用户名: 密码: 验证码:
超疏水/超亲油水性环氧树脂乳液涂层的制备及在油水分离滤纸中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近几年汽车产销量以及汽车保有量的高速增长,为汽车配件企业提供了一个广阔的汽车售后维修和保养市场。汽车的寿命很大程度上取决于其心脏(发动机)的寿命。对发动机性能和寿命危害最大的是脏和污染,滤清器是避免脏和污染的唯一方法。机油滤清器位于发动机润滑系统中。它的上游是机油泵,下游是发动机中需要润滑的各零部件。机油品质的优劣将直接影响发动机的工作状态以及汽车的正常行驶。因此,使用高品质的机油,对于汽车是至关重要的。机油的温度变化范围很大,一般是从0oC到300oC不等,优质的机油滤清器的滤纸能够在剧烈的温度变化下,在有效过滤杂质的同时还能保证足够的流量。这就要求滤纸有适当、稳定的透气率以及高挺度、高耐破度和高耐溶剂性。机油中最大的危害因素是水。正常的机油含水量应在0.03%以下。当含水量超过0.1%时,机油添加剂(抗氧化剂、清净分散剂等)就会失效,机油的润滑性能变差,粘度下降,轻则导致机油过早变质和机件生锈,重则可能造成发动机抱轴等严重机械事故。因此,滤纸还应对油液体系有良好的疏水亲油性能防止水分的透过对发动机产生的损害。
     在众多油水分离方法中,聚结分离因分离效率高、处理量大、适用范围广而得到广泛应用。超疏水超亲油的表面使得油水两种液体在此表面上的接触角值相差很大,它可以实现分离油相中乳化水的功能,使得其在发动机滤清器的分离滤芯中得到了有效的利用,分离滤芯表面的润湿性能对油水聚结分离的效果起到了至关重要的作用。植物纤维基材因为其质地轻、成本低、体积小等优点成为汽车滤清器滤芯的主要分离介质,但也正因为如此需要对其进行特别处理才能真正满足使用环境的需要。本课题旨在制备一种可以赋予机油滤纸良好的耐破度、挺度、透气率和耐热性的浸渍乳液的同时,又使得浸渍后滤纸表面具有超疏水/超亲油的特殊润湿性,从而有效的进行油水分离。为此,本文开展了以下几个方面的研究:
     首先通过阳离子改性法将二乙醇胺与双酚A酚醛环氧树脂中的环氧基团进行开环反应制备成水性环氧树脂乳液。通过对改性剂用量、合成反应温度、中和度等条件的考察,探索了稳定的水性双酚A酚醛环氧树脂乳液的制备工艺。将制备得到的开环率为15%的阳离子水性环氧树脂乳液应用于机油滤纸时,滤纸获得了比其他同类型浸渍乳液更好的耐破度、挺度和透气率等机械性能。通过以上结果分析可以发现双酚A酚醛环氧树脂可作为改性的基础树脂。
     而后通过苯甲酸和马来酸酐共同改性双酚A酚醛环氧树脂,在引入亲水的羧基基团的同时引入C=C不饱和双键。并在此基础上通过自由基聚合引入含氟单体来合成具有较低表面能的含氟环氧树脂共聚物。通过共聚物涂膜与油水的接触角结果分析,甲基丙烯酸十二氟庚酯(DFMA)因分子结构中含有六个氟碳链使得它可以在降低聚合物的表面能,赋予聚合物表面超疏水性能的同时又不会因为氟碳链太长而疏油,所以作为改性氟单体的最佳选择。将其应用于机油滤纸时滤纸与水的接触角可以达到152°,而油液可以在其表面迅速铺展。这是因为DFMA的但是水滴在滤纸表面产生了较大的接触角滞后,即使是将滤纸反转也不能使水珠掉落。这是因为滤纸纤维本身的微米级粗糙度使得润湿模型属于Wenzel模型。为了进一步提高滤纸的超疏水性能,需要在滤纸本身的微米结构上构建纳米粗糙结构来降低接触角滞后,从而进一步提高油水分离效率。
     采用St ber溶胶凝胶法,正硅酸乙酯(TEOS)为前驱体,乙醇为溶剂,氨水为催化剂制备亲水的单分散的SiO_2-OH种球,然后以甲基三乙氧基硅烷(MTES)为共驱体进行水解反应,在种球表面包覆一层疏水的甲基得到具有超疏水性的SiO_2-CH_3粒子。通过TEM、SEM和AFM对比了不同老化时间下SiO_2-CH_3粒子的形貌、涂膜形貌和粗糙度情况,最终得出SiO_2-CH_3粒子老化时间为5天时拥有最佳的微-纳米双微观粗糙结构。将其与含氟水性环氧树脂乳液共混应用于滤纸上时可以将滤纸的接触角滞后降低在10°以内。同时其滤纸还拥有良好的耐破度、挺度和透气率。
     对制备的四种水性环氧树脂乳液浸渍滤纸的油水分离性能进行了研究。结果表明油水分离效率是随着分离材料与水的接触角的增大而增大。尤其是对于含氟水性环氧树脂乳液浸渍滤纸和SiO_2共混水性环氧树脂乳液浸渍滤纸来说后者较小的接触角滞后也使得乳化水发生碰撞的几率增加从而提高了油水分离的效率。以上结果表明,虽然共混乳液在机械性能方面比阳离子的水性环氧树脂乳液略差,但是其赋予了滤纸超疏水超亲油的特性,提高了滤纸的油水分离效率。
In recent years, the rapid growth of automobile production produces a vast automotiveaftermarket repair and maintenance market for auto parts enterprises. Filter is a veryimportant way to avoid dirty and contamination of engine lubrication. Oil filter, which is inthe engine lubrication system, plays a key role in preventing harmful impurities from clean oilsupply for engine, and keep lubrication cooling effectively and cleaning, thus prolong the lifeof engine. The quality of oil will directly affect the work of engine. Therefore, it is essential touse the high-quality oil for the car. Engine oil’s temperature is generally from0to300oC.With the dramatic change in temperature, the concentration of oil will correspondingly change,which will affect the flow of oil filter. High-quality oil filter paper should separate impuritieseffectively while maintaining adequate flow property of the oil, under the condition ofdifferent temperature. It is required that the oil filter paper has special properties, such asstable ventilation rates, high stiffness and high solvent resistance, etc. The most damage to oilis water. The normal content of water in oil should be below0.03%. When the water contentis more than0.1%, the oil additives (anti-oxidants, clean dispersant) will fail to work, leadingto the deterioration of lubricating oil, viscosity decreasing, and mechanical parts rusty, evenserious mechanical accidents. Therefore, the filter paper should also have a good hydrophobicand oleophilic to prevent water resulting in damage engine.
     Compared to other separation methods, coalescing separation method has manyadvantages such as low cost, low energy consumption and high efficiency, which makescoalescing separation method the best method used in engines. By taking advantage of thedifferent surface tension between water and fuel oil, the filter cartridge made of porous filterpaper with excellent superhydrophobicity and superoleophilicity properties allows the fuel oilto penetrate through while water droplets are held up and therefore oil/water separation can beachieved. Filter paper made of natural fiber is the most commonly separation medium becauseof its unique advantages such as low density, low cost and small volume, but it can not satisfythe separation environment by itself. So in this paper, we aim at the preparation of one kind ofan impregnating emulsion with excellent mechanical strength and superhydrophobic
     /superoleophilic properties and therefore can be used as oil/water separation medium. Inorder to achieve this goal, our studies focus on the following aspects:
     First, the cationic waterborne novolac epoxy emulsion was synthesized for oil filterpaper. Hydrophilic groups were introduced into a multifunctional bisphenol-A novolac epoxyresin (NEP) by chemical modification. The modified NEP was neutralized to form waterborneepoxy resin and finally to realize emulsification by means of phase inversion. The structure ofthis modified NEP with different ring-opening rate was characterized by Fourier TransformInfrared Spectroscopy (FTIR). The electrical conductivity and transmission electronmicroscope (TEM) were used to examine the stable and microscopic properties of waterbornebisphenol-A novolac epoxy resin emulsion (WNEP). The dynamic laser scattering dataindicate that the particle size and distribution performance of WNEP emulsions (greater than15%ring-opening rate) are better than that of WNEP (10%ring-opening rate).Polyamido-amine8536was the curing agent which was mixed with prepared WNEP to formthe impregnating agent for oil filter paper. Several samples of oil filter paper wereimpregnated by the prepared WNEP latex and other waterborne emulsions respectively, andthe mechanical properties and surface microstructure of them were determined by bendingstiffness test, bursting strength test and field emission scanning electrons microscope (SEM).The results showed that the oil filter paper impregnated by the prepared WNEPemulsion had better bursting strength, stiffness and air permeability properties than others,including polystyrene-acrylate emulsion and bisphenol A epoxy emulsion.
