering,July 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700