用户名: 密码: 验证码:
抗高温抗盐钙水基钻井液降滤失剂合成、表征与作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗高温抗盐钙钻井液降滤失剂是深井超深井钻井液的核心处理剂,一直是油田化学领域研究的重点。本论文以钻井液化学和高分子合成化学为基础,研究出一种具有自主知识产权的抗高温抗盐钙新型钻井液降滤失剂,并在抗高温抗盐钙钻井液降滤失剂方向作了新的理论研究和技术探索。
     论文首先以抗高温抗盐钙钻井液降滤失剂性能要求为出发点,根据降滤失剂抗高温抗盐钙作用机理,结合分子结构设计,优选出四种聚合单体,采用氧化还原引发体系,通过共聚合反应首次合成了AM/AMPS/SSS/NVP四元共聚物水基钻井液降滤失剂。通过对反应体系pH值、引发剂种类与用量、单体总浓度、单体配比、反应温度、反应时间等反应条件的优选,确定了该共聚物降滤失剂的最优反应条件。最优反应条件的确定提高了共聚物降滤失剂的综合性能,并为后续的工业生产与现场应用奠定了基础。
     基于合成研究成果,对AM/AMPS/SSS/NVP四元共聚物降滤失剂的进行表征分析,具体研究了该共聚物降滤失剂的分子结构、化学组成、粘均分子量、分子量分布以及热稳定性。研究结果表明,该共聚物降滤失剂的化学组成与分子结构符合设计要求,分子量及分子量分布合理,抗温性能优越。
     对AM/AMPS/SSS/NVP四元共聚物降滤失剂进行性能评价。评价结果表明,该共聚物降滤失剂具有很好的降滤失性能,抗温性能达180℃,抗盐100000mg/L,抗钙5000mg/L。且该共聚物降滤失剂对钻井液体系流变性的影响微弱,高温高压环境下可以保持钻井液体系流变性能的稳定。
     借助现代仪器分析,重点研究了AM/AMPS/SSS/NVP四元共聚物降滤失剂的自组装结构、与粘土颗粒的吸附作用、对钻井液泥饼形貌、Zeta电位和粒度分布的影响,进而深入地分析该共聚物抗高温抗盐钙降滤失机理。研究表明,该共聚物自身具有很好的抗高温抗盐钙性能,并可在高温含盐钙环境下,对粘土颗粒进行有效吸附。该共聚物降滤失剂通过有效的吸附与包裹作用改善粘土颗粒在高温盐钙环境中的水化分散作用,提高钻井液的泥饼质量。共聚物的自组装结构可以进一步降低泥饼渗透率,从而实现其抗高温抗盐钙降滤失剂性能。
     AM/AMPS/SSS/NVP四元共聚物降滤失通过了油田的室内评价与现场实验,并最终应用于塔里木油田塔中区块的中古105H和中古1C两口6000米以上深井。现场实验结果表明,该共聚物降滤失剂的降滤失效果显著,配伍性好,对钻井液体系的流变性影响较小。
High temperature resistent and sodium/calcium tolerant fluid loss additive is the most important agent for deep well and superdeep well drilling fluid, and it is always the focus of the study. Based on the knowledge of drilling fluid chemistry and polymer chemistry, a new kind of high temperature resistent and calcium/salt tolerant filtrate reducer for drilling fluid which has independent intellectual property rights is developed.This paper also brings forward some new theoretical research and exploration about high temperature resistent and sodium/calcium tolerant fluid loss additive.
     Firstly, this article, from the requirement on fluid loss additive performance of high temperature resistent and sodium/calcium tolerant drilling fluid, designs agent's chemical molecular structure in the light of filtration reducing mechanism under the circumstance of high temperature and sodium/calcium existing. Then, four kinds of monomer(AM, AMPS, SSS, NVP) is choosen to synthesize water-soluble polymer fluid loss additive AM/AMPS/SSS/NVP through oxidation reduction reaction. The best synthetic condition is optimized by analyzing the effect of synthetic conditions such as hydrogen ion concentration, initiator type and concentration, total concentration of monomer, ratio of different monomer, temperature of reaction and reaction time. The result of experiments shows the best synthetic condition can optimize properties of fluid loss additive and lays a solid foundation for its industrial production and field application.
