用户名: 密码: 验证码:
基于多巴胺自聚—组装行为的聚合物分离膜表面修饰与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物分离膜在当代膜分离技术领域中具有非常重要的地位,然而膜污染与由膜接触所引发的凝血、免疫排斥等问题严重制约了聚合物分离膜的进一步发展和在水处理、生物医用等领域的应用。探索聚合物分离膜的新型改性方法,对膜表面进行功能化设计,构建细胞亲和表面与抗凝血、抗污染和抗菌表面是解决聚合物分离膜所面临的各种问题的关键。基于贻贝仿生的聚多巴胺涂层/粒子的潜在反应性,本论文在深入研究多巴胺自聚与沉积行为的基础上,分别通过表面二次修饰构建了具有抗污染、抗菌与生物相容性的功能表面,以期为疏水性聚合物分离膜的表面修饰提供新的可能途径。
     本文首先研究了多巴胺在不同条件下的自聚-沉积行为及聚多巴胺(PDA)涂层的基本性质。基于多巴胺的自聚-附着特性,采用多巴胺水溶液对聚偏氟乙烯(PVDF)致密薄膜进行表面涂覆改性。由椭偏光谱仪和扫描电镜(SEM)观察结果得知,多巴胺的自聚和沉积速率随反应温度的升高而增大。且PDA涂覆改性前后PVDF膜的表面形貌、反应液中PDA粒子的外形与尺寸也分别采用SEM、原子力显微镜(AFM)和透射电镜(TEM)进行了观测。研究发现,改性膜的表面粗糙度和表面能主要受反应温度的影响,而与反应时间和多巴胺浓度的关系不大。此外,采用相同的方法对另外三种典型的疏水聚合物致密薄膜—聚四氟乙烯(PTFE)、聚对苯二甲酸乙二醇酯(PET)和聚酰亚胺(PI)进行表面改性,发现这些薄膜对液体的亲和性与表面能均得以显著提高,与PVDF膜的情况相似。该结果表明,聚合物膜的表面性质不会对PDA在其表面的沉积行为产生明显的影响。上述结果不仅有助于进一步理解PDA涂层的仿生特性,而且为开发PDA仿生的新型聚合物功能材料提供了有益的参考。
     基于聚多巴胺纳米粒子(PDA NPs)与PVDF基体之间的强粘合作用,本文利用非溶剂致相转化法(NIPS)制备了PVDF/PDA共混膜。PDA NPs的外形、尺寸和PVDF膜的表面形貌分别采用TEM和SEM进行了观测。水接触角测试结果表明,共混膜的亲水性较原膜有所增强。共混改性后,膜的通量和抗污染能力均得以明显提高。而拉伸实验证明,添加剂适量时还能够有效改善PVDF膜的韧性。此外,共混膜在水环境下表现出理想的长期稳定性。以共混膜中具有潜在反应性的PDA NPs为表面二次修饰的平台,将含溴基团的引发剂共价固定至共混膜表面,并通过磺基甜菜碱(SBMA)的原子转移自由基聚合反应(ATRP)在共混膜表面构建两性离子聚合物刷。改性对膜表面形貌的影响通过SEM和AFM进行了检测和分析。与原膜相比,改性膜的亲水性较原膜有较为明显的提升,其中接枝膜的抗污染性能大幅提高。体外实验表明,两性离子聚合物刷的引入有效抑制了血小板在膜表面的粘附和变性,显著改善了PVDF膜的血液相容性。PDA NPs的稳定性与反应性为共混膜提供了进一步表面功能化的平台,其大幅增强了聚合物膜表面的可设计性,为聚合物功能膜的构建开辟了新的思路。
     氧化条件下,置于多巴胺水溶液中的固体材料表面会逐渐生成一层紧密附着的PDA薄膜,该薄膜的粘附性与潜在反应性可以允许其通过二次处理的方法实现材料表面的功能化修饰。本文基于多巴胺的这一性质在聚丙烯(PP)膜表面构建了PDA涂层,然后通过多重氢键将聚乙烯吡咯烷酮(PVP)结合至膜表面。水接触角、油水分离实验、通量和抗污染性能测试结果表明,改性后,膜的亲水性和润湿性能得以显著改善,膜通量、抗污染能力和分离效率也有所提高。由于PDA与PVP涂层之间能够形成较强的非共价键相互作用,PVP改性的PP膜具有理想的耐久性。而且,将具有广谱抗菌活性的碘络合至PVP涂层后,还能够显著增强PP膜的抗菌活性。因由共价键结合的功能层具有更佳的长期稳定性,在另一部分工作中,首先基于多巴胺的自聚-附着特性在聚乙烯(PE)膜表面构建PDA涂层,并通过温和条件下的迈克尔加成或席夫碱反应,分别将肝素、牛血清白蛋白(BSA)固定至PE膜表面。由水接触角和通量测试结果得知,改性膜的亲水性较原膜有所改善,且在适当的改性条件下,膜的纯水通量也会明显提高。此外,肝素或BSA的引入大幅提高了PE膜表面的血液相容性,而PDA与BSA复合层还能显著改善PE膜的细胞相容性,但与BSA相比,细胞更倾向于在PDA涂层表面粘附和铺展。除聚合物膜之外,该方法还适用于其他固体材料的表面改性,且对材料的尺寸和形状均无限制。因此,该法为材料的表面功能化修饰和应用拓展提供了一种通用、有效的新手段。
Polymer membranes play important roles in current separation and purification technologies. However, membrane fouling, blood coagulation and immunologic rejection resulting from contact with membranes limit their further developments and applications in water treatment, biomedical fields, and so on. It is clear that all these adverse effects are closely related to the poor hydrophilicity, biocompatibility and antimicrobial properties of the polymer membranes. A promising strategy for solving these problems may be construction of novel functional layers that could endow the membranes with improved performances. Recently, the bionic researchers have found that mussel-inspired polydopamine (PDA) could be incorporated into/onto materials on the basis of the self-polymerization and adhesion behavior of dopamine. PDA has good compatibility with various materials, and could serve as a versatile platform for surface functionalization via simple secondary treatments. In the present dissertation, the self-polymerization and deposition of dopamine on different substrates were systematically studied. Then PDA particles/films were incorporated into/onto polymer membranes by blending or surface modification process, and different functional layers based on PDA were designed to enhance the antifouling, antimicrobial properties and biocompatibility of the membranes. It is expected to establish a versatile approach of surface modification for hydrophobic polymer membranes.