     Secondly, the anionic waterborne epoxy resin emulsion was synthesized based onbisphenol-A novolac epoxy resin (NEP). The modification agents were benzoic acid (BA) andmaleic anhydride (MA). The waterborne bisphenol-A novolac epoxy (WNEP) emulsion wasprepared by phase inversion emulsification technique, and was applied to oil filter paper asimpregnating agent. The chemical structure and surface chemical composition of the WNEPwas characterized by infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy(XPS). The granularity measured instrument and transmission electron microscope (TEM)were used to examine the emulsion particle dispersion and microscopic properties of WNEP emulsion. The thermal degradation of WNEP with different ring-opening rate andimpregnated filter paper were studied by thermogravimetric analysis (TGA). The contactangle between the impregnated filter paper surface and water was measured by static contactangle test. It was observed that WNEP with35%ring-opening rate showed good results, andit could significantly improve the thermal stability and water resistance of oil filter paper.
     A superhydrophobic and superoleophilic coating for oil filter paper was synthesizedbased on waterborne bisphenol-A novolac epoxy emulsion. The benzoic acid (BA) and maleicanhydride (MA) were modification agents in order to give the epoxy resin hydrophilic groups(carboxyl) and C=C double bonds. And the fluorinated waterborne epoxy emulsion wasprepared by free radical solution polymerization of dodecafluoroheptyl methacrylate (DFMA)monomer. The covalent bound low free energy fluorinated chains in the monomer reduce thesurface energy of solidification polymers sufficiently to give rise to superhydrophobicbehavior while conserving superoleophilic. Surfaces prepared shows a sticky property, whichexhibits a static water contact angle of152degrees for a5μl droplet that does not slid off evenwhen the sample is held upside down. Surface wettabilityis governed by both the chemicalcomposition and the geometric structure. For fabric surfaces, they have the naturalmicrometer-scale roughness coming from the fibers themselves. So we need to create micro-and nano-scale hierarchical structures on the fibers in order to reduce the contact anglehysteresis.
     Nano SiO_2-OH was prepared by St ber sol-gel method with TEOS as precursor, ethanolas solvent and ammonia as catalyst. After that, the MTES was used as coprecursor. Thehydrophobic SiO_2-CH_3particles were obtained via hydrolysis with hydrophobic methylcovered the SiO_2-OH. The morphologies of SiO_2-CH_3particles in the different self-assembleaging processes were observed and analyzed by TEM, SEM and AFM, and the SiO_2-CH_3filmwith5days aging time has the best micro-and nano-scale hierarchical rough structure. Themixture of fluorine waterborne epoxy resin emulsion and above prepared raspberry-like SiO_2particles were then applied to the filter paper. When the SiO_2content reaches25.0wt%, thefilter paper shows superhydrophobic properties with contact angle hysteresis lower than10°. The filter paper also has a good burst strength, stiffness, and air permeability.
     The oil/water separation performance of the above mentioned four kinds of impregnatedfilter paper were studied. The results showed that the oil-water separation efficiency isincreased as the increase of the water contact angle. Especially for the impregnated filterpaper with a small contact angle hysteresis by impregnation of the mixture of fluorinewaterborne epoxy resin emulsion and raspberry-like SiO_2particles, the efficiency of oil-waterseparation was improved probably due to the easy collision among emulsified water droplets.The results also show that the above emulsion demonstrated slightly low mechanicalproperties than the aqueous cationized epoxy resin emulsion, but it confers the filter papersupehydrophobic and superoleophilic characteristics, that improve the oil/water separationefficiency of the filter paper. This synthetic emulsion is simple and convenient asimpregnating agent for filter paper, which can be considered as a suitable candidate forvarious of substrates such as cotton textiles, E-glass and artificial fiber, and so on.
引文
[1]王炉平,夏连海,贾瑞清.液压污染控制技术第3讲液压油中水污染的控制[J].液压气动与密封,2004,4:17-20
    [2]刘毅,陈均志,王瑾,邵超群.汽车滤纸浸渍树脂研究进展[J].热固性树酯,2008,23(6):49-52
    [3]李华,胡健,周雪松.聚合物乳液在发动机滤纸浸渍剂中的应用研究[J].造纸科学与技术,2003,22(6):68-70
    [4]蒋荣祺,冯长龄.漫谈特种纸的分类和发展[C].2005年涂布加工纸、特种纸技术交流会论文资料集,天津,2005:1-5
    [5] Gao J.Z., Wang X. M., Wei Y. X. Synthesis and characterization of a novelfluorine-containing polymer emulsion with core/shell structure [J]. Journal of FluorineChemistry,2006,127(2):282-286
    [6] Liang J. Y., He L., Zheng Y. S. Synthesis and Property Investigation of Three Core-ShellFluoroacrylate Copolymer Latexes [J]. Journal of Applied Polymer Science,2009,112(3):1615-1621
    [7] Hirao A., Sugiyama K., Yokoyama H. Precise synthesis and surface structures ofarchitectural and semifluorinated polymers with well-defined structures [J]. Progress inPolymer Science,2007,32(12):1393-1438
    [8]陈平,刘胜平.环氧树脂[M].北京:化学工业出版社,1993:16-23
    [9] Becher P. Emulsions, Theory and Practice [M]. New York: Reinhold Publishing Corp,1957,100-115
    [10] Sherman P. Factors influencing emulsion viscosity and stability [J]. Rsearch (London),1955,8:396-401
    [11] Vinson P. K., Sheehan J. G. Viewing microemulsion with freeze fracture transmissionelectron microscopy [J]. Journal of Physical Chemistry,1991,95:2546-2550
    [12] Chen S H, Chang S L, Strey R. Structural evolution within the one-phase region of athree-component microemulsion system: water-n-decane-sodium-bisethyhexyl-sulfosuccinate (AOT)[J]. The Journal of Chemical Physics.1990,93:1907-1918
    [13] Scriven L. E.. Micellization, Solubilization, and Microemulsions [J]. Nature,1976,263:123-125
    [14]杨振忠,赵得禄,许元泽,徐懋.环氧树脂相反转乳化过程相态发展研究[J].高等学校化学学报,1999,5:809-813
    [15] Zhen zhong Yang, De lu Zhao. Preparation of bisphenol A epoxy resin waterbornedispersions by the phase inversion emulsification technique [J]. Chinese Journal ofPolymer Science,2000,18(1):33-38
    [16] Yang, Z. Z., Y. Z. Xu. Preparation of waterborne dispersions of epoxy resin by thephase-inversion emulsification technique.2. Theoretical consideration of thephase-inversion process [J]. Colloid and Polymer Science,2000,278(11):1103-1108
    [17] Yang, Z. Z. Progress in phase inversion emulsification for epoxy resin waterbornedispersions [J]. Chinese Journal of Polymer Science,2007,25:137-143
    [18]刘洋,黄焕,孔振武,吴国民,陈健.环氧树脂水性化技术进展[J].涂料工业,2009,39(5):19-24
    [19]朱方,赵宝华,裘兆蓉.环氧树脂水性化体系研究进展[J].高分子通报,2006(1):53-57
    [20]王洪祚,王颖.环氧树脂水性化[J].粘结,2005,26(5):38-40
    [21]狄宁宇,曹万荣,沈鉴峰,祝阳.水性环氧树脂涂料的最新研究进展[J],绝缘材料,2009,42(4):27-30
    [22] EI-Salmawy, M. S., Nakahiro Y., Wakamatsu T., The role of alkaline earth cations inflotation separation of quartz from feldspar [J]. Minerals Engineering,1993,6(12):1231-1243
    [23] Michael A., McCutcheon’s dctergents and emulsifiers [M]. New York: MarcelDekker,Inc.,2010
    [24] Quiniero L., An overview of surfactant applieations in drilling fluids for the petroleumindustry [J]. Journal of Dispersion Science Technology,2002,23(1&3):393-404
    [25] Srinivasan G., Industrial surfactants current&future trends [J]. Chemical age of India,1987,38(3):91-99
    [26]李俊毅,傅振杰.提高北方港工混凝土表面耐久性的涂料——乳化环氧涂料的实验研究[J].中国港湾建设,1995,2:47-50
    [27]陈挺,顾国芳. Ⅱ型水性环氧树脂乳液及其固化过程的研究[J].建筑材料学报,2001,4:356-361