     Properties of AM/AMPS/SSS/NVP which is synthesized under the best synthetic condition are characterized, such as:molecular structure, chemical composition, viscosity-average molecular weight, molecular weight distribution and thermal stability. Characterization shows that molecular structure and chemical composition of the polymer is match with the design, viscosity-average molecular weight and molecular weight distribution of polymer is appropriate, and the polymer has excellent thermal stability.
     Performance evaluation of AM/AMPS/SSS/NVP obtains two results. Firstly, the polymers can perform excellent filtration control properties under high temperature (180℃) and high salt concetration (sodium chloride up to100OOOmg/L and calcium chloride up to5OOOmg/L).Secondly, the polymers has a unconspicuous influence on the rheology of drilling fluid and it can keep the rheology of drilling fluid stable under high pressure and high temperature.
     Self-assembly structure of AM/AMPS/SSS/NVP, and adsorption between polymer and montmorillonite particles is investigated by modern instrumental analysis. Polymer's influence on microscopic appearance of mud cake, Zeta-potential and Particle size distribution of drilling fluid is also investigated to analyze the filtration control mechanism of the polymer. The study shows the polymer has high temperature resistent and sodium/calcium tolerant properties and can adsorb montmorillonite particles effectively under high temperature and high salt concentration. Because of the adsorption and encapsulation of AM/AMPS/SSS/NVP, mud cake quality and dispersion of montmorillonite particles is improved. Self-assembly structure of the polymer can also decrease the permeability of mud cake to perform the properties of reducing filtrate loss under high temperature and high salt concentration circumstance.
     AM/AMPS/SSS/NVP passes the laboratory evaluation and field test of oilfield. And it is applicated in the field(well Zhonggu105H and well Zhonggu1C) successfully. It is shown by result of field application that the polymer has a unconspicuous influence on the rheology of drilling fluid and good performance on filtrate control and compatibility.
引文
[1]U.S. Department of Energy. Energy Information Administration. June 2006. International Energy Outlook 2006. Report#DOE/EIA-0484(2006).
    [2]张伯英.近期国内外深井和超深井钻井概况[J].钻采工艺,1994,2(17):28~29.
    [3]Ron Bland, Greg Mullen, et al.. HP/HT Drilling Fluids Challenges. IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition. IADC/SPE 103731.
    [4]朱宽亮,王富华,等.抗高温水基钻井液技术研究与应用现状及发展趋势(Ⅰ)[J].钻井液与完井液,2009,9(26):60~70.
    [5]徐同台,陈乐亮,罗平亚,等.深井钻井液[M].石油工业出版社,2002.
    [6]赵翰宝,李国璋,等.深井钻井液技术研究与应用[J].西安石油大学学报(自然科学版),1994,1:4~11.
    [7]鄢捷年.钻井液工艺学[M].中国石油大学出版社,2006.
    [8]张斌.超深井、超高温钻井液技术研究[D].北京:中国地质大学,2010.
    [9]张克勤,陈乐亮.钻井液[M].石油工业出版社,1998.
    [10]谭歌.高温深井钻井液[J].科技咨询,2007,10:16.
    [11]鄢捷年,黄林基.钻井液优化设计与实用技术[M].山东东营:石油大学出版社,1993
    [12]白小东,蒲晓林.国外保护储层的有机钻井完井液新技术研究与应用[J].精细石油化工进展,2005,6(12):12~14.
    [13]郑锟.抗高温水基钻井液降滤失剂的合成及体系性能研究(博士论文).2008
    [14]于涛,丁伟,等.油田化学剂[M].石油工业出版社,2008.
    [15]王中华.钻井液化学品设计与新产品开发[M].西北大学出版社,2006.