     This study first explored the self-polymerization and deposition behavior of dopamine under different conditions and the fundamental surface characteristics of polydopamine (PDA) coatings. A poly(vinylidene fluoride)(PVDF) film was surface modified by dip coating in an aqueous solution of dopamine on the basis of its self-polymerization and strong adhesion feature. The self-polymerization and deposition rates of dopamine on film surfaces increased with increasing temperature as evaluated by both spectroscopic ellipsometry and scanning electronic microscopy (SEM). Changes in the surface morphologies of PDA-coated films as well as the size and shape of PDA particles in the solution were also investigated by SEM, atomic force microscopy (AFM), and transmission electron microscopy (TEM). The surface roughness and surface free energy of PDA-modified films were mainly affected by the reaction temperature and showed only a slight dependence on the reaction time and concentration of the dopamine solution. Additionally, three other typical hydrophobic polymer films of polytetrafluoroethylene (PTFE), poly(ethylene terephthalate)(PET), and polyimide (PI) were also modified by the same procedure. The liquid affinity and surface free energy of these polymer films were enhanced significantly after being coated with PDA, as were those of PVDF films. It is indicated that the deposition of PDA is not strongly dependent on the nature of the polymers. This information provides us with not only a better understanding of biologically inspired surface chemistry for PDA coatings but also effective strategies for exploiting the properties of dopamine to create advanced functional materials.
     Based on the strong adhesion effect between polydopamine nanoparticles (PDA NPs) and PVDF, a PVDF/PDA blend membrane was prepared via non-solvent induced phase separation (NIPS) process. The size and shape of PDA NPs as well as the surface morphologies of PVDF/PDA membranes were observed by TEM and SEM. Data of water contact angle measurements showed that the hydrophilicity of the blend membranes was improved obviously compared with that of the unmodified PVDF membrane. The water permeability and antifouling properties of the PVDF membranes were both enhanced after blending modification as evaluated by protein filtration tests. Results from tensile test indicated that an appropriate amount of PDA NPs was able to improve the toughness of the as-prepared blend membranes. Moreover, the PVDF/PDA blend membranes had satisfying long-term stability in aqueous environment. The PVDF/PDA blend membranes were able to undergo secondary treatments based on the potential reactivity of PDA NPs. Initiators containing Br groups were immobilized on the blend membranes via covalent conjugation with PDA. Then zwitterionic polymer brushes were incorporated onto the membranes through atom transfer radical polymerization (ATRP) of sulfobetaine methacrylate (SBMA). The surface morphologies of membranes before and after grafting were observed by SEM and AFM. The surface hydrophilicity of the modified membranes was remarkably improved by compared with the pure PVDF membrane. Experiments of protein filtration showed that membrane fouling obviously reduced after surface grafting. Results of platelet adhesion test indicated that the incorporation of poly SBMA suppressed the adhesion and activation of platelets, and improved the in vitro hemocompatibility of PVDF membranes significantly. The stability and reactivity of PDA NPs offer opportunities to realize surface functionalization of the blend membranes, which enhances their surface designability and allows effective development of novel functional polymer membranes.