    [28]徐龙贵.室温固化水性环氧树脂涂料的研究[D].湖南:湖南大学,2003
    [29]胡登华,官仕龙,陈协,徐思航,梁吉莲,胡光.水性环氧树脂的研究进展[J].武汉工程大学学报,2011,3(10):9-12
    [30]陈俊芳,李素芳,从洪云,黄娟萍,李娇.水性环氧乳液的研制及性能研究[J].涂料工业,2011,41(8):46-49
    [31] Hess M., Sehneider H., Hiller M. Aqueous dispersion of epoxy resin and blend of epoxyresin polyoxyalkylene amines [P]. US:6077884,2000
    [32]孟校威.水性环氧乳液的研制[D].郑州:郑州大学化学工程学院,2006:14-28
    [33] Xu J R, Jamieson A M. Catastrophic Emulsification of Epoxy Resin Using PluronicBlock Copolymers: Preinversion Behavior [J]. Langmuir,2001,17(4):253-259
    [34] Kojima S., Watanabe Y. Development of high performance waterborne coatings:Emulsifieation of epoxy resin [J]. Polymer Engineering&Science,1993,33:253
    [35]黄燕.环氧树脂水性化技术的研究进展[J].茂名学院学报,2010,1:8-11
    [36]朱方,裘兆蓉,高国生.自乳化水性环氧树脂乳液的研制[J].高分子通报,2008,5:45-49
    [37]唐敏峰,舒武炳.酚醛环氧树脂水性化的研究[J].涂料工业,2004,5:5-7
    [38] Husbands M J, Standen C J S, Hayward G. A manacle of resins for surface coat [M].London: Selective Industrial Training Associates Ltd,1987:191-192
    [39]赵志军,刘俊龙,王瑶.环氧树脂E-51的水性化研究[J].大连轻工业学院学报,2007,26(4):326-328
    [40] Zafar, S., F. Zafar. Synthesis, Characterization, and Anticorrosive Coating Properties ofWaterborne Interpenetrating Polymer Network Based on Epoxy-Acrylic-Oleic Acid withButylated Melamine Formaldehyde [J]. Journal of Applied Polymer Science,2009,113(2):827-838
    [41] Chinese Petroleum Corp.(TW). Curable system of self-emulsified aqueous epoxy resinand its polymeric hybrids [P]. US:6291554,2001
    [42] Barsotti, Robert J. Water-borne coating compositions comprising half esters of anhydridepolymers cross linked by epoxies [P]. US:5376704,1994
    [43] Zhang, K., H. Q. Fu. Waterborne epoxy-acrylic dispersions modified by siloxane [J].Journal of Dispersion Science and Technology,2007,28:1209-1217
    [44] Xiao, X. Y., C. C. Hao. Preparation of waterborne epoxy acrylate/silica sol hybridmaterials and study of their UV curing behavior [J]. Colloids and Surfacesa-Physicochemical and Engineering Aspects,2010,359(1-3):82-87
    [45]丁莉,王贵友,胡春圃.接枝环氧树脂水分散液的合成、分离与表征[J].功能高分子学报,2004,17(2):165-170
    [46]陈凤婷,丁莉,王贵友.混合型环氧树脂水分散液的制备与表征[J].功能高分子学报,2006,17(4):561-564
    [47]朱步瑶,赵振国.界面化学基础[M].北京:化学工业出版社,1996,208
    [48] C.D.Bain, G.M Whitesides. Molecular-level control over surface order in self-assembledmonolayer films of thiols on gold [J]. Science,1988,240:62-63
    [49] C.D Bain., G.M Whitesides. Depth Sensitivity of Wetting: Monolayers ofw-Mercaptoethers on Gold [J]. Journal of the American Chemical Society,1988,110:3665-3666
    [50] R.N Wenzel. Resistance of Solid Surfaces to Wetting by Water [J]. Industrial&Engineering Chemistry Research,1936,28:988-994
    [51] A.B.D.Cassie, S. Baxter Trans. Wettability of porous surfaces [J]. Transactions of theFaraday Society,1944,40:546-551
    [52] P. Aussillous, D. Quéré. Liquid Marbles [J]. Nature,2001,411:924-927
    [53] C. Neinhuis, W. Barthlott. Characterization and Distribution of Water-repellentSelf-cleaning Plant Surfaces [J]. Annals of Botany,1997,79(6):667-677
    [54] G. McHale, N. J Shirtcliffe, M.I. Newton. Contact-angle hysteresis on super-hydrophobicsurfaces [J]. Analyst,2004,129:284-287
    [55]江雷.从自然到仿生的超疏水纳米界面材料[J].化工进展,2003,22(12):1258-1262
    [56]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社,2007
    [57] Young T. An essay on the cohesion of fluids [J]. Philosophical Transactions of the RoyalSociety of London,1805,95:65-87
    [58] Robert N. Wenzel. Resistance of solid surface to wetting by water [J]. Industrial&Engineering Chemistry Research,1936,28:988-994
    [59]郑黎俊,乌学东,楼增.表面微细结构制备超疏水表面[J].科学通报,2004,49(14):1691-1699
    [60]段辉.掺杂氟化聚合物硅溶胶超疏水复合涂层的制备及性能研究[D].武汉:武汉科技大学,2006
    [61] A. B. D. Cassie, S. Baxter. Wettability of porous surface [J]. Transactions of the FaradaySociety,1944,40:546-551
    [62] N.Eustathopoulos, MG Nicholas, B. Drevet. Wettability at High Temperatures [M].Amsterdam: Pergamon press,1999
    [63] A. Lafuma, D. Quéré. Superhydrophobic states[J]. Nature Materials,2003,2:457–460
    [64] Bhushan B., Nosonovsky M., Jung Y.C. Towards optimization of patternedsuperhydrophobic surfaces [J]. Journal of the Royal Society Interface,2007,4(15):643-648
    [65] Barbieri L., Wagner E. Hoffmann P. Water wetting transition parameters of perfluorinatedsubstrates with periodically distributed Flat-Top microscale obstacles [J]. Langmuir,2007,23(4):1723-1734
    [66] Krupenkin T.N., Taylor J.A. Schneider T.M., From rolling ball to complete wetting: Thedynamic tuning of liquids on nanostructured surfaces [J]. Langmuir,2004,20(10):3824-3827
    [67] Bahadur V., Garimella S.V. Electrowetting-based control of static droplet states on roughsurfaces[J], Langmuir,2007,23(9):4918-4924
    [68] Bromashenko E., Pogreb R., Whyman G. Cassie-Wenzel wetting transition in vibratingdrops deposited on rough surfaces: Is the dynamic Cassie-Wenzel wetting transition a2Dor1D affair?[J]. Langmuir,2007,23(12):6501-6503
    [69] Feng X.J., Feng L., Jin M.H. Reversible super-hydrophobicity to super-hydrophilicitytransition of aligned ZnO nanorod films [J]. Journal of the American Chemical Society,2004,126(1):62-63
    [70] Nosonovsky M., Bhushan B. Patterned nonadhesive surfaces: superhydrophobicity andwetting regime transition [J]. Langmuir,2008,24:1525-1533
    [71] Neelesh A. Patankar. On the modeling of hydrophobic contact angels on rough surface[J]. Langmuir,2003,19:1249-1253
    [72] Patankar N.A. Transition between superhydrophobic states on rough surfaces [J].Langmuir,2004,20:7097-7102
    [73] Ishino C., Okumura K., Quere D. Wetting transitions on rough surfaces [J]. EurophysicsLetters,2004,68(3):419-425
    [74]赖跃坤,陈忠,林昌健.超疏水表面黏附性的研究进展[J].中国科学:化学,2011,41(4):609-628
    [75] Wang S, Jiang L. Definition of superhydrophobic states [J]. Advanced Materials,2007,19:3423–3424
    [76] Jinxin Yang, Pihui Pi, Xiufang Wen, Dafeng Zheng, Jiang Cheng, Zhuoru Yang. A novelmethod to fabricate superhydrophobic surfaces based on well-defined mulberry-likeparticles, self-assembly of Polydimethylsiloxane [J]. Applied Surface Science,2009,255(6):3507-3512
    [77] Weng Chang-Jian; Chang Chi-Hao; Peng Chih-Wei. Advanced Anticorrosive CoatingsPrepared from the Mimicked Xanthosoma Sagittifolium-leaf-like Electroactive Epoxywith Synergistic Effects of Superhydrophobicity and Redox Catalytic Capability [J].Chemistry of materials,2011,23(8):2075-2083
    [78] Delimi Amel, Galopin Elisabeth, Coffinier Yannick. Investigation of the corrosionbehavior of carbon steel coated with fluoropolymer thin films[J]. Surface&CoatingsTechnology,2011,205(16):4011-4017
    [79] Xua XiangHui, Zhang ZhaoZhu, Guo Fang. Fabrication of superhydrophobic binarynanoparticles/PMMA composite coating with reversible switching of adhesion andanticorrosive property [J]. Applied Surface Science,2011,257(16):7054-7060
    [80] Yingke Kang, Jinyan Wang, Guangbin Yang. Preparation of porous super-hydrophobicand super-oleophilic polyvinyl chloride surface with corrosion resistance property [J].Applied Surface Science,2011,258(3):1008-1013
    [81]Huiling Li, Jingxia Wang, Lianming Yang. Superoleophilic and superhydrophobic inverseopals for oil sensors [J]. Advanced Functional Materials,2008,18(20):3258-3264
    [82]Zhang Jilin, Pu Gang, Severtson Steven J. Fabrication of ZincOxide/Polydimethylsiloxane Composite Surfaces Demonstrating Oil-Fouling-ResistantSuperhydrophobicity [J]. ACS Applied Materials&Interfaces,2010,2(10):2880-2883
    [83] Yao Xi, Gao Jun, Song Yanlin. Superoleophobic Surfaces with Controllable Oil Adhesionand Their Application in Oil Transportation [J]. Advanced Functional Materials,2011,21(22):4270-4276
    [84] Junping Zhang, Seeger S. Polyester Materials with Superwetting Silicone Nanofilamentsfor Oil/Water Separation and Selective Oil Absorption [J]. Advanced FunctionalMaterials,2011,21(24):4699-4704
    [85] Wang Suhao, Li Mei, Lu Qinghua. Filter Paper with Selective Absorption and Separationof Liquids that Differ in Surface Tension [J]. ACS Applied Materials&Interfaces,2010,2(3):677-683
    [86] Artus Georg R. J., Zimmermann Jan, Reifler Felix A. A superoleophobic textile repellenttowards impacting drops of alkanes [J]. Applied Surface Science,2012,258(8):3835-3840
    [87] Saraf Rahul, Lee Hoon Joo, Michielsen Stephen. Comparison of three methods forgenerating superhydrophobic, superoleophobic nylon nonwoven surfaces [J]. Journal ofMaterials Science,2011,46(17):5751-5760
    [88] Yuan JK, Liu XG, Akbulut O, Hu JQ, Suib SL, Kong J, Stellacci F. Superwettingnanowire membranes for selective absorption[J]. Nat Nanotechnol,2008,3:332–336
    [89] Wang DA, Liu Y, Liu XJ, Zhou F, Liu WM, Xue QJ. Towards a tunable and switchablewater adhesion on a TiO2nanotube film with patterned wettability [J]. Chem Commun,2009,45:7018–7020
    [90] Jin MH, Feng XJ, Feng L, Sun TL, Zhai J, Li TJ, Jiang L. Superhydrophobic alignedpolystyrene nanotube films with high adhesive force[J]. Advanced Materials,2005,17:1977–1981
    [91] Hong X, Gao X, Jiang L. Application of superhydrophobic surface with high adhesiveforce in no lost transport of superparamagnetic microdroplet [J]. Journal of the AmericanChemical Society,2007,129:1478–1479
    [92] Cheng ZJ, Feng L, Jiang L. Tunable adhesive superhydrophobic surfaces forsuperparamagnetic microdroplets [J]. Advanced Functional Materials,2008,18:3219–3225
    [93] Wu D, Wu SZ, Chen QD, Zhang YL, Yao J, Yao X, Niu LG, Wang JN, Jiang L, Sun HB.Curvature-driven reversible in-situ switching from transitional Wenzel’s to Cassie’ssurperhydrophobic states for water droplet transportation [J], Advanced Materials,2011,23:545–549
    [94] Balu B, Berry AD, Hess DW, Breedveld V. Patterning of superhydrophobic paper tocontrol the mobility of micro-liter drops for two-dimensional lab-on-paper applications[J]. Lab Chip,2009,9:3066–3075
    [95] Yuan, Z. Q., Chen, H., Tang, J. X., Gong, H. F., Liu, Y. J.,Wang, Z. X., Shi, P., Zhang, J.,Chen, X. A novel preparation of polystyrene film with a superhydrophobic surface usinga template method [J], Journal of Physics D: Applied Physics,2007,40(11):3485-3489
    [96] Feng, L., Li, S. H., Li, H. J., Zhai, J., Song, Y. L., Jiang, L., Zhu,D. B.Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers [J], AngewandteChemie International Edition,2002,41(7):1221-1223.
    [97] Feng L., Zhang Z.Y. A super-hydrophobic and super-oleophilic coating mesh film for theseparation of oil and water[J]. Angewandte Chemie,2004(116):2046-2048
    [98] Gianvito Caputo, Concetta Nobile, Tobias Kipp, Laura Blasi, Vincenzo Grillo, ElvioCarlino, Liberato Manna, Roberto Cingolani, Pantaleo Davide Cozzoli, AthanassiaAthanassiou. Reversible Wettability Changes in Colloidal TiO2Nanorod Thin-FilmCoatings under Selective UV Laser Irradiation [J]. The Journal of Physical Chemistry C,2008,112:701-714
    [99] Xia Zhang, Yonggang Guo, Pingyu Zhang, Zhishen Wu, Zhijun Zhang.Superhydrophobic and Superoleophilic Nanoparticle Film: Synthesis and ReversibleWettability Switching Behavior [J]. ACS Applied materials&interfaces,2012,4:17421746
    [100] Edward L. Foster, Al Christopher C. De Leon, Joey Mangadlaob, Rigoberto Advincula.Electropolymerized and polymer grafted superhydrophobic, superoleophilic, andhemi-wicking coatings [J]. Journal of Materials Chemistry,2012,22:11025–11031
    [101]Roderick B. Pernites, Ramakrishna R. Ponnapati, Rigoberto C. Advincula.Superhydrophobic–Superoleophilic Polythiophene Films with Tunable Wetting andElectrochromism [J]. Advanced Materials,2011,23:3207–3213
    [102] Kangjian Tang, Jihong Yu, Yuanyuan Zhao, Yang Liu, Xiaofang Wang, Ruren Xu.Fabrication of super-hydrophobic and super-oleophilic boehmite membranes from anodicalumina oxide film via a two-phase thermal approach [J]. Journal of Materials Chemistry,2006,16:1741–1745
    [103] Jilin Zhang, Gang Pu, Steven J. Severtson. Fabrication of Zinc Oxide/Polydimethylsiloxane Composite Surfaces Demonstrating Oil-Fouling-ResistantSuperhydrophobicity [J]. ACS, Applied materials&interfaces,2010,2(10):2880-2883
    [104] Ying Chu, Qinmin Pan. Three-Dimensionally Macroporous Fe/C Nanocomposites As Highly Selective Oil-Absorption Materials[J]. ACS, Applied materials&interfaces,2012,4:24202425
    [105] Qing Zhu, Feng Tao, Qinmin Pan. Fast and Selective Removal of Oils from WaterSurface via Highly Hydrophobic Core-Shell Fe2O3@C Nanoparticles under MagneticField [J]. ACS, Applied materials&interfaces,2010,2(11):3141-3146
    [106] Qing Zhu, Qinmin Pan, Fatang Liu. Facile Removal and Collection of Oils from WaterSurfaces through Superhydrophobic and Superoleophilic Sponges [J]. The Journal ofPhysical Chemistry C,2011,115:17464-17470
    [107] Changhong Sua, Youqian Xua, Wei Zhanga, Yang Liua, Jun Li. Porous ceramicmembrane with superhydrophobic and superoleophilic surface for reclaimingoil from oily water [J]. Applied Surface Science,2012,258:2319–2323
    [108] Qin F.T., Yu Z.J., Fang X.H. A novel composite coating mesh film for oil-waterseparation [J]. Frontiers of Chemical Engineering in China,2009,3(1):112-118
    [109] Hao Yang, Xingjuan Zhang, Zhi-Qi Cai, Pihui Pi, Dafeng Zheng, Xiufang Wen, JiangCheng, Zhuo-ru Yang. Facile preparation of super-hydrophobic and super-oleophilicsilica film on stainless steel mesh via sol-gel process [J]. Applied Surface Science,2010,13(256):4095-4102
    [110] Hao Yang, Xingjuan Zhang, Zhi-Qi Cai, Pihui Pi, Dafeng Zheng, Xiufang Wen, JiangCheng, Zhuo-ru Yang. Functional silica film on stainless steel mesh with tunablewettability [J]. Surface&Coatings Technology,2011,205:5387–5393
    [111] La DD, Nguyen TA, Lee S. A stable superhydrophobic and superoleophilic Cu meshbased on copper hydroxide nanoneedle arrays [J]. Applied Surface Science,2011,257(13):5705–5710
    [112] JunWu, Jing Chen, Khan Qasim, Jun Xia, Wei Lei, Bao-pingWang. A hierarchical meshfilm with superhydrophobic and superoleophilic properties for oil and water separation[J]. J ChemTechnol Biotechnol,2012,87:427–430
    [113] Chih-Feng Wang, Fan-Shiuan Tzeng, Hou-Guang Chen, Chi-Jung Chang.Ultraviolet-Durable Superhydrophobic Zinc Oxide-Coated Mesh Films for Surface andUnderwater Oil Capture and Transportation [J]. Langmuir,2012,28:1001510019
    [114] Qinmin Pan, Min Wang, Hongbo Wang. Separating small amount of water andhydrophobic solvents by novel superhydrophobic copper meshes [J]. Applied SurfaceScience,2008,254:6002–6006
    [115] Chee Huei Lee, Nick Johnson, Jaroslaw Drelich, Yoke Khin Yap. The performance ofsuperhydrophobic and superoleophilic carbon nanotube meshes in water–oil filtration[J]. Carbon,2011,49:669-676
    [116]薛朝华,尹伟,贾顺田.纤维基超疏水功能表面制备方法的研究进展[J].纺织学报,2012,33(4):146-152
    [117] Cheng-Wei Tu, Chia-Hua Tsai, Chih-Feng Wang, Shiao-Wei Kuo, Feng-Chih Chang.Fabrication of Superhydrophobic and Superoleophilic Polystyrene Surfaces by a FacileOne-Step Method [J]. Macromolecular Rapid Communications,2007,28:2262–2266
    [118] Suhao Wang, Mei Li, and Qinghua Lu. Filter Paper with Selective Absorption andSeparation of Liquids that Differ in Surface Tension [J]. ACS, Applied materials&interfaces,2010,2(3):667-683
    [119] Chao-Hua Xue1, Shun-Tian Jia, Jing Zhang, Li-Qiang Tian, Hong-Zheng Chen MangWang. Preparation of superhydrophobic surfaces on cotton textiles [J]. Science andTechnology of Advanced Materials,2008,9(3):035008,1-7
    [120] Yonggang Yang, Miho Nakazawa, Masahiro Suzuki, Hirofusa Shirai Kenji Hanabusa.Fabrication of helical hybrid silica bundles [J]. Journal of Materials Chemistry,2007,17:2936–2943
    [121] Jing Li, Lei Shi, Yu Chen,Yabin Zhang, Zhiguang Guo, Bao-lian Suc, Weimin Liu.Stable superhydrophobic coatings from thiol-ligand nanocrystals and their applicationin oil/water separation [J]. Journal of Materials Chemistry,2012,22:9774-9781
    [122]王瑞忠.国内外汽车滤纸的发展现状分析[J].中华纸业,2010,31(23):67-69
    [123]陈辉,陆国军,李涛,刘丽萍,张春泓.机油滤纸的实验研究[J].中国造纸,2007,26(4):16-18
    [124]薛斌,张兴林.酚醛树脂的现代应用及发展趋势[J].热固性树脂,2007,22(4):47-50
    [1] B Ramezanzadeh, M M Attar. An evaluation of the corrosion resistance and adhesionproperties of an epoxy-nanocomposite on a hot-dip galvanized steel (HDG) treated bydifferent kinds of conversion coatings [J]. Surface and Coatings Technology,2011,205:4649-4657
    [2] Chen ZH, Tang Y, Yu F, Chen JH, Chen HH. Preparation of light color antistatic andanticorrosive waterborne epoxy coating for oil tanks [J]. Journal of Coatings Technologyand Research,2008,5(2):259-269
    [3] N Guermazi, K Elleuch, HF Ayedi. The effect of time and aging temperature on structuraland mechanical properties of pipeline coating [J]. Journal of Computer-aided MaterialsDesign,2009,30:2006-2010
    [4] KL Gordon, CM Thompson, RE Lyon. Flame Retardant Epoxy Resins containingAromatic Poly (phosphonamides)[J]. High Performance Polymer,2010,22:945-958
    [5] Zhou T, Wang X, Liu X, Xiong D. Influence of multi-walled carbon nanotubes on the curebehavior of epoxy-imidazole system [J]. Carbon,2009,47:1112-1118
    [6] G Possart, M Presser, S Passlack, PL Gei, M Kopnarski, A Brodyanski, P Steinmann.Micro–macro characterisation of DGEBA-based epoxies as a preliminary to polymerinterphase modeling [J]. International Journal of Adhesion and Adhesives,2009,29:478-487
    [7] Raftery GM, Harte AM, Rodd PD. Bonding of FRP materials to wood using thin epoxygluelines [J]. International Journal of Adhesion and Adhesives,2009,29(5):580-588
    [8] J Kanzow, PS Horn, M Kirschmann, V Zaporojtchenko, K Dolgner, F Faupel, C Wehlack,W Possart. Formation of a metal/epoxy resin interface [J]. Applied Surface Science,2005,239:227-236
    [9] RE Jensen, CE Johnson, TC Ward. Investigation of a Waterborne Epoxy for E-GlassComposites [J]. Journal of Polymer Science Part B: Polymer Physics,2000,38:2351-2365
    [10] Levent Aktas, M. Cengiz Altan. Characterization of nanocomposite laminates fabricatedfrom aqueous dispersion of nanoclay [J]. Polymer Composites,2010,31(4):620-629
    [11] Tastet D, M Save. Functional biohybrid materials synthesized via surface-initiatedMADIX/RAFT polymerization from renewable natural wood fiber: Grafting of polymeras non leaching preservative [J]. Polymer,2011,52(3):606-616
    [12] Xiao MM, Li SZ. Surface-initiated atom transfer radical polymerization of butyl acrylateon cellulose microfibrils [J]. Carbohydrate Polymers,2011,83(2):512-519
    [13] Mohod AV, PR Gogate. Ultrasonic degradation of polymers: Effect of operatingparameters and intensification using additives for carboxymethyl cellulose (CMC) andpolyvinyl alcohol (PVA)[J]. Ultrason Sonochem,2011,18(3):727-734
    [14] Imani R, Talaiepour M, Dutta J, Ghobadinezhad MR, Hemmasi AH, Nazhad MM.Production of antibacterial filter paper from wood cellulose [J]. Bioresources,2011,6(1):891-900
    [15] Gong G, J Pyo. Tensile behavior, morphology and viscoelastic analysis of cellulosenanofiber-reinforced (CNF) polyvinyl acetate (PVAc)[J]. Composites Part A,2011,42(9):1275-1282
    [16] Frone AN, Panaitescu DM, Donescu D, Radovici C, Ghiurea M, Iorga MD. PVA basedcomposite films with cellulose fibers prepared by acid hydrolysis [J]. Materiale Plastice,2011,48(2):138-143
    [17] Mao X, Ding B. Self-assembly of phthalocyanine and polyacrylic acid compositemultilayers on cellulose nanofibers [J]. Carbohydrate Polymers,2010,80(3):839-844
    [18] Thakur VK, Singha AS, Kaur I, Nagarajarao RP, Yang LP. Studies on analysis andcharacterization of phenolic composites fabricated from lignocellulosic fibres [J].polymers&polymer composites,2011,19(6):505-511
    [19] Barreto ACH, MA Cardanol. Biocomposites Reinforced with Jute Fiber: Microstructure,Biodegradability, and Mechanical Properties [J]. Polymer Composites,2010,31(11):1928-1937
    [20] Dou XL, Hu JA. Effect of environment-friendly water-soluble phenolic resin on theperformances of oil filter paper [J]. Research progress in paper industry and biorefinery(4thISETPP),2010,1-3:1686-1689
    [21] Mohanty S, YP Chugh. Development of fly ash-based automotive brake lining [J].Tribology International,2007,40(7):1217-1224
    [22] Hu Jian, Yang Jin, Zhan Huai-yu, Wen Zhi-qing. Synthesis of the resol and its applicationin filter papers [J]. China Pulp&Paper,2009,28(4):23-25
    [23] Liu C. Resin for filter paper comprises phenolic resin, polyurethane resin andvinylacetate [P]. CN:102040710-A,2011
    [24] Arbuckle S W. Manufacture of modified phenolic-aldehyde resin composition used in e.g.manufacture of wood products, by reacting base with phenolic compound, addingaldehyde source, heating, adding urea-aldehyde condensate, and condensing medium [P].U.S.:2006094853-A1,2006
    [25] J. Imai. Oil-modified novolac resin aqueous emulsions capable of forming flexible curedmaterials [J]. JP:2,009,067,921,2009
    [26] ASTM D1652-04. Standard Test Method of Epoxy Content of Epoxy Resins[S],Washington, DC: U.S. Government Printing Office Superintendent of Documents,2004
    [27] E. Girard-Reydet, C.C. Riccard, H. Sautereau, J.P. Pascault. Epoxy-Aromatic DiamineKinetics.1. Modeling and Influence of the Diamine Structure [J]. Macromolecules,1995,28:7599-7607
    [28]朱方,裘兆蓉,高国生.自乳化水性环氧树脂乳液的研制[J].高分子通报,2008,5:45-49
    [29]陈永,杨树,石海洋,高青雨.阳离子型水性环氧树脂制备及特性研究[J].涂料工业,38(5):23-26
    [30] N Zambrano, E Tyrode. Emulsion Catastrophic Inversion from Abnormal to NormalMorphology.1. Effect of the Water-to-Oil Ratio Rate of Change on the DynamicInversion Frontier [J]. Industrial&Engineering Chemistry Research,2003,42:50-56
    [31] Shu WB, Liu ZY, Yun LG, Cai J, Song JL. Study on the modification of F-51/E-51epoxyresin water emulsion [J]. Polymeric Materials Science and Engineering,2006,22(4):235-238+242
    [32] Yang ZZ, Xu YZ, Zhao DL, Xu M. Preparation of waterborne dispersions of epoxy resinby the phase-inversion emulsification technique.2. Theoretical consideration of thephase-inversion process [J]. Colloid Polymer Science,2000,278:1103-1108
    [33] Zhang ZY, Huang YH. Studies on particle size of waterborne emulsions derived fromepoxy resin [J]. European Polymer Journal,2001,37:1207-1211
    [34] Yang ZZ. Progress in phase inversion emulsification for epoxy resin waterbornedispersions [J]. Chinese Journal of Polymer Science,2007,25(2):137-143
    [1] Huan Liu, Zien Fu, Kai Xu, Hualun Cai, Xin Liu, Mingcai Chen. Structure-PropertyRelationship of Highly pi-Conjugated Schiff-Base Moiety in Liquid Crystal DiepoxidePolymerization and Mesophases Stabilization [J]. Journal of Physical Chemistry B,2011,115(23):7568-7577.