    [16]周长虹,崔茂荣,等.国内水溶性钻井液降滤失剂的研究与应用[J].精细石油化工,2006,5(9):1~5.
    [17]刘玉英,等.降滤失剂作用机理研究——新型降滤失剂的研制[J].钻井液与完井液,1996,4:12~14.
    [18]夏俭英,等.钻井液有机处理剂[M].石油大学出版社,1991.
    [19]张春光,等.降滤失剂作用机理研究——对不同类型降滤失剂的分析[J].钻井液与完井液,1996,3:11-17.
    [20]张春光,等.降滤失剂作用机理研究——对滤液粘度和滤饼渗透率的影响[J].钻井液与完井液,1996,2:5~8
    [21]张春光,等.降滤失剂作用机理研究——降滤失剂对滤饼电荷密度的影响[J].钻井液与完井液,1-4.
    [22]武玉民.SAMPS/NVP/AM/SAA四元共聚物的制备与表征[J].青岛科技大学学报.2003,8(24):283~286.
    [23]陈娟,严波,等.新型降滤失剂NJ-1的研究与应用[J].钻井液与完井液.2005,5(22):36~40.
    [24]周向东.AM/AMPS/NVP三元共聚物降滤失剂WH-1的研制[J].油田化学,2007,24(4):293~295.
    [25]张贵梓.AM/AMPS/AN/NVP四元共聚物耐温降滤失剂制备及室内评价[J].天然气勘探与开发,2011.4:58-62.
    [26]秦伟堂,等.国内外油井水泥降滤失剂概述[J].钻井液与完井液,2005,22(2):54-58.
    [27]郭锦棠,等.抗高温耐盐AMPS/AM/AA降滤失剂的合成及其性能表征[J].石油学报,2011,32(3):470-474.
    [28]贾相臣.阳离子聚合物合成及对粘土稳定性的研究[D].大庆:大庆石油学院,2010.
    [29]Perriocone A C, et al. Vinylsulfonate copolymers for high temperature filtration control of water-base muds. SPE 13455,1986
    [30]Spooner M, et al. The application of HTHP water based drilling fluid on a blowout operation[C]. the AADE Drilling Fluids Technology Conference, Houston, April 1-3,2003.
    [31]Patel A D. Water-based drilling fluids with high temperature fluid loss control additive[P]. US, 5789349,1998-08-04.
    [32]Norfleet James E, et al. Water based fluids comprising multivalent salts and low molecular weight, low molecular whight, low charge cationic polyacrylamide copolymers[P]. US 6855671,2005-02-15.
    [33]Tomislav Soric, et al. Uniquely engineered water-base high temperature drill in fluid increases production, cuts costs in Croatia compaign[R]. SPE/IADC 79839,2003.
    [34]Hayes, et al. High performance water-based mud system[P]. US,7351680.
    [35]徐同台,等.21世纪初国外钻井液和完井液技术[M].石油工业出版社,2004,04.
    [36]Hille. M. et al. Vinylsulfonate/Vinylamide Copolymers in Drilling Fluids for Deep, High-Temperature Wells[C]. SPE 13558.
    [37]J. Dorman. Chemistry and Field Practice of High-Temperature Drilling Fluids in Hungary.[C] SPE 21940,1991.
    [38]Plank. J.P. et al. Field Experience With a Novel Calcium-Tolerant Fluid-Loss additive for Drilling Muds[C]. SPE 18372.
    [39]Eisen J.M., et al.. Application of a Lime-Based Drilling Fluid in a High-Temperature/High-Pressure Environment(includes associated papers 2951 and 23584)[J]. Society of Petroleum Engineers, 1991,6(1):51-56.
    [40]Thaemlitz C.J.. New environmentally safe high-temperature water based drilling-fluid system[J]. SPE Drilling & Completion,1999,14(3):185-189.
    [41]Michal Spooner, etal. The application of high temperature polymer drilling fluid on smackover operations in Mississippi[C]. The AADE Drilling Fluids Conference, Houston. Apri16-7,2004.