     It is well-known that a tightly adherent PDA layer can be generated over a wide range of material surfaces through a simple dip-coating process in dopamine aqueous solution. The resulting PDA coating is prone to be further surface-tailored and functionalized via secondary treatments because of its robust reactivity. Herein, a typical hydrophobic polypropylene (PP) porous membrane was first coated with a PDA layer and then further modified by poly(N-vinyl pyrrolidone)(PVP) via multiple hydrogen-bonding interactions between PVP and PDA. Data of water contact angle measurements showed that hydrophilicity and wettability of the membranes were significantly improved after introducing PDA and PVP layers. Both permeation fluxes and antifouling properties of the modified membranes were enhanced as evaluated in oil/water emulsion filtration, protein filtration, and adsorption tests. The PVP layer immobilized on the membrane had satisfying long-term stability and durability because of the strong noncovalent forces between PVP and PDA coating. Furthermore, the modified membranes showed remarkable antimicrobial activity after iodine complexation with the PVP layer. In the other work, a functional layer was immobilized onto PDA-coated membranes via covalent bonding with better long-term stability. A thin PDA layer was first formed and tightly coated onto PE membranes by dipping simply the membranes into dopamine aqueous solution for a period of time. Subsequently, heparin or bovine serum albumin (BSA) was bound onto the PE/PDA composite membranes via Michael-type addition or Schiff base reaction. The results of water contact angle measurement showed that the hydrophilicity of PE membranes was significantly improved after modification. And the water flux of the modified membranes increased under proper modification conditions. Moreover, the heparin or BSA-immobilized PE membranes had better blood compatibility than the unmodified PE and the PE/PDA composite membranes. The PDA and BSA layers endowed PE membranes with significantly improved cell compatibility. Compared to BSA surface, PDA surface is more favorable for cell adhesion, growth, and proliferation. The strategy of material surface modification is substrate-independent, and applicable to a broad range of materials and geometries, which allows effective development of materials with novel functional layers based on the mussel-inspired surface chemistry.
引文
[1]徐又一;徐志康,高分子膜材料.2005:化学工业出版社.
    [2]任建新,膜分离技术及其应用.2003:化学工业出版社.
    [3]Boddeker, K.W., Commentary:Tracing membrane science. Journal of Membrane Science 1995,100,65-68.
    [4]Mulder, M., Basic principles of membrane technology second edition.1996: Kluwer Academic Pub.
    [5]时均;袁权;高从增,膜技术手册.2001:化学工业出版社.
    [6]Richard, W.B., Membrane technology and applications. John Wiley & Sons Ltd 2004.
    [7]王学松,膜分离技术及其应用.1994:科学出版社.
    [8]SIRKAR, K.K., Membrane separation technologies:current developments. Chemical Engineering Communications 1997,157,145-184.
    [9]刘茉娥,膜分离技术应用手册.2001,化学工业出版社.
    [10]Ulbricht, M., Advanced functional polymer membranes. Polymer 2006,47, 2217-2262.
    [11]刘茉娥,超滤膜污染机理的研究及控制.水处理技术1989,15,163-169.
    [12]Hong, S.; Elimelech, M., Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. Journal of Membrane Science 1997, 132,159-181.
    [13]Lim, A.; Bai, R., Membrane fouling and cleaning in microfiltration of activated sludge wastewater. Journal of Membrane Science 2003,216,279-290.
    [14]Ishihara, K.; Fukumoto, K.; Iwasaki, Y. et al., Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials 1999,20,1553-1559.
    [15]Rana, D.; Matsuura, T., Surface modifications for antifouling membranes. Chemical Reviews 2010,110,2448-2471.
    [16]Mansouri, J.; Harrisson, S.; Chen, V., Strategies for controlling biofouling in membrane filtration systems:challenges and opportunities. Journal of Materials Chemistry 2010,20,4567-4586.
    [17]Kim, K.; Fane, A.; Fell, C., The effect of Langmuir-Blodgett layer pretreatment on the performance of ultrafiltration membranes. Journal of Membrane Science 1989,43,187-204.
    [18]Chen, V.; Fane, A.; Fell, C., The use of anionic surfactants for reducing fouling of ultrafiltration membranes:their effects and optimization. Journal of Membrane Science 1992,67,249-261.
    [19]Park, Y.S.; Ito, Y.; Imanishi, Y, Permeation control through porous membranes immobilized with thermosensitive polymer. Langmuir 1998,14,910-914.
    [20]Akthakul, A.; Salinaro, R.F.; Mayes, A.M., Antifouling polymer membranes with subnanometer size selectivity. Macromolecules 2004,37,7663-7668.