    [2] Doumlring, M., Arnold U. Polymerization of epoxy resins initiated by metal complexes[J]. Polymer International,2009,58(9):976-988.
    [3] Kishi, H., Y. Kunimitsu. Nano-phase structures and mechanical properties of epoxy/acryltriblock copolymer alloys [J]. Polymer,2011,52(3):760-768.
    [4]蔡智奇,孙建中,任华,赵骞,周其云,徐军龙.一种新型液晶环氧树脂单体的合成与固化研究[J].高校化学工程学报,2009,23(3):510-515
    [5]赖小娟,李小瑞,王磊.环氧改性水性聚氨酯乳液的制备及其膜性能[J].高分子学报,2009,11:1107-1112.
    [6]赵立英,马会茹,孙志刚,章桥新,官建国.非离子型自乳化水性环氧树脂的制备与性能[J].高分子材料科学与工程,2010,26(10):19-22.
    [7]周继亮,涂伟萍.非离子型自乳化水性环氧固化剂的合成与性能[J].高校化学工程学报,2006,20(1):94-99
    [8]周继亮,张道洪.自乳化水性环氧树脂的制备[J].高分子材料科学与工程,2010,26(5):151-154.
    [9] Pathak, S. S., A. S. Khanna. Synthesis and performance evaluation of environmentallycompliant epoxysilane coatings for aluminum alloy [J]. Progress in Organic Coatings,2008,62(4):409-416.
    [10] Zhaoying Zhang, Yuhui Huang, Bing Liao, Guangmin Cong. Studies of waterborneemulsion of chemically modified epoxy resin [J]. Polymers for Advanced Technologies,2004,15(1-2):26-29.
    [11] Xiao, X. Y., C. C. Hao. Preparation of waterborne epoxy acrylate/silica sol hybridmaterials and study of their UV curing behavior [J]. Colloids and Surfacesa-Physicochemical and Engineering Aspects,2010,359(1-3):82-87.
    [12] Zafar, S., F. Zafar. Synthesis, Characterization, and Anticorrosive Coating Properties ofWaterborne Interpenetrating Polymer Network Based on Epoxy-Acrylic-Oleic Acidwith Butylated Melamine Formaldehyde [J]. Journal of Applied Polymer Science,2009,113(2):827-838.
    [13]孙兴春,邱藤,李效玉. A-172/丙烯酸酯接枝改性水性环氧树脂的制备与性能[J].北京化工大学学报(自然科学版),2010,l37(2):59-64
    [14]刘文艳,孙建中,周其云.有机硅改性水性环氧树脂的合成与表征[J].高校化学工程学报,2007,21(6):1044-1048
    [15] Kawaharh H, Matsufuji S, Goto T. Epoxy resin/acrylic composite latexes: reactivityand stability of epoxy groups with carboxyl groups [J]. Advanced powder technology,2001,12(4):521-532.
    [16] Thakur, V. K., A. S. Singha. Studies on Analysis and Characterization of PhenolicComposites Fabricated from Lignocellulosic Fibres [J]. Polymers&PolymerComposites,2011,19(6):505-511.
    [17] Barreto, A. C. H., M. A. Esmeraldo. Cardanol Biocomposites Reinforced with JuteFiber: Microstructure, Biodegradability, and Mechanical Properties [J]. PolymerComposites,2010,31(11):1928-1937.
    [18] J. Imai. Oil-modified novolac resin aqueous emulsions capable of forming flexiblecured materials [P].2009, JP Patent2,009,067,921.
    [19] Yang Z. Z. Progress in phase inversion emulsification for epoxy resin waterbornedispersions [J]. Chinese Journal of Polymer Science,2007,25:137-143.
    [1] Karmouch, R., G. G. Ross. Superhydrophobic wind turbine blade surfaces obtained by asimple deposition of silica nanoparticles embedded in epoxy [J]. Applied Surface Science,2010,257:665-669
    [2] Cui, Z., L. Yin, Qingjun Wang, Jianfu Ding, Qingmin Chen. A facile dip-coating processfor preparing highly durable super-hydrophobic surface with multi-scale structures onpaint films [J]. Journal of Colloid and Interface Science,2009,337:531-537
    [3] Lee, J. A., T. J. McCarthy. Polymer Surface Modification: Topography Effects Leading toExtreme Wettability Behavior [J]. Macromolecules,2007,40(11):3965-3969
    [4] Teshima, K., H. Sugimura. Transparent ultra water-repellent poly (ethylene terephthalate)substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating [J].Applied Surface Science,2005,244(1-4):619-622
    [5] Tsougeni, K., A. Tserepi. Plasma Nanotextured PMMA Surfaces for Protein Arrays:Increased Protein Binding and Enhanced Detection Sensitivity [J]. Langmuir,2010,26(17):13883–13891
    [6] Guo, L., W. Yuan. Stable superhydrophobic surfaces over a wide pH range [J]. AppliedSurface Science,2008,254(7):2158-2161
    [7] Taolei Sun, Lin Feng, Xuefeng Gao, Lei Jiang. Bioinspired Surfaces with SpecialWettability [J]. Accounts of Chemical Research,2005,38:644-652
    [8] Qu, M., J. He. Facile fabrication of large-scale stable superhydrophobic surfaces withcarbon sphere films by burning rapeseed oil [J]. Applied Surface Science,2010,257(1):6-9
    [9] Darmanin, T., M. Nicolas. Electrodeposited polymer films with both superhydrophobicityand superoleophilicity [J]. Physical Chemistry Chemical Physics,2008,10(29):4322-4326
    [10] Feng, L., Z. Zhang. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film forthe Separation of Oil and Water [J]. Angewandte Chemie International Edition,2004,43(15):2012-2014
    [11] Nicolas, M. Acids and alkali resistant sticky superhydrophobic surfaces by one-potelectropolymerization of perfluoroalkyl alkyl pyrrole [J]. Journal of Colloid andInterface Science,2010,343(2):608-614
    [12] Zhi-Guang Guo, Wei-Min Liu. Sticky super-hydrophobic surface [J]. Applied PhysicsLetters,2007,90:223111-223113.
    [13] Zhao, B., M. M. Collinson. Well-Defined Hierarchical Templates for Multimodal PorousMaterial Fabrication [J]. Chemistry of Materials.2010,22(14):4312-4319
    [14] Xiu, Y., L. Zhu. Biomimetic Creation of Hierarchical Surface Structures by CombiningColloidal Self-Assembly and Au Sputter Deposition [J]. Langmuir,2006,22(23):9676-9681
    [15] Hoefnagels, H. F., D. Wu. Biomimetic Superhydrophobic and Highly Oleophobic CottonTextiles [J]. Langmuir,2007,23(26):13158-13163
    [16] Di Mundo, R., F. Palumbo. Nanotexturing of polystyrene surface in fluorocarbonplasmas: From sticky to slippery superhydrophobicity [J]. Langmuir,2008,24(9):5044-5051
    [17] Balu, B., V. Breedveld. Fabrication of "roll-off" and "sticky" superhydrophobic cellulosesurfaces via plasma processing [J]. Langmuir,2008,24(9):4785-4790
    [18] Khalil-Abad, M. S., M. E. Yazdanshenas. Superhydrophobic antibacterial cotton textiles[J]. Journal of Colloid and Interface Science,2010,351(1):293-298
    [19] Zhao, Y., Y. W. Tang. Superhydrophobic cotton fabric fabricated by electrostaticassembly of silica nanoparticles and its remarkable buoyancy [J]. Applied SurfaceScience,2010,256(22):6736-6742
    [20] Shirgholami, M. A., M. S. Khalil-Abad. Fabrication of superhydrophobicpolymethylsilsesquioxane nanostructures on cotton textiles by a solution-immersionprocess [J]. Journal of Colloid and Interface Science,2011,359(2):530-535
    [21] Cunha, A. G., C. S. R. Freire. Highly hydrophobic biopolymers prepared by the surfacepentafluorobenzoylation of cellulose substrates [J]. Biomacromolecules,2007,8(4):1347-1352
    [22] Nystrom, D., J. Lindqvist. Superhydrophobic bio-fibre surfaces via tailored graftingarchitecture [J]. Chemical Communications,2006,34:3594-3596
    [23] Gao, L. C., T. J. McCarthy."Artificial lotus leaf" prepared using a1945patent and acommercial textile [J]. Langmuir,2006,22(14):5998-6000
    [24] Yu, M., G. Gu. Superhydrophobic cotton fabric coating based on a complex layer of silicananoparticles and perfluorooctylated quaternary ammonium silane coupling agent [J].Applied Surface Science,2007,253(7):3669-3673
    [25] Wang, T., X. G. Hu. A general route to transform normal hydrophilic cloths intosuperhydrophobic surfaces [J]. Chemical Communications,2007,18:1849-1851
    [26] Michielsen, S., H. J. Lee. Design of a superhydrophobic surface using woven structures[J]. Langmuir,2007,23(11):6004-6010
    [27] Leng, B., Z. Shao. Superoleophobic Cotton Textiles [J]. Langmuir,2009,25(4):2456-2460
    [28] Brewer, S. A., C. R. Willis. Structure and oil repellency: Textiles with liquid repellency tohexane [J]. Applied Surface Science,2008,254(20):6450-6454
    [29] Li, Z., Y. Xing. Superhydrophobic surfaces prepared from water glass andnon-fluorinated alkylsilane on cotton substrates [J]. Applied Surface Science,2008,254(7):2131-2135
    [30] H. A. Schuyten, J. David Reid, J. W. Weaver, John G. Frick, Jr. ImpartingWater-Repellency to Textiles by Chemical Methods: A Review of the Literature [J].Textile Research Journal,1948,18:396-398
    [31] Leslie Eadie, Tushar K. Ghosh. Biomimicry in textiles: past, present and potential. Anoverview [J]. Journal of the royal society interface,2011,8:761-775
    [32] Tastet, D., M. Save. Functional biohybrid materials synthesized via surface-initiatedMADIX/RAFT polymerization from renewable natural wood fiber: Grafting of polymeras non leaching preservative [J]. Polymer,2011,52(3):606-616
    [33] Gong, G., J. Pyo. Tensile behavior, morphology and viscoelastic analysis of cellulosenanofiber-reinforced (CNF) polyvinyl acetate (PVAc)[J]. Composites Part A: AppliedScience and Manufacturing,2011,42(9):1275-1282
    [34] Frone, A. N., D. M. Panaitescu. PVA Based Composite Films with Cellulose FibersPrepared by Acid Hydrolysis [J]. Materiale Plastice,2011,48(2):138-143
    [35] Wu, G. Y., S. S. Wang. Preparation of Highly Adhesive and SuperhydrophobicEpoxy-Based Thin Film by Sol-Gel Process [J]. Journal of Adhesion Science andTechnology,2011,25(10):1095-1106
    [36] Yung-Hsin, L., L. Keng-Huan. Superhydrophobic films of UV-curable fluorinated epoxyacrylate resins [J]. Polymer International,2010,59(9):1197-1203
    [37] Xiangxuan Huang, Wen Xiufang, Cheng Jiang, Yang Zhuoru. Mechanical properties ofoil filter paper impregnated by a novel waterborne novolac epoxy emulsion [J]. AdvancedMaterials Research,2011,235:229-233
    [38] Xiao, X. Y., C. C. Hao. Preparation of waterborne epoxy acrylate/silica sol hybridmaterials and study of their UV curing behavior [J]. Colloids and SurfacesA-Physicochemical and Engineering Aspects,2010,359(1-3):82-87
    [39] Honda K., Morita M., Otsuka H., Molecular aggregation structure and surface propertiesof poly (fluoroalkyl acrylate) thin films [J], Macromolecules,2005,38(13):5699-5705
    [40] Huseyin Tas, Lon J. Mathias, J. Polym. Sci., Part A: Polym. Chem.,48(2010)2302-2310.
    [41] luděk Toman, One-pot synthesis of isocyanate and methacrylate multifunctionalizedpolyisobutylene and polyisobutylene-based amphiphilic networks [J]. Journal of PolymerScience Part A: Polymer Chemistry,2006,44(9):2891-2900
    [42] Liakos, I. L., R. C. Newman, Eoghan M., Morgan R. A. Study of the resistance of SAMson aluminium to acidic and basic solutions using dynamic contact angle measurement [J].Langmuir,2007,23:995-999
    [43] Jacob J. S., David M. S., Phil J. B., A. J. McQuillan. SaltModulatesBacterialHydrophobicity and Charge Properties Influencing Adhesion of Pseudomonasaeruginosa (PA01) in Aqueous Suspensions [J]. Langmuir,2010,26(11):8659-8665
    [44] McHale, G., N. J. Shirtcliffe. Contact-angle hysteresis on super-hydrophobic surfaces [J].Langmuir,2004,20(23):10146-10149
    [1] Ralston J.,Popescu M., Sedev R. Dynamics of wetting from an experimental point of view[J]. Annual Review of Materials Research,2008,38:23-43
    [2] Herminghaus S.,Brinkmann M., Seemann R. Wetting and dewetting of complex surfacegeometries [J]. Annual Review of Materials Research,2008,38:101-121
    [3] Quéré D. Wetting and roughness [J]. Annual Review of Materials Research,2008,38:71-99
    [4] Marmur A. Solid-surface characterization by wetting [J]. Annual Review of MaterialsResearch,2009,39:473-489
    [5] Nishino T., Meguro M., Nakamae K. The lowest surface free energy based on–CF3alignment [J], Langmuir,1999,15(13):4321-4323.
    [6] Nosonovsky Michael. Bhushan Bharat. Hierarchical roughness makes superhydrophobicstates stable [J]. Microelectronic Engineering,2007,84:382-386
    [7] Nosonovsky Michael., Bhushan Bharat. Hierarchical roughness optimization forbiomimetic superhydrophobic surfaces [J]. Ultramicroscopy,2007,107:969-979
    [8] Nosonovsky Michael., Bhushan Bharat. Multiscale friction mechanisms and hierarchicalsurfaces in nano-and bio-tribology [J]. Materials Science and Engineering: R: Reports,2007,58(3-5):162-193
    [9] Zhang, J., S. Seeger. Polyester Materials with Superwetting Silicone Nanofilaments forOil/Water Separation and Selective Oil Absorption [J]. Advanced Functional Materials,2011,21(24):4699-4704.