    [42]耿东士,等.钻井液用降滤失剂JST501的研究[J].精细石油化工,1993,6:5~8.
    [43]杨小华,等AM/AMPS/AA/HMOPTA共聚物的合成及性能[J].精细石油化工进展,2001.10:8-11.
    [44]杨小华,等.两性离子磺酸盐共聚物处理剂CPS-2000研究[J].钻井液与完井液,2002,6(19):9~13.
    [45]杨小华,等AM/AMPS/MAA/HMOPTA四元共聚物的合成及作为钻井液处理剂的性能[J].2002,3(19):193~196.
    [46]杨小华,等AOIAS/AM/AA共聚物钻井液降滤失剂的合成[J].精细与专用化学品,2007,10(15):22~24.
    [47]王正良,等AM/MAA/AMPS三元共聚物的室内研究[J].长江大学学报(自然科学版)2010,3(7):38~41.
    [48]张建国,等.多功能钻井液添加剂ARJ的研制和评价[J].精细石油化工进展,2004,6(5):8~10.
    [49]安继承,等.低相对分子质量无机一有机单体共聚物17GX的研究与应用[J].精细石油化工进展,2006,6(7):30~34.
    [50]王中华AM/AMPS/DMDAA共聚物的合成[J].精细石油化工,2000,4:5~8.
    [51]王中华AM/AOPS/DEDAAC共聚物防塌降滤失剂的合成[J].河南化工,2009,26:20~22.
    [52]王中华AMPS/AM/AN三元共聚物降滤失剂的合成与性能[J].油田化学,1995,4(12):367~369.
    [53]王中华AMPS/AM/VAC共聚物钻井液降滤失剂合成[J].钻采工艺,1999,4(22):55~57.
    [54]王中华,等AMPS/AM/VP共聚物的合成[J].河南化工,2000,2:16~17.
    [55]王中华P(AMPS-AM-AOETAC-AA)共聚物钻井液防塌降滤失剂的合成[J].精细与专用化学品,2010,10(18):14~17.
    [56]王中华.抗钙钻井液降滤失剂P(AMPS-DEAM)共聚物的合成[J].精细与专用化学品,2010,4(18):24-28.
    [57]王中华.耐温抗盐钻井液处理剂SIOP的合成与性能[J].精细石油化工进展,2002,2(3):15~19.
    [58]王中华.钻井液降滤失剂A96-1的合成[J].精细石油化工,1997,5:1-4.
    [59]王中华.钻井液降滤失剂P(AMPS-IPAM-AM)的合成与评价[J].钻井液与完井液,2010,2(27):10~14.
    [60]王中华.钻井液降滤失剂PAMS601的合成与性能[J].石油与天然气化工,1999,2(28):126~127.
    [61]王中华.国内外超高温高密度钻井液技术现状与发展趋势[J].石油钻探技术,2011,2(39):1~7
    [62]崔迎春,等.钻井液技术发展趋势浅析[J].钻井液与完井液,2005,1(22):60-63
    [63]孙金声,等.钻井液技术的现状、挑战、需求与发展趋势[J].钻井液与完井液,2011,6(28):67-77
    [64]周长虹,等.深井高密度钻井液的应用及发展趋势探讨[J].特种油气藏,2006,3(13):1-5.
    [65]吴长勇,等.海洋钻井液技术研究与应用现状及发展[J].断块油气田,2005,3(12):69-72
    [66]杨振杰.环保钻井液技术现状及发展趋势[J].钻井液与完井液,2004,2(21):39-44.
    [67]Perricone A.C.. Vinyl Sulfonate Copolymers for High-Temperature Filtration Control of Water-Based Muds. SPE 13455,1986.
    [68]Audiert A., et al.. Thermal Stability of Sulfonated Polymers. SPE 28953,1995.
    [69]徐寿昌.有机化学[M].高等教育出版社,2002.
    [70]D.J Greenland. Adsorption of Polyvinyl Alcohols by Montmorillonite[J]. Journal of Colloid Science, 1963,7(18)647-664.