    [21]Hyun, J.; Jang, H.; Kim, K. et al., Restriction of bio fouling in membrane filtration using a brush-like polymer containing oligoethylene glycol side chains. Journal of Membrane Science 2006,282,52-59.
    [22]Revanur, R.; McCloskey, B.; Breitenkamp, K. et al., Reactive amphiphilic graft copolymer coatings applied to poly (vinylidene fluoride) ultrafiltration membranes. Macromolecules 2007,40,3624-3630.
    [23]芦艳;于水利;蔡报祥,高分子有机膜改性技术研究进展.现代化工2004,84-86.
    [24]唐广军;孙本惠,聚偏氟乙烯膜的亲水性改性研究进展.化工进展2004,23,480-485.
    [25]Asatekin, A.; Kang, S.; Elimelech, M. et al., Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly (ethylene oxide) comb copolymer additives. Journal of Membrane Science 2007,298,136-146.
    [26]Wang, Y.Q.; Su, Y.L.; Sun, Q. et al., Generation of anti-biofouling ultrafiltration membrane surface by blending novel branched amphiphilic polymers with polyethersulfone. Journal of Membrane Science 2006,286,228-236.
    [27]Hester, J.; Banerjee, P.; Mayes, A., Preparation of protein-resistant surfaces on poly (vinylidene fluoride) membranes via surface segregation. Macromolecules 1999,32,1643-1650.
    [28]Chung, T.; Lee, S., New hydrophilic polypropylene membranes; fabrication and evaluation. Journal of Applied Polymer Science 1997,64,567-575.
    [29]Marchese, J.; Ponce, M.; Ochoa, N. et al., Fouling behaviour of polyethersulfone UF membranes made with different PVP. Journal of Membrane Science 2003, 211,1-11.
    [30]Ochoa, N.; Pradanos, P.; Palacio, L. et al., Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes:characterisation of polyethersulfone UF membranes with dopes containing different PVP. Journal of Membrane Science 2001,187,227-237.
    [31]Torrestiana-Sanchez, B.; Ortiz-Basurto, R.; Brito-De La Fuente, E., Effect of nonsolvents on properties of spinning solutions and polyethersulfone hollow fiber ultrafiltration membranes. Journal of Membrane Science 1999,152,19-28.
    [32]Damodar, R.A.; You, S.J.; Chou, H.H., Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. Journal of Hazardous Materials 2009,172,1321-1328.
    [33]Liu, X.; Peng, Y.; Ji, S., A new method to prepare organic-inorganic hybrid membranes. Desalination 2008,221,376-382.
    [34]Mukherjee, D.; Kulkarni, A.; Gill, W.N., Chemical treatment for improved performance of reverse osmosis membranes. Desalination 1996,104,239-249.
    [35]Higuchi, A.; Iwata, N.; Tsubaki, M. et al., Surface-modified polysulfone hollow fibers. Journal of Applied Polymer Science 1988,36,1753-1767.
    [36]Garg, D.; Lenk, W.; Berwald, S. et al., Hydrophilization of microporous polypropylene Celgard membranes by the chemical modification technique. Journal of Applied Polymer Science 1996,60,2087-2104.
    [37]Dimov, A.; Islam, M., Hydrophilization of polyethylene membranes. Journal of Membrane Science 1990,50,97-100.
    [38]徐志成;邓新华;孙元et al., PE非织物亲水改性的研究.天津工业大学学报2007,26,52-54.
    [39]Steen, M.L.; Jordan, A.C.; Fisher, E.R., Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment Journal of Membrane Science 2002,204,341-357.
    [40]Kull, K.R.; Steen, M.L.; Fisher, E.R., Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes. Journal of Membrane Science 2005,246,203-215.
    [41]Nunes, S.P.; Peinemann, K.-V., Membrane technology:in the chemical industry. 2006:John Wiley & Sons.
    [42]Tyszler, D.; Zytner, R.G.; Batsch, A. et al., Reduced fouling tendencies of ultrafiltration membranes in wastewater treatment by plasma modification. Desalination 2006,189,119-129.
    [43]Khulbe, K.; Feng, C.; Matsuura, T., The art of surface modification of synthetic polymeric membranes. Journal of Applied Polymer Science 2010,115,855-895.
    [44]Tsuchida, M.; Osawa, Z., Effect of ageing atmospheres on the changes in surface free energies of oxygen plasma-treated polyethylene films. Colloid and Polymer Science 1994,272,110-116.
    [45]Freger, V.; Gilron, J.; Belfer, S., TFC polyamide membranes modified by grafting of hydrophilic polymers:an FT-IR/AFM/TEM study. Journal of Membrane Science 2002,209,283-292.
    [46]Kang, G.; Liu, M.; Lin, B. et al., A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly (ethylene glycol). Polymer 2007,48,1165-1170.