    [10] Brettmann Blair K., Tsang Shirley, Forward Keith M., Rutledge Gregory C., MyersonAllan S., Trout Bernhardt L. Free surface electrospinning of fibers containingmicroparticles[J]. Langmuir,2012,28(25):9714-9721
    [11] Gupta N., Sasikala S., Mahadik D.B., Rao A.V., Barshilia H.C. Dual-scale roughmultifunctional superhydrophobic ITO coatings prepared by air annealing of sputteredindium-tin alloy thin films [J]. Applied Surface Science,2012,258(24):9723-9731
    [12] Su Bin, Wang Shutao, Wu Yuchen, Chen Xiao, Song Yanlin, Jiang Lei. Small molecularnanowire arrays assisted by superhydrophobic pillar-structured surfaces with highadhesion [J]. Advanced Materials,2012,24(20):2780-2785
    [13] Zhao Yan, Xu Zhiguang, Wang Xungai, Lin Tong. Photoreactive azido-containing silicananoparticle/polycation multilayers: durable superhydrophobic coating on cottonfabrics [J]. Langmuir,2012,28(15):6328-6335
    [14] Meng Longyue, Park Soojin. Effect of growth of graphite nanofibers onsuperhydrophobic and electrochemical properties of carbon fibers [J]. MaterialsChemistry and Physics,2012,132(2-3):324-329
    [15] Xue Chaohua, Chen Jia, Yin Wei, Jia Shuntian, Ma Jianzhong. Superhydrophobicconductive textiles with antibacterial property by coating fibers with silvernanoparticles [J]. Applied Surface Science,2012,258(7):2468-2472
    [16] Hao Chen, Shuaijun Pan, Yuzi Xiong, Chang Peng, Xiangzhong Pang, Ling Li, YuanqinXiong, Weijian Xu. Preparation of thermo-responsive superhydrophobic TiO2/poly(N-isopropylacrylamide) microspheres [J]. Applied Surface Science,2012,258(24):9505-9509
    [17] Richard, E., Aruna, S.T., Basu, B.J. Superhydrophobic surfaces fabricated by surfacemodification of alumina particles [J]. Applied Surface Science,2012,258(24):10199-10204
    [18] Agrawal Mukesh, Gupta Smrati, Stamm Manfred. Recent developments in fabricationand applications of colloid based composite particles [J]. Journal of MaterialChemistry,2011,21(3):615-627
    [19] He Yang, Jiang Chengyu, Yin Hengxu, Chen Jun, Yuan Weizheng. Superhydrophobicsilicon surfaces with micro-nano hierarchical structures via deep reactive ion etchingand galvanic etching [J]. Journal of Colloid and Interface Science,2011,364(1):219-229
    [20] Chen Yu, Guo Zhiguang, Xu Jiansheng, Shi Lei, L Jing, Zhang Yabin. Inspiredsuperhydrophobic surfaces by a double-metal-assisted chemical etching route [J].Materials Research Bulletin,2012,47(7):1687-1692
    [21] Min Ruan, Wen Li, Baoshan Wang, Qiang Luo, Fumin Ma, Zhanlong Yu. Optimalconditions for the preparation of superhydrophobic surfaces on Al substrates using asimple etching approach [J]. Applied Surface Science,2012,258(18):7031-7035
    [22] Zhong Wenbin, Li Yuntao, Wang Yujie, Chen Xiaohua, Wang Yongxin, Yang Wantai.Superhydrophobic polyaniline hollow bars: Constructed with nanorod-arrays based onself-removing metal-monomeric template [J]. Journal of Colloid and Interface Science,2012,365(1):28-32
    [23] Kannarpady Ganesh K., Khedir Khedir R., Ishihara Hidetaka, Woo Justin, Shin OlumideD., Trigwell Steve, Ryerson Charles, Biris Alexandru S. Controlled growth ofself-organized hexagonal arrays of metallic nanorods using template-assisted glancingangle deposition for superhydrophobic applications [J]. ACS Applied Materials&Interfaces,2011,3(7):2332-2340
    [24] Ma Wei, Wu Hui, Higaki Yuji, Otsuka Hideyuki, Takahara Atsushi. A "non-sticky''superhydrophobic surface prepared by self-assembly of fluoroalkyl phosphonic acidon a hierarchically micro/nanostructured alumina gel film [J]. ChemicalCommunications,2012,48(54):6824-6826
    [25] Shiheng Yin, Dongxiao Wu, Ji Yang, Shumei Lei, Tongchun Kuang, Bin Zhu. Fabricationand surface characterization of biomimic superhydrophobic copper surface bysolution-immersion and self-assembly [J]. Applied Surface Science,2011,257(20):8481-8485
    [26] Aruna S. T., Binsy P., Richard Edna, Basu Bharathibai J. Properties of phase separationmethod synthesized superhydrophobic polystyrene films [J]. Applied Surface Science,2012,258(7):3202-3207
    [27] Kato Shinji, Sato Aya. Micro/nanotextured polymer coatings fabricated by UVcuring-induced phase separation: creation of superhydrophobic surfaces [J]. Journal ofMaterials Chemistry,2012,22(17):8613-8621
    [28] Papadopoulou S. K., Tsioptsias C., Pavlou A., Kaderides K., Sotiriou S., Panayiotou C.Superhydrophobic surfaces from hydrophobic or hydrophilic polymers via nanophaseseparation or electrospinning/electrospraying [J]. Colloids and SurfacesA-Physicochemical and Engineering Aspects,2011,387(1-3):71-78
    [29] Geun Yeol Bae, Young Gyu Jeong. Byung Gil Min, Superhydrophobic PET fabricsachieved by silica nanoparticles and water-repellent agent [J]. Fibers and Polymers,2010,11(7):976-981
    [30] Wang Shuai, Li Yapeng, Fei Xiaoliang, Sun Mingda, Zhang Chaoqun, Li Yaoxian, YangQingbiao, Hong Xia. Preparation of a durable superhydrophobic membrane byelectrospinning poly (vinylidene fluoride)(PVDF) mixed with epoxy-siloxanemodified SiO2nanoparticles: A possible route to superhydrophobic surfaces with lowwater sliding angle and high water contact angle [J]. Journal of Colloid and InterfaceScience,2011,359(2):380-388
    [31] Kang S., Hong S.I., Choe C.R. Preparation and characterization of epoxy compositesfilled with functionalized nanosilica particles obtained via sol-gel process [J]. Polymer,2001,42(3):879-887
    [32] Werner St ber, Arthur Fink. Controlled growth of monodisperse silica spheres in themicron size range [J]. Journal of Colloid and Interface Science,1968,26:62-69
    [33] Dong Su, Chengya Huang, You Hu, Qiangwei Jiang, Long Zhang, Yunfeng Zhu.Preparation of superhydrophobic surface with a novel sol-gel system [J]. AppliedSurface Science,2011,258(2):928-934
    [34]徐桂龙,邓丽丽,皮丕辉,郑大峰,文秀芳,杨卓如.溶胶凝胶法制备超疏水二氧化硅涂膜及其表面润湿行为[J].无机化学学报,2010,26(10):1810-1814
    [35] Iler. Grafting of hyperbranched polymers onto ultrafine silica: postgraft polymerizationof vinyl monomers initiated by pendant azo groups of grafted polymer chains on thesurface [J]. Progress in Organic Coatings,2002,44:69-74
    [36] Chen S.L., Dong P., Yang G.H. Kinetics of formation of monodisperse colloidal silicaparticles through the hydrolysis and condensation of tetraethylorthosilicate [J].Industrial&Engineering Chemistry Research,1996,35(12):4487-4493
    [37] Brus J. Solid-state NMR study of phase separation and order of water molecules andsilanol groups in polysiloxane networks [J]. Journal of Sol-Gel Science andTechnology,2002,25:17-28
    [38] Michael Nosonovsky, Bharat Bhushan, Roughness optimization for biomimeticsuperhydrophobic surfaces [J]. Microsyst Technology,2005(11):535-549
    [39] Bhagat S.D., Kim Y.H., Moon M.J. A cost-effective and fast synthesis of nanoporousSiO2aerogel powders using water-glass via ambient pressure drying route [J]. SolidState Science,2007,9(7):628-635
    [1]陈文征,张贵才,尹海峰.波纹板聚结油水分离技术研究进展[J].石油矿场机械,2007,36(5):27-29
    [2]隋智慧,秦煜民.油水分离技术的研究进展[J].油气田地面工程,2002,21(6):115-116
    [3]胡晓林,刘红兵,.几种油水分离技术介绍[J].热力发电,2008,37(3):91-92
    [4] Wang Chuanxi, Yao Tongjie, Wu Jie, Ma Cheng, Fan Zhanxi, Wang Zhaoyi, ChengYuanrong, Lin Quan, Yang Bai. Facile approach in fabricating superhydrophobic andsuperoleophilic surface for water and oil mixture separation [J]. ACS Applied Materials&Interfaces,2009,1(11):2613-2617
    [5] Guix Maria, Orozco Jahir, Garcia Miguel, Gao Wei, Sattayasamitsathit Sirilak, MerkociArben, Escarpa Alberto, Wang Joseph. Superhydrophobic alkanethiol-coatedmicrosubmarines for effective removal of oil [J]. ACS Nano,2012,6(5):4445-4451
    [6] Cervin Nicholas Tchang, Aulin Christian, Larsson Per Tomas, Wagberg Lars. Ultra porousnanocellulose aerogels as separation medium for mixtures of oil/water liquids [J].Cellulose,2012,19(2):401-410
    [7] Zhang Junping, Seeger Stefan. Polyester Materials with Superwetting SiliconeNanofilaments for Oil/Water Separation and Selective Oil Absorption [J]. AdvancedFunctional Materials,2011,21(24):4699-4704
    [8]周聪,陈硕,朱卫桃,袁平,杨子辉,李彬,陈波.超疏水滤纸的制备与应用[J].应用化学,2012,29(3):297-302
    [9]李方俊,陈宇朕.分离滤芯TEFLON喷涂金属网阻水性能的研究[J].液压与气动,2006,2:16-18
    [10] Burtis TA, Kirbride C G. Desalting of petr oleum by use of fiber-glass packing [J].Transactions of the American Institute of Chemical Engineers,1946,42(2):413-422.
    [11]陈雷,祁佩时,王鹤立.聚结除油性能及机理的探讨[J].中国环境科学,2002,22(1):16-19
    [12]董宏理,倪梦贤,雷进杰.聚乙烯车削废料在含油废水处理中的应用[J].环境科学与技术,1993(2):34-36
    [13] Moses, S.F., Ng, K.M. A visual study of the breakdown of emulsions in porouscoalescers [J]. Chemical Engineering Science,1985,40(12):2339-2350
    [14] Lloyd A. Spielman, Simon L. Goren. Progress in induced coalescence and a newtheoretical framework for coalescence by porous media [J]. Industrial and EngineeringChemistry,1970,62(10):10-24
    [15] S. S. Sareen, P. M. Rose, R. C. Gudesen, R. C. Kintner. Coalescence in fibrous beds [J].AIChE Journal,1996,12(6):1045-1050

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700