    [71]Michaels, A.S., et al.. Polyelectrolyte Adsorption by Kaolinite[J]. Industrial Engineering Chemistry, 1955,9(47):1801-1809.
    [72]Pefferkorn E., etal.. Adsorption of Polyacrylamide to Na Kaolinite:Correlation between Clay Structure and Surface Properties [J]. Journal of Colloid and Interface Science,1985,1(106):94-103.
    [73]Besra L., et al. Flocculation and dewatering of Kaolin Suspensions in the presence of polyacrylamide and surfactants [J]. Internatuional Journal of Mineral Processing,2002,1(66):203-232.
    [74]Plank, J.P. et al.. Visualization of Fluid-Loss Polymers in Drilling-Mud Filter Cakes. SPE 19534.
    [75]Kunihiko, etal. Hydration Behavior of Ionic Dextran Derivatives[J]. Macromolecules, 1974,2(7):224-229.
    [76]李卓美.高分子泥浆降滤失剂的分子结构与其耐盐性能的关系(Ⅰ)[J].油田化学,1986,1:28-38
    [77]李卓美.高分子泥浆降滤失剂的分子结构与其耐盐性能的关系(Ⅱ)[J].油田化学,1986,2:103-113
    [78]高保娇,等.对苯乙烯磺酸钠聚合动力学及与丙烯酰胺共聚合的研究[J].高分子学报,2005,3:453-457.
    [79]王贵江,等.疏水缔合三元共聚物的合成及其性能[J].石油化工,2009,38(9):984-988.
    [80]方申文,等.树核星形聚丙烯酰胺的制备及其稀溶液性质[J].石油化工,2009,38(3):278-283.
    [81]郑兴利.高分子抗盐聚丙烯酰胺性能评价及应用研究[D].黑龙江:大庆石油学院,2008.
    [82]蒋春勇,等.星形疏水缔合聚丙烯酰胺溶液性质的研究[J].石油化工,2010,39(2):204-208.
    [83]曹丽娜,等.甲基丙烯酸和对苯乙烯磺酸钠共聚反应单体竞聚率的测定[J].河北科技大学学报,2010,3(31):195-200.
    [84]廖晓兰,等.苯乙烯磺酸钠用于硅丙无皂乳液共聚物研究[J].涂料工业,2009,9(39):38-42.
    [85]刘若望,等.苯乙烯-马来酸酐交替共聚物钠盐/聚苯乙烯磺酸钠复合物的湿敏特性[J].传感技术学报,2011,4(24):487-491.
    [86]何雪莲,等.对苯乙烯磺酸钠改性炭黑对天然橡胶胶乳力学性能的影响[J].高分子学报,2009,11:1101-11106.
    [87]张玉平,等P(AM-DAAM-NVP)三元共聚物的耐温抗盐性能研究[J].精细化工,2006,5(23):494-496
    [88]WU Y M, et al. roperties of the forpolymer of N-vinylpyrr-olidone with itaconic acid, acrylamide and 2-acrylamido-2-methyl-1-propane sulfonic acid as a fluid-loss reducer for drilling fluid at high temperatures [J]. Colloid Polymer Science,2001,279(9):836-842.
    [89]董炎明,等.高分子结构与性能[M].华东理工大学出版社,2010,01.
    [90]王国建,等.多组分共聚物结构与性能[M].化学工业出版社,2010,05.
    [91]励航泉,等.共聚物物理学[M].化学工业出版社,2007,07.
    [92]肖世镜,等.烯烃配位聚合催化剂及聚烯烃[M].北京工业大学出版社,2002.
    [93]Ian Fleming.Frontier orbitals and organic chemical reactions[M]. Wiley Press,1976,10.
    [94]刘庄,等.普通有机化学[M].高等教育出版社,1998.
    [95]欧阳新平,等.水溶性苯乙烯-苯乙烯磺酸钠共聚物的合成及分散稳定性能研究[J].高校化学工程学报,2010,4(24):681-687.