    [47]Taniguchi, M.; Belfort, G., Low protein fouling synthetic membranes by UV-assisted surface grafting modification:varying monomer type. Journal of Membrane Science 2004,231,147-157.
    [48]Ulbricht, M.; Belfort, G., Surface modification of ultrafiltration membranes by low temperature plasma Ⅱ. Graft polymerization onto polyacrylonitrile and polysulfone. Journal of Membrane Science 1996,111,193-215.
    [49]赵翌帆;朱利平;徐又一et al.,高分子超/微滤膜的亲水化改性:从PEG化到离子化.功能材料2012,42,193-197.
    [50]Zhao, B.; Brittain, W.J., Polymer brushes:surface-immobilized macromolecules. Progress in Polymer Science 2000,25,677-710.
    [51]Kato, K.; Uchida, E.; Kang, E.T. et al., Polymer surface with graft chains. Progress in Polymer Science 2003,28,209-259.
    [52]Barthlott, W.; Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997,202,1-8.
    [53]Liu, K.; Jiang, L., Bio-inspired design of multiscale structures for function integration. Nano Today 2011,6,155-175.
    [54]Chen, W.; McCarthy, T.J., Layer-by-layer deposition:a tool for polymer surface modification. Macromolecules 1997,30,78-86.
    [55]Luo, M.L.; Zhao, J.Q.; Tang, W. et al., Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Applied Surface Science 2005,249,76-84.
    [56]Hegemann, D.; Brunner, H.; Oehr, C., Plasma treatment of polymers for surface and adhesion improvement. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms 2003,208, 281-286.
    [57]Sever, M.J.; Weisser, J.T.; Monahan, J. et al., Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Angewandte Chemie 2004,116, 454-456.
    [58]Waite, J.H., Surface chemistry:Mussel power. Nature materials 2008,7,8-9.
    [59]Lee, H.; Dellatore, S.M.; Miller, W.M. et al., Mussel-inspired surface chemistry for multifunctional coatings. Science 2007,318,426-430.
    [60]Xi, Z.Y.; Xu, Y.Y.; Zhu, L.P. et al., A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). Journal of Membrane Science 2009,327,244-253.
    [61]Messersmith, P.B.; Kang, S.M.; Rho, J. et al., Norepinephrine: Material-independent, multifunctional surface modification reagent. Journal of the American Chemical Society 2009,131,13224-+.
    [62]Kulma, A.; Szopa, J., Catecholamines are active compounds in plants. Plant Science 2007,172,433-440.
    [63]Li, B.; Liu, W.; Jiang, Z. et al., Ultrathin and stable active layer of dense composite membrane enabled by poly(dopamine). Langmuir 2009,25, 7368-7374.
    [64]Bernsmann, F.; Ball, V.; Addiego, F.d.r. et al., Dopamine-melanin film deposition depends on the used oxidant and buffer solution. Langmuir 2011,27,2819-2825.
    [65]Lee, H.; Scherer, N.F.; Messersmith, P.B., Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences 2006,103, 12999-13003.
    [66]Ye, Q.; Zhou, F.; Liu, W., Bioinspired catecholic chemistry for surface modification. Chemical Society Reviews 2011,40,4244-4258.
    [67]Yu, J.; Kan, Y; Rapp, M. et al., Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films. Proceedings of the National Academy of Sciences 2013,110,15680-15685.
    [68]Bernsmann, F.; Ponche, A.; Ringwald, C. et al., Characterization of dopamine-melanin growth on silicon oxide. The Journal of Physical Chemistry C 2009,113, 8234-8242.
    [69]Jiang, J.; Zhu, L.; Zhu, L. et al., Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Applied Materials & Interfaces 2013,5, 12895-904.
    [70]Liu, Y.; Ai, K.; Lu, L., Polydopamine and its derivative materials:synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews 2014,114,5057-5115.
    [71]Lynge, M.E.; van der Westen, R.; Postma, A. et al., Polydopamine-a nature-inspired polymer coating for biomedical science. Nanoscale 2011,3, 4916-28.
    [72]Li, Y.; Liu, M.; Xiang, C. et al., Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions. Thin Solid Films 2006,497, 270-278.
    [73]Yu, M.; Hwang, J.; Deming, T.J., Role of L-3,4-dihydroxyphenylalanine in mussel adhesive proteins. Journal of the American Chemical Society 1999,121, 5825-5826.
    [74]Burzio, L.A.; Waite, J.H., Cross-linking in adhesive quinoproteins:studies with model decapeptides. Biochemistry 2000,39,11147-11153.
    [75]Herlinger, E.; Jameson, R.F.; Linert, W., Spontaneous autoxidation of dopamine. Journal of the Chemical Society, Perkin Transactions.2 1995,259-263.
    [76]Dreyer, D.R.; Miller, D.J.; Freeman, B.D. et al., Elucidating the structure of poly(dopamine). Langmuir 2012,28,6428-6435.
    [77]Hong, S.; Na, Y.S.; Choi, S. et al., Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Advanced Functional Materials 2012,22,4711-4717.
    [78]Della Vecchia, N.F.; Avolio, R.; Alfe, M. et al., Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Advanced Functional Materials 2013,23, 1331-1340.
    [79]Dreyer, D.R.; Miller, D.J.; Freeman, B.D. et al., Perspectives on poly (dopamine). Chemical Science 2013,4,3796-3802.
    [80]Ball, V.; Bernsmann, F.; Ponche, A. et al.. Characterization of dopamine-melanin growth on silicon oxide. Journal of Physical Chemistry C 2009,113,8234-8242.
    [81]Chen, C.T.; Ball, V.; de Almeida Gracio, J.J. et al., Self-assembly of tetramers of 5,6-dihydroxyindole explains the primary physical properties of eumelanin: Experiment, simulation, and design. ACS Nano 2013,7,1524-1532.
    [82]Kaxiras, E.; Tsolakidis, A.; Zonios, G. et al., Structural model of eumelanin. Physical Review Letters 2006,97,218102.
    [83]Liebscher, J.r.; Mrowczynski, R.; Scheidt, H.A. et al., Structure of polydopamine: A never-ending story? Langmuir 2013,29,10539-10548.
    [84]Ju, K.Y.; Lee, Y; Lee, S. et al., Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules 2011,12,625-632.
    [85]Postma, A.; Yan, Y; Wang, Y. et al., Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules. Chemistry of Materials 2009,21,3042-3044.
    [86]d'Ischia, M.; Napolitano, A.; Pezzella, A. et al., Chemical and structural diversity in eumelanins:Unexplored bio-optoelectronic materials. Angewandte Chemie International Edition 2009,48,3914-3921.
    [87]Ho, C.C.; Ding, S.J., The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery. Journal of Materials Science:Materials in Medicine 2013,24,2381-2390.
    [88]Yue, Q.; Wang, M.; Sun, Z. et al., A versatile ethanol-mediated polymerization of dopamine for efficient surface modification and the construction of functional core-shell nanostructures. Journal of Materials Chemistry B 2013,1,6085-6093.
    [89]Kim, H.W.; McCloskey, B.D.; Choi, T.H. et al., Oxygen concentration control of dopamine-induced high uniformity surface coating chemistry. ACS Applied Materials & Interfaces 2013,5,233-238.
    [90]Zhang, Y.; Thingholm, B.; Goldie, K.N. et al., Assembly of poly (dopamine) films mixed with a nonionic polymer. Langmuir 2012,28,17585-17592.
    [91]Zhu, Q.; Pan, Q., Mussel-inspired direct immobilization of nanoparticles and application for water-oil separation. ACS Nano 2014,8,1402-1409.
    [92]Zhao, H.; Waite, J.H., Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. Journal of Biological Chemistry 2006,281, 26150-26158.
    [93]Yu, J.; Wei, W.; Danner, E. et al., Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nature Chemical Biology 2011,7, 588-590.
    [94]Sed 6, J.; Saiz-Poseu, J.; Busqu e, F. et al., Catechol-based biomimetic functional materials. Advanced Materials 2013,25,653-701.
    [95]Saiz-Poseu, J.; Faraudo, J.; Figueras, A. et al., Switchable self-assembly of a bioinspired alkyl catechol at a solid/liquid interface:Competitive interfacial, noncovalent, and solvent interactions. Chemistry-A European Journal 2012,18, 3056-3063.
    [96]Lee, B.P.; Chao, C.Y.; Nunalee, F.N. et al., Rapid gel formation and adhesion in photocurable and biodegradable block copolymers with high DOPA content. Macromolecules 2006,39,1740-1748.
    [97]Lee, B.P.; Dalsin, J.L.; Messersmith, P.B., Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromolecules 2002,3, 1038-1047.
    [98]Moser, J.; Punchihewa, S.; Infelta, P.P. et al., Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates. Langmuir 1991,7,3012-3018.
    [99]Rajh, T.; Chen, L.; Lukas, K. et al., Surface restructuring of nanoparticles:an efficient route for ligand-metal oxide crosstalk. The Journal of Physical Chemistry B 2002,106,10543-10552.
    [100]Dalsin, J.L.; Lin, L.; Tosatti, S. et al., Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir 2005,21, 640-646.
    [101]Rodenstein, M.; Ziircher, S.; Tosatti, S.G. et al., Fabricating chemical gradients on oxide surfaces by means of fluorinated, catechol-based, self-assembled monolayers. Langmuir 2010,26,16211-16220.
    [102]Anderson, T.H.; Yu, J.; Estrada, A. et al., The contribution of DOPA to substrate-peptide adhesion and internal cohesion of mussel-inspired synthetic peptide films. Advanced Functional Materials 2010,20,4196-4205.
    [103]Xi, Z.Y.; Xu, Y.Y.; Zhu, L.P. et al., A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly (DOPA) and poly (dopamine). Journal of Membrane Science 2009,327,244-253.
    [104]Ku, S.H.; Ryu, J.; Hong, S.K. et al., General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials 2010,31,2535-2541.
    [105]Tsai, W.B.; Chen, W.T.; Chien, H.W. et al., Poly (dopamine) coating of scaffolds for articular cartilage tissue engineering. Acta Biomaterialia 2011,7,4187-4194.
    [106]Yu, F.; Chen, S.; Chen, Y. et al., Experimental and theoretical analysis of polymerization reaction process on the polydopamine membranes and its corrosion protection properties for 304 Stainless Steel. Journal of Molecular Structure 2010,982,152-161.
    [107]Li, B.; Liu, W.; Jiang, Z. et al., Ultrathin and stable active layer of dense composite membrane enabled by poly (dopamine). Langmuir 2009,25, 7368-7374.
    [108]Pan, F.; Jia, H.; Qiao, S. et al., Bioinspired fabrication of high performance composite membranes with ultrathin defect-free skin layer. Journal of Membrane Science 2009,341,279-285.
    [109]Kang, S.M.; You, I.; Cho, W.K. et al., One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angewandte Chemie International Edition 2010,49,9401-9404.
    [110]Pop-Georgievski, O.; Popelka, S.t.p.n.; Houska, M. et al., Poly (ethylene oxide) layers grafted to dopamine-melanin anchoring layer:Stability and resistance to protein adsorption. Biomacromolecules 2011,12,3232-3242.
    [111]McCloskey, B.D.; Park, H.B.; Ju, H. et al., Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer 2010, 51,3472-3485.
    [112]肖琳琳;魏雨;计剑,基于聚多巴胺辅助自组装单分子层技术的PTFE表面修饰及其内皮细胞选择性黏附研究.高分子学报2010,1,479-483.
    [113]Li, C.Y.; Wang, W.C.; Xu, F.J. et al., Preparation of pH-sensitive membranes via dopamine-initiated atom transfer radical polymerization. Journal of Membrane Science 2011,367,7-13.
    [114]Liao, Y.; Cao, B.; Wang, W.C. et al., A facile method for preparing highly conductive and reflective surface-silvered polyimide films. Applied Surface Science 2009,255,8207-8212.
    [115]Liao, Y.; Wang, Y.; Feng, X. et al., Antibacterial surfaces through dopamine functionalization and silver nanoparticle immobilization. Materials Chemistry and Physics 2010,121,534-540.
    [116]Ou, J.; Wang, J.; Zhang, D. et al., Fabrication and biocompatibility investigation of TiO2 films on the polymer substrates obtained via a novel and versatile route. Colloids and Surfaces B:Biointerfaces 2010,76,123-127.
    [117]Ham, H.O.; Liu, Z.; Lau, K. et al., Facile DNA immobilization on surfaces through a catecholamine polymer. Angewandte Chemie 2011,123,758-762.
    [118]Ochs, C.J.; Hong, T.; Such, G.K. et al., Dopamine-mediated continuous assembly of biodegradable capsules. Chemistry of Materials 2011,23, 3141-3143.
    [119]Fei, B.; Qian, B.; Yang, Z. et al., Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon 2008,46,1795-1797.
    [120]Hong, S.; Kim, K.Y.; Wook, H.J. et al., Attenuation of the in vivo toxicity of biomaterials by polydopamine surface modification. Nanomedicine 2011,6, 793-801.
    [121]Black, K.C.; Yi, J.; Rivera, J.G. et al., Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy. Nanomedicine 2013,8,17-28.
    [122]Liston, E.; Martinu, L.; Wertheimer, M., Plasma surface modification of polymers for improved adhesion:a critical review. Journal of Adhesion Science and Technology 1993,7,1091-1127.
    [123]Abbasi, F.; Mirzadeh, H.; Katbab, A.A., Modification of polysiloxane polymers for biomedical applications:a review. Polymer International 2001,50, 1279-1287.
    [124]Lee, H.; Rho, J.; Messersmith, P.B., Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Advanced Materials 2009, 21,431-434.
    [125]Boccaccio, T.; Bottino, A.; Capannelli, G. et al., Characterization of PVDF membranes by vibrational spectroscopy. Journal of Membrane Science 2002, 210,315-329.
    [126]Ryu, J.; Ku, S.H.; Lee, H. et al., Mussel-inspired polydopamine coating as a universal route to hydroxyapatite crystallization. Advanced Functional Materials 2010,20,2132-2139.
    [127]Wei, Q.; Zhang, F.; Li, J. et al., Oxidant-induced dopamine polymerization for multifunctional coatings. Polymer Chemistry 2010,1,1430-1433.
    [128]Liu, F.; Hashim, N.A.; Liu, Y. et al., Progress in the production and modification of PVDF membranes. Journal of Membrane Science 2011,375,1-27.
    [129]Hester, J.F.; Banerjee, P.; Mayes, A.M., Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules 1999,32,1643-1650.
    [130]Bae, T.H.; Tak, T.M., Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. Journal of Membrane Science 2005,249,1-8.
    [131]Yu, L.Y.; Xu, Z.L.; Shen, H.M. et al., Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. Journal of Membrane Science 2009,337,257-265.
    [132]Yan, L.; Li, Y.S.; Xiang, C.B. et al., Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. Journal of Membrane Science 2006,276,162-167.
    [133]Aerts, P.; Kuypers, S.; Genne, I. et al., Polysulfone-ZrO2 surface interactions. The influence on formation, morphology and properties of zirfon-membranes. The Journal of Physical Chemistry B 2006,110,7425-7430.
    [134]Choi, J.H.; Jegal, J.; Kim, W.N., Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. Journal of Membrane Science 2006,284,406-415.
    [135]Wang, P.; Ma, J.; Wang, Z. et al., Enhanced separation performance of PVDF/PVP-g-MMT nanocomposite ultrafiltration membrane based on the NVP-grafted polymerization modification of montmorillonite (MMT). Langmuir 2012,28,4776-4786.
    [136]Shao, B.; Liu, L.; Yang, F. et al., Membrane modification using polydopamine and/or PDA coated TiO2 nano particles for wastewater treatment Procedia Engineering 2012,44,1431-1432.
    [137]Yang, L.; Kong, J.; Yee, W.A. et al., Highly conductive graphene by low-temperature thermal reduction and in situ preparation of conductive polymer nanocomposites. Nanoscale 2012,4,4968-4971.
    [138]Yang, L.; Phua, S.L.; Teo, J.K.H. et al., A biomimetic approach to enhancing interfacial interactions:polydopamine-coated clay as reinforcement for epoxy resin. ACS Applied Materials & Interfaces 2011,3,3026-3032.
    [139]Liu, W.; Li, Y.; Meng, X. et al., Embedding dopamine nanoaggregates into a poly(dimethylsiloxane) membrane to confer controlled interactions and free volume for enhanced separation performance. Journal of Materials Chemistry A 2013,1,3713-3723.
    [140]Chen, W.; Su, Y.; Zhang, L. et al., In situ generated silica nanoparticles as pore-forming agent for enhanced permeability of cellulose acetate membranes. Journal of Membrane Science 2010,348,75-83.
    [141]Nakagawa, K.; Ishida, Y, Dielectric relaxations and molecular motions in poly (vinylidene fluoride) with crystal form Ⅱ. Journal of Polymer Science:Polymer Physics Edition 1973,11,1503-1533.
    [142]Teyssedre, G.; Bernes, A.; Lacabanne, C., Influence of the crystalline phase on the molecular mobility of PVDF. Journal of Polymer Science Part B:Polymer Physics 1993,31,2027-2034.
    [143]Chen, W.; Su, Y.; Peng, J. et al., Engineering a robust, versatile amphiphilic membrane surface through forced surface segregation for ultralow flux-decline. Advanced Functional Materials 2011,21,191-198.
    [144]Yi, Z.; Zhu, L.P.; Xu, YY et al., F127-based multi-block copolymer additives with poly(N,N-dimethylamino-2-ethyl methacrylate) end chains:The hydrophilicity and stimuli-responsive behavior investigation in polyethersulfone membranes modification. Journal of Membrane Science 2010,364,34-42.
    [145]Cui, A.; Liu, Z.; Xiao, C. et al., Effect of micro-sized SiO2-particle on the performance of PVDF blend membranes via TIPS. Journal of Membrane Science 2010,360,259-264.
    [146]Cheng, C.; Li, S.; Zhao, W. et al., The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. Journal of Membrane Science 2012,417-418,228-236.
    [147]Wei, Q.; Li, B.J.; Yi, N. et al., Improving the blood compatibility of material surfaces via biomolecule-immobilized mussel-inspired coatings. Journal of Biomedical Materials Research Part A 2011,96A,38-45.
    [148]Rahimpour, A.; Madaeni, S.; Zereshki, S. et al., Preparation and characterization of modified nano-porous PVDF membrane with high antifouling property using UV photo-grafting. Applied Surface Science 2009,255,7455-7461.
    [149]Kaur, S.; Ma, Z.; Gopal, R. et al., Plasma-induced graft copolymerization of poly (methacrylic acