用户名: 密码: 验证码:
陆相断陷盆地成烃与成藏关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文借鉴含油气系统理论成因论的思想方法,针对陆相断陷盆地高勘探程度阶段勘探重点向隐蔽油气藏转移的情况,以东营凹陷为例,综合运用地质和地球化学手段,从宏观和微观、有机与无机结合的角度,系统研究了不同烃源岩的发育、成烃过程、油气生成运移的机制,分析了成烃与成藏各地质要素的组合关系和时空演化特点,指出了新的勘探方向,主要成果如下:
     根据层序结构特征、古生物组合及微量元素含量等的变化,剖析了Es_4~上—Es_2~下湖盆类型的演变,提出Es_4~上和Es_3~下亚段为均衡补偿湖相盆地沉积,Es_3~中亚段为过补偿湖相盆地沉积,并且以此为基础分析了各层段烃源岩发育的特点及主要控制因素,划分了沉积相,建立了沉积相模式。
     系统研究了不同烃源岩的微观特征、有机质与无机矿物的接触关系以及固体有机质的赋存方式,探讨了烃源岩中“富集有机质”和“分散有机质”形成的机制。总结了不同层段烃源岩的地球化学特征和非均质性差异,提出了东营凹陷优质烃源岩的判定标准,总结了其主要判识标志特点,追踪了Es_4~上和Es_3~下亚段优质烃源岩的平面和空间展布。
     建立了不同层段烃源岩的自然演化地球化学剖面,系统分析了生烃过程的差异性及其原因,划分了生烃阶段。
     系统研究了有机粘土复合体和干酪根的表面化学特征随埋深的变化以及对排烃的指示意义。
     根据烃源岩残余油饱和度分析,确定了不同烃源岩的有效排烃门限,提出Es_4~上烃源岩大规模排油深度为2600m,对应着突变压实阶段的后期,Es_3~下亚段大规模排油深度在3200m左右,对应着紧密压实阶段。在突破压力模拟实验和微观结构研究的基础上,剖析了烃源岩物性特征的差异,明确了生烃超压是微裂隙形成的主要机制,提出了优质烃源岩的排烃模式,分析了烃源岩的埋藏史和排烃史。
     通过对不同构造带典型油田的解剖,总结了东营凹陷成藏的特点和规律:目前已找到的原油主要来自Es_4~上和Es_3~下优质烃源岩,Es_4~上亚段烃源岩对油藏的贡献大于Es_3~下亚段,前者由洼陷带到盆地边缘相对贡献逐渐加大,而后者则主要在洼陷带成藏:通源断层是油气运移的重要通道:Es_4~上亚段生成的油气存在两期重要的成藏过程,而Es_3~下亚段以晚期成藏为主;区内存在三种基本成烃与成藏组合,已探明油气以源上型为主。在此基础上指出了今后的勘探方向。
Dongying Depression is a Mesozoic-Neozoic terrestrial rift basin with abundant petroleum in the east of China. After 40 years of exploration, the basin has reached medium to intensed exploration stages. The main exploration targets gradually change from structural traps to subtle traps such as the stratigraphic traps, lithologic traps. The exploration became more and more difficult. Now how to improve the exploration efficiency is the key issue in nowadays study.Combined with geochemistry and geology means, first we have a systematic study of source rocks formation, oil generation, migration in both macroscopic and microscopic view, then analyze the source and accumulation process of a series of typical oilfield in different tectonic belts, sum up the relationships between hydrocarbon occurrence and petroleum accumulation, and suggest some favorable targets for future exploration. The following are the main points and views:1. Integrative studies of sequence stratigraphy, lithology association, paleontology and trace elements characteristics suggest the lake basin types are changing during Es4u- ES2l. Es4u and ES3l are dominated by balanced-filled type deposition, while ES3m is dominated by over-filled type sediment. The lake basins evolution is manifested by changes in sedimentary characteristics. Es4U and ES3l consist of a series of transgressive-regressive parasequences with well-developed sedimentary rhythmicity. It indicates the climate-driven lake level fluctuations are common. Excellent source rocks finely laminated and lacking bioturbation are well developed in these two units. It suggests the lake water has relatively persistent stratification and the bottom water is anoxic which inhibit the colonizing of benthic organism. Contrast to the underlying two stratigraphy units, ES3m is predominant by massiveness mudstones and silty mudstones with lower organic abundance, no clear rhythmic characteristics and no lamination or indistinct lamination. These features show that the climate-driven water level is not so strong, the lake water has good circulation and lacks persistent stratification, and the bottom water is venticulated.2. In microscopic scale, excellent source rocks (mainly distributed in Es4U and ES3l) are also well laminated and are dominated by enriched organic matter, which often forms continual organic matter network. Detailed investigations uncover four types of laminae (including carbonate laminae, clay mineral laminae, organic laminae
    and pyrite laminae). In contrast, poor to mediate source rocks (mainly distributed in Es3m) are poorly laminated and dominated by disseminated organic matter.3. Source rocks of different units are investigated for their geochemistry difference in organic richness, organic matter type, and biomarker characteristics. Then the criterion for the excellent source rocks is suggested with a total organic carbon of 3.0%. According to the relatively high resistance log characteristics, excellent source rocks from Es4U and ES31 are traced and mapped.4. Based on the organic geochemistry analysis of core samples, three source rocks evolutionary profiles (Es4U, ES31 and Es3m) are set up. It shows source rocks of Es4U deposited in saline to brackish environment generate hydrocarbons in relatively shallow depths than fresh to brackish source rocks of ES31. The differences also manifest by the chemical dynamic parameters and the chemical structure features of the organic matter.5. Surface geochemistry characteristics of organic-mineral complexities and kerogen from different source rocks, including the specific area surfaces, pore structure, surface energy, etc. are investigated for their evolution path with burial.6. According to the natural geochemistry section and natural remnant oil saturation analysis, the effective hydrocarbon expulsion thresholds of different source rocks are determined. The critical depth for Es4U to expel hydrocarbons in large amount is about 2600m, which are corresponding to late abrupt compaction stage, but for ES31 it is at least 3000m, which are corresponding to tight compaction stage. Combined with burial history, surface geochemistry of kerogen and organic-minerals complexities, micro-fabric features and breakthrough pressure experiments, we put forward a lateral migration model for excellent source rocks.7. Synthetically reservoir geology analysis (oil, water and pressure) and oil source correlation indicate that the oils are sourced mainly from the Es4U and ES31 excellent source rocks in Dongying Depression.8. Seven typical oilfields, including Sheng-tuo oilfield, Dong-xin oilfield, Niu-zhuang oilfield, Liang-jia-lou oilfield, Wang-jia-gang oilfield and Ba-mian-he oilfield, which are located in different tectonic belts are investigated for the source-reservoir relationship and accumulation process. The following are the elementary rules: (1) Most of the oils sourced from ES31 are discovered in the sag zone, and the contribution of ES31 decreases from the sag center to the sag margin. In contrast, the contribution of Es4U increases from the sag zone to the slope zone and
引文
安作相.2001.渤海湾分地几个大油田的形成与勘探.新疆石油地质,22(2):97~102
    蔡进功,姜秀芳.1995.东营盆地始新统沉积体系及盆地演化.沉积学报,13(1):27~37
    常象春,张金亮.2003.油气成藏动力学:涵义、方法与展望.海洋地质动态,19(2):18~25
    陈洁.2003.济阳凹陷第三系构造层序及其演化.地球物理学进展,18(4):700~706
    程克明.1994.吐哈盆地油气生成.北京:石油工业出版社
    单怀广,张慧娟.1990.山东油气区第三纪介形类.见:《中国油气区地层古生物》编辑委员会编.中国油气区地层古生物论文集(二),山东油气区专辑.北京:石油工业出版社.1~56
    邓宏文,钱凯.1990.深湖相泥岩的成因类型和组合演化.沉积学报,8(3):1~21
    邓宏文,钱凯.1993.沉积地球化学与环境分析.兰州:甘肃科学技术出版社
    邓宏文,钱凯.1993.试论湖相泥质岩的地球化学二分性.石油与天然气地质,14(2):85~97
    邓宏文,王洪亮,翟爱军等.1999.中国陆源碎屑盆地层序地层与储层展布.石油与天然气地质,20(2):108~114
    邓宏文.2002.高分辨率层序地层学.北京:地质出版社
    杜贤樾,朱宗浩,孙龙德,1997.东辛油田.张文昭主编.中国陆相大油气田.北京:石油工业出版社.69~645
    冯有良,邱以钢.2003.高精度层序地层学在济阳塌陷下第三系隐蔽油气藏勘探中的应用.石油学报,24(1):49~53
    傅家谟,刘德汉,盛国英.1990.煤成烃地球化学.北京:科学出版社
    傅家谟,徐芬芳,陈德玉等.1985.茂名油页岩中生物输入的标志化合物.地球化学,2:99~113.
    关德范,郑和荣,龙胜祥.2003.中国石化东部探区油气勘探潜力分析.石油学报,24(2):1~5
    郭绍辉,李术元,陈志伟等.2000.低熟烃源岩的超强混合溶剂抽提及地球化学意义.石油大学学报,24(3):50~53
    洪志华,陈致林.1997.济阳坳陷低熟原油特征及成因.沉积学报,15(2):89~94
    胡朝元,廖曦.1996.成油体系概念在中国的提出及应用.石油学报,17(1):10~16
    胡济世.1989.异常高压流体压裂与油气运移.石油勘探与开发,22(3):16~23
    胡见义,黄第藩等.1991.中国陆相石油地质理论基础.北京:石油工业出版社
    胡见义,徐树宝等.1986.非构造油气藏.北京:石油工业出版社
    胡见义.1986.渤海湾盆地复式油气聚集区(带)的形成和分布.石油勘探与开发,1,1~8
    黄第藩,李晋超.1987.陆相沉积中的未熟油及意义.石油学报,8(1):1~9
    黄第藩,秦匡宗,王铁冠等.1995.煤成油的形成和成烃机理.北京:石油工业出版社
    黄第藩等,1982.中国陆相油气生成.北京:石油工业出版社
    姜在兴,杨伟利,操应长.2002.东营凹陷沙河衔组三段一二段下亚段沉积层序及成因.石油与天然气地质,23(2):127~130
    解习农,刘晓峰,胡祥云等.1998.超压盆地中泥岩的流体压裂与幕式排烃作用.地质科技情报,17(4):8~12
    莱复生 A I.1975.石油地质学.北京:地质出版社
    李春光.试论东营凹陷油气二次成藏.复式油气田,1997,4:12~19
    李德生.1980.渤海湾含油气盆地的地质构造特征.石油学报,1(1):6~18
    李德生.1997.渤海湾含油气盆地的地质构造特征与油气田分布规律.见:张文昭,中国陆相大油气田.北京:石油工业出版社.120~134
    李继红,魏魁生,厉大亮等.2002.非海相沉积层序的成因和构型特征.沉积学报,20(3):409~415
    李明诚.2000.石油与天然气运移研究综述.石油勘探与开发,27(4):3~10
    李明诚.1994.油气运移研究的现状与发展.石油勘探与开发,21(2):1~6
    李丕龙,张善文,宋国奇等.2004.断陷盆地隐蔽油气藏形成机制——以渤海湾盆地济阳坳陷为例.石油实验地质,26(1);3~10
    李丕龙,张善文,肖焕钦等.2003.陆相断陷盆地油气地质与勘探(卷3).北京:石油工业出版社,地质出版社
    李丕龙.1999.济阳坳陷复式油气聚集模式.复式油气田,(2):1~3
    李丕龙.2002.胜利油区勘探现状及展望.油气地质与采收率,9(1):9~12
    李思田,潘元林,陆永潮等.2002.断陷湖盆隐蔽油藏预测及勘探的关键技术——高精度地震探测基础上的层序地层学研究.地球科学——中国地质大学学报,27(5):592~598
    李阳,蔡进功,刘建民.2002.东营凹陷下第三系高分辨层序地层学研究.沉积学报,20(2):210~216
    梁狄刚,1997.塔里木盆地寻找大油田的几个地质问题.张文昭,中国陆相大油气田.北京:石油出版社
    梁狄刚.1999.塔里木盆地油气勘探若干地质问题.新疆石油地质,20(3):184~188
    刘传联,徐金鲤,汪品先.2001.藻类勃发—湖相油源岩形成的一种重要机制.地质论评,47(2):207~210
    刘传联,舒小辛,刘志伟.2001.济阳坳陷下第三系湖相生油岩的微观特征.沉积学报,19(2):293~298
    刘传联,徐金鲤.2002.生油古湖泊生产力的估算方法及应用实例.沉积学报,20(1):144~150
    刘传联,徐金鲤.2000.济阳坳陷下第三系颗石藻类化石的分布及与油气的关系.海洋地质与第四纪地质,20(3):73~77
    刘传联.1998.东营凹陷沙河街组湖相碳酸盐岩碳氧同位素组分及其古湖泊学意义.沉积学报,16(3):109~114
    刘立,王东坡.1996.湖泊油页岩的沉积环境及其层序地层学意义.石油实验地质,18(3):311~316
    刘庆,张林晔,沈忠民等.2004.东营凹陷富有机质烃源岩顺层微裂隙的发育与油气运移.地质论评,50(6):593~597
    刘庆,张林晔,沈忠民等.2004.东营凹陷湖相盆地类型演化与烃源岩发育.石油学报,25(4):42~45
    刘庆,张林晔,张春荣,等.2002.梁家楼油田油藏水化学特征与油源关系初探.见:地球化学与岩石圈动力学开放实验室年报(2001/2002).东营:石油大学出版社.53~57
    刘兴才.2001.刘兴才石油地质勘探论文报告选集.北京:石油工业出版社
    刘兴材,杨申镳.1997.济阳坳陷大油气田形成及分布规律.见:张文昭.中国陆相大油气田.北京:石油工业出版社.55~166
    刘兴材,杨申镳.1998.济阳复式油气区大油田形成条件及分布规律.成都理工学院学报,25(2):277~284
    潘元林,张善文,肖焕钦等.2003a.济阳断陷盆地隐蔽油气藏勘探.北京:石油工业出版社.
    潘元林,宗国洪,郭玉新等.2003b.济阳断陷湖盆层序地层学及砂砾岩油气藏群.石油学报,24(3):16~23
    彭平安,盛国英、傅家谟等.1998.高硫未成熟原油非干酪根成因的证据.科学通报,43(6):636~638
    齐永安.1999.生物扰动和遗迹组构的描述与分析.河南地质,17(4):273~277
    邱中建,龚再升.1999.中国油气勘探,第三卷,东部油气区.北京:石油工业出版社,地质出版社.546~603
    帅德福,王秉海,陈余康等.1993.中国石油地质志(卷六).北京:石油工业出版社.271~302
    宋国奇.1991.层序地层学在断陷湖盆地质研究中的应用——以济阳坳陷下第三系为例.陆相石油地质,第4期:1~12
    宋国奇.2002.含油气盆地成藏组合体理论初步探讨.油气地质与采收率,9(5):4~7
    田在艺,史卜庆,罗平,张大江.2002.渤海湾盆地复式油气聚集带高勘探程度区进一步挖潜的领域.石油学报,23(3):1~5
    田在艺,张庆春.1996.中国含油气沉积盆地论.北京:石油工业出版社
    王秉海,钱凯.1992.胜利油区地质研究与勘探实践,东营:石油大学出版社
    王飞宇,何萍,秦匡宗等.1994.中国湖相生油岩和油页岩无定形有机质中的超细纹层.科学通报,39(17):1587~1589
    王慧中,梅洪明.1998.东营凹陷沙三下亚段油页岩中古湖泊学信息.同济大学学报,26(3):315~319
    王慧中.1996.东营凹陷沙河街组生物扰动构造半定量分析试验.地质科学,31(3):287~294
    王捷,关德范.1999.油气生成运移聚集模型研究.北京:石油工业出版社
    王宁.2001.东营凹陷北部陡坡带砂砾岩体岩性油气藏形成机理及分布规律研究:[学位论文].北京:中国科学院地质与地球物理研究所.15~22
    王铁冠,钟宁宁,侯读杰等.1995.低熟油的形成机理与分布.北京:石油工业出版社
    王新洲,宋一涛,王学军.1996.石油成因与排油物理模拟—方法、机理及应用.东营:石油大学出版社
    徐金鲤,潘昭仁,杨育梅等.1997.山东胜利油区早第三纪沟鞭藻类和疑源类.东营:石油大学出版社.31~37
    杨剑萍,姜在兴,陈发亮等.1998.惠民凹陷下第三系湖相沉积密集段特征.石油大学学报(自然科学版),22(4):21~24
    姚益民、梁鸿德、蔡治国等.1994.中国油气区第三系(Ⅳ),渤海湾盆地含油气区分册.北京:石油工业出版社
    俞洪年,卢华复.1998.构造地质学原理.南京:南京大学出版社.72
    翟光明,高维亮,吴少华等.1996.中国石油地质志(卷一).北京:石油工业出版社.372~416
    翟光明,何文渊.2002.渤海湾盆地资源潜力和进一步勘探方向的探讨.石油学报,23(1):1~5
    张敦祥,张方吼,骆光华.1990.梁家楼湖相烃类从泥岩向浊积岩的初次运移问题探讨.石油与天然气地质,11(3):9~15
    张林晔,孔祥星,张春荣等.2001.济阳坳陷优质烃源岩的发育及其意义.见:梁狄刚,黄第藩,马新华,
    等.有机地球化学进展,第八届全国有机地球化学学术会议论文集.北京:石油工业出版社.93~99.
    张林晔,孔祥星,张春荣等.2003.济阳坳陷优质烃源岩的发育及其意义.地球化学,32(1):35~42
    张林晔,刘庆,张春荣等.2004.陆相断陷盆地成烃与成藏关系研究—以胜坨油田为例.沉积学报,22(增刊):8~14
    张林晔,张春荣.1999.低熟油生成机理及成油体系—以济阳坳陷南部斜坡为例.北京:石油工业出版社
    张林晔,张守春,黄开权等.1999.半咸水湖相未油成因模拟实验研究.科学通报,44(4):361~367
    张善文,王永诗,石砥石,徐怀民.2002.网毯式油气体系—以济阳新近系为例.石油勘探与开发,30(1):1~10
    张世奇,纪友亮,宁学功.1997.东营凹陷下第三系湖相密集段特征.石油大学学报(自然科学版),21(2):4~7
    张水昌,梁狄刚,张大江.2002.关于古生界烃源岩有机质丰度的评价标准.石油勘探与开发,29(2):8~12
    张万选.1993.陆相地震地层学.东营:石油大学出版社
    赵靖舟,李秀荣.2002.成藏年代学研究现状.新疆石油地质,23(3):257~261
    赵文智,何登发.1996.含油气系统理论在油气勘探中的应用.勘探家,(2):12~19
    赵文智,何登发.2000.中国复合含油气系统的概念及其意义.勘探家,5(3):1~11
    郑和荣,黄永玲,冯有良.2000.东营凹陷下第三系地层异常高压体系及其石油地质意义.石油勘探与开发,27(4):67~70
    郑和荣,黄永玲,冯有良.2000.东营凹陷下第三系地层异常高压体系及其石油地质意义.石油勘探与开发,27(4):67~70
    朱夏.1983.试论中国中新生代油气盆地的地球动力学背景.见:朱夏主编.中国中新生代盆地构造和演化.北京:科学出版社.61~70
    朱夏.1986.论中国含油气盆地的构造.北京:石油出版社.
    Appold M S and Nunn J A, 2002. Numerical models of petroleum migration via buoyancy-driven porosity waves in viscously deformable sediments. Geofluids, 2: 233~247
    Belin S著,赵林译.1994.背散射电子成像在烃源岩微结构研究中的应用.地质地球化学,第5期:60~65
    Berg R R, Gangi A F, 1999. Primary migration by oil-generation microfracturing in low permeability source rocks: Application to the Austin Chalk, Texas. AAPG Bulletin, 83(5): 727~756
    Bohacs K M, Carrol A R, Neal J E, et al., 2000. Lake-basin types, source potential, and hydrocarbon character: an integrated sequence-stratigraphic-geochemical framework, in E H Gierlowski-Kordesch & K R Kelts (eds.). Lake basins through space and time. AAPG Studies in Geology, 46: 3~34.
    Bordenave M L. 1993. Applied petroleum geochemistry. Editions Technip, Paris. 79~80
    Bredehoeft J D, Wesley J B, and Fouch T D. 1994. Simulation of the origin of fluid pressure, fracture generation, and the movement of fluids in the Uinta Basin, Utah. AAPG Bulletin, 78(11): 1729~1747
    Capuano R M, 1993. Evidence of fluid flow in microfractures in geopressured shales. AAPG Bulletin, 77(8): 1303~1314.
    Carroll A R, Bohacs K M, 1999. Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology, 27(2): 99~102.
    Cartwright J A, 1994. Episodic basin-wide fluid expulsion from geopressured shale sequences in the North Sea Basin. Geology, 22: 447~450
    Costin L S. 1981. Static and dynamic fracture behaviour of oil shale. In: Freiman S W (eds.), Fracture mechanics of ceramics, rocks and concrete. Philadelphia, Am. Soc. Testing Materials, ASTM STP 745, 169~184.
    David K B and K E Peters, 1992. Early generation characteristics of a sulfur-rich Monterey Kerogen. AAPG Bulletin, 76(1): 1~13
    Dow W G, 1972. Application of oil correlation and source rock data to exploration in Williston Basin (abs): AAPG Bulletin, 56: 615
    Du rouchet J, 1981. Stress Fields, a key go oil migration. Bulletin Am. Assoc. Pet. Geol., 65: 74~85
    Dueppenbecker, S. J., ____. Petroleum expulsion from source rocks - insights from geology, geochemistry and computerized numerical modeling. In: ____ (eds.). The interplay of petroleum generation and migration. 165—177
    Durand B, 1988. Understanding of HC migration in sedimentary basins (present state of knowledge), Advances in Organic Geochemistry 1987. Org. Geochem., 13(1-3): 445~459
    Espitalie, J and Bordenave M L, 1993. Rock-Eval pyrolysis. In: Bordenave M L (eds.). Applied petroleum geochemistry. Editions Technip, Paris
    Foster W R, and H C Custard, 1980. Smectite-illite transformation-role in generating and maintaining geopressure. AAPG Bulletin (Abs), 64: 708
    Freed R L, and D R Peacor, 1989. Geopressured shale and sealing effect of smectite to illite transformation. AAPG Bulletin, 37: 1223~1232
    Fu Jiamo, Sheng Guoying, Xu Jiayou, et al. 1990. Application of biological markers in the assessment of Paleoenvironments of Chinese non-marine sediments. Organic Geochemistry, 16: 769~ 779
    Grabowski G J Jr & Pevear D R. 1985. Sedimentology and petrology of profundal lacustrine sediments, Mahogany zone of the Green River Formation, Piceance Creek Basin, Northwest Colorado. In: Crevello P D and Harris P M (eds.). Deep water carbonates—a core workshop. SEPM Core Workshop, 6. 386~ 430
    Hubbert M K, 1995. Entrapment of petroleum under hydrodynamic conditions. AAPG Bull., 37(8): 1954~2026
    Hunt J M, 1979. Petroleum Geochemistry and Geology. W. H. Freeman and Company, San Francisco
    Hunt J M, 1990. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bulletin, 74: 1~12
    Jones R W. 1981. Some mass balance and geological constraints on migration mechanisms. AAPG Bulletin, 65: 103~121
    Kaarsberg, E A, 1959. Introductory studies of natural and artificial argillaceous aggregates by sound-propagation and x-ray diffraction methods. Journal of geology, 67: 447—472.
    Kelts B J. 1988. 湖相生油岩的沉积环境,古湖泊学译文集.海洋出版社.
    Kemp A E S, 1996. Laminated sediments as palaeo-indicators. In: Kemp A E S (eds.), Palaeoclimatology and palaeoceanography from laminated sediments. Geological society special publication, 116: Vffl~XE.
    Kemp A. E. S. (eds.), 1996. Palaeoclimatology and Palaeoceanography from laminated sediments. Geological Society Special Publication, 116. The Geological Society Publishing House. Oxford, UK
    Kemp, A E S, 1991. Mid Silurian pelagic and hemipelagic sedimentation and palaeoceanography. Bassett et al. (eds). The Murichison Symposium. Special papers in palaeontology, 44. 261—299
    Lewan M D, 1987. Petrographic study of primary petroleum migration in the woodford shale and related rock units. In: Brigitte Doligea (eds.), Migration of hydrocarbons in sedimentary basins. Editions Technip, Paris. 113—129.
    Leythaeuser D, Littke R, Radke M, et al., 1988. Geochemical effects of petroleum migration and e xpulsion fromToarcian source rocks in the Hils syncline area, NW-Germany. Org. Geochem, 13(1-3):489~502.
    Littke R, Baker DR, Leythaeuser D, 1988. Microscope and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different maturities. Org. Geochem., 13(1-3): 549~559
    Mackenzie A S and Quigley T M, 1988. Principles of geochemical prospect appraisal. AAPG Bulletin, 72(4): 399~415
    Mackenzie A S, Leythaeuser D, Muller P et al., 1988A. The movement of hydrocarbons in shales. Nature, 331(7): 63-65.
    Magoon L B, Dow W G, 1994. The petroleum system — from source to trap. AAPG Memoir, 60: 3— 22
    Mann U, Leythaeuser D and Muller P J, 1986. Relation between source rock properties and wireline log parameters: An example from Lower Jurassic Posidonia Shale, NW-Germany. Advances in Organic geochemistry 1985. Org. Geochem. 10, 1105—1112
    Matthews M D, 1996. Migration—a view from the top. In: D Schumacher and M A Abrams (eds.), Hydrocarbon migration and its near-surface expression. AAPG Memoirs 66: 139—155
    Maubeuge F, Lerche I. 1994. Geopressure evolution and hydrocarbon generation in a north Indonesian basin: two-dimensional quantitative modeling. Marine Petroleum Geology, 11: 104—120
    Mc Aulliffe C D, 1980. Oil and gas migration:chemical and physical constraints. In: Robert III W H, Cordell J R (eds.), Problems of petroleum migration. AAPG studies in geology, 10. 89—107
    Mc Aulliffe C, 1966. Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin and aromatic hydrocarbons. J. Phys. Chem., 70: 1267—1275
    Meissner, F F, 1978. Petroleum geology of the Bakken Formation, Williston basin, North Dakota
     and Montana. In: The economic geology of the Williston Basin. Montana Geological Society, Williston Basin Symposium, 207~227
    Miller T W, 1995. New insights on natural hydraulic fractures induced by abnormally high pore pressures. AAPG Bulletin, 79(7): 1005~1018.
    Moldowan, J M, Seifert W K, and Gallegos E J. 1985. Relations between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin, 69: 1255~1268.
    North F K, 1985. Petroleum Geology. Boston: Allen & Unwin Inc.
    O'Brien N R & Slatt R M. 1990. Significance of lamination in Toarcian (Lower Jurassic) shales from Yorkshire. Northeastern Geologist, 11: 159~165
    Peters K E and J Michael Moldowan著,姜乃煌,张水昌,林永汉,等译.1995.生物标记化合物指南——古代沉积物和石油中分子化石的解释.北京:石油工业出版社.126~146
    Peters K E,Michael M J 著.姜乃煌,张水昌,林永汉等译.1995.生物标记化合物指南—古代沉积物和石油中分子化石的解释.北京:石油工业出版社.126~146
    Rosenberg R. 1977. Benthic macrofaunal dynamics, production and dispersion in an oxygen-deficient estuary of West Sweden. J. Exp. Mar. Biol. Ecol. 26: 107~33.
    Rubinstein, I, Sieskind, O, and Albrecht, P, 1975. Rearranged steranes in a shale: Occurrence and simulated formation. Journal of the Chemical Society, Perkin Transaction, Ⅰ: 1833~1836.
    Schmoker J W, 1981. Determination of organic-matter content of Appalachian Devonian shales from gamma-ray Logs. AAPG Bull., 65: 1285~1298
    Soutar A, Johnson S R, Baumgartner T R. 1981. In search of modern depositional analogues to the Monterey Formation. In: Garrison R E & Doulglas R G (eds.). The Monterey Formation and related siliceous rocks of California. Pacific Sect. S. E. P. M. Los Angeles. 123~47.
    Talbot M R.1991.湖相油页岩的成因.来自热带非洲湖泊的资料.古湖泊学译文集,海洋出版社.
    Talukdar S, 1987. Observation on primary migration of oil in the La Luna source rocks of Maracaibo Basin, Venezula. In: Brigitte D(eds.). Migration of hydrocarbons in sedimentary basins. Editions Technip, Paris. 59~77
    Taylor A M and Goldring R. 1993. Decription and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150: 141~148
    Tiercelin J J, Vincens A, et al., 1987. Ledemi-graben de Baringo-Bogoria, Rift Gregory, Kenya, 30000 ans d'histoire hydrologique et sedimentaire. Bull. Centres Rech. Explor-prod. Elf Aquitaine, 11(2): 249~540
    Tissot B P and Welte D H, 1978. Petroleum formation and Occurrence. Spring-Verlag, Berling Heidelberg New York Tokyo
    Tissot B P, 1987. Migration of hydrocarbons in sedimentary basins: a geological, geochemical and historical perspective. In: Doligez B(eds.), Migration of hydrocarbons in sedimentary basins. Editions Technip, Paris. 1~19
    Tissot B P & Welte D H, 1984. Petroleum formation and occurrence. Springer-Verlag, Berlin. 340~345

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700