    [96]宋春雷,等P(AM/AMPS/NVP)降滤失剂合成与耐温性能研究[J].应用化工,2009,9:
    [97]唐善法,等.正电胶泥浆抗温抗盐降滤失剂的研制与评价[J].石油与天然气化工,1996,25(2):106~110.
    [98]杨文,等.两性离子共聚物降滤失剂PMADA的制备[J].精细石油化工进展,2007,6:
    [99]Dimonie M W, etal.Eur Polymer J,1982,(18):639.
    [100]oghina C M, etal.J Makromol, Sci Chem.,1985,22(5-7):591.
    [101]卢江,等.高分子化学[M].化学工业出版社,2010.04.
    [102]熊联明,等.高分子化学简明教程[M].化学工业出版社,2010.02.
    [103]罗文利,等.二甲基二烯丙基氯化铵与丙烯酰胺水溶液共聚合[J].油田化学,1998,3(15):193-196.
    [104]唐培堃.精细有机合成化学及工艺学[M].第二版.天津:天津大学出版社,2002.
    [105]王善琦.高分子化学原理[M].第一版.北京:北京航空航天大学出版社,1993.
    [106]赵俊会,等.高分子化学与物理[M].中国轻工业出版社,2010.
    [107]马诚,等.成膜性共聚物钻井液降滤失剂的研制与评价[J].钻井液与完井液,2011,3:
    [108]马平贵,等AA/AM/AMPS的超浓反相乳液合成降滤失水剂的稳定性研究[J].石油与天然气化工,2006.10:
    [109]Doi Shunichi, et al. Process for purifying 2-acrylamido-2-methylpropanesulfonic acid[P]. US:4337215,1982.06.
    [110]Allan H Jevene, et al. Refining of reaction grade 2-acrylamido-2-methylpropanesulfonic acid[P]. U.S:4650614,1987.03.
    [111]Shiragami M. Producture of high-purity 2-acrylamido-2-methylpropanesulfonic acid[P]. JP:5125037,1993.05.
    [112]Demetra Dragan, et al. Purifying method of 2-acrylamido-2-methylpropanesulfonic acid[P]. RO:103538,1991.12.
    [113]Demetra Dragan, et al. Purifying method of monomer acid 2-acrylamido-2-methylpropanesulfonic acid[P]. RO:104626,1994.09.
    [114]董炎明,等.高分子研究方法[M].中国石化出版社,2011.04.
    [115]刘佛云,等.快速测定共聚物特性粘数的对半法[J].化学通报,1980,4:21-25.
    [116]Audibert A. Thermal stability of sulfonated polymer[J]. SPE 28953,1995.
    [117]Moradi-Arahi A. Hydrolysis and precipitation of polyacrylimides in hard brines at elevated temperature[J]. SPE 13033,1987.
    [118]Davison R, Mentzer E. Polymer flooding in north sea reservoirs[J]. SPE 9300,1982.
    [119]Binnig G, et tal. Atomic force microscope[J]. PHys Rev Lett,1986,56:930-933.
    [120]Albrecht T R, Dovek M M, Lang C A. Imaging and modification of polymers by scanning tunneling and atomic force microscopy [J].J App1 PHys,1988,64:1178-1184.
    [121]张瑞,等.原子力显微镜在共聚物溶液结构研究中的应用[J].电子显微学报.2010,29(5):475-462.
    [122]吴晓燕,等.一种疏水缔合丙烯酰胺共聚物的合成及流变性能评价[J].高分子材料科学与工程,2011,27(6):22-25.
    [123]白炳莲,等.基于氢键的自组装超分子体系[J].化学通报,2004,2:124-131.
    [124]韩利娟,等.疏水缔合聚丙烯酰胺的自组装行为[J].西南石油学院学报,2006,28(4):71-74.
    [125]钟传蓉.疏水缔合丙烯酰胺共聚物的合成与性能及在溶液中结构形态的研究[D].成都:四川大学,2004.
    [126]Gilli.G,ettal. Towards an unified hydrogen-bond theory [J] Journal of Molecular Structure, 2000,9(552):1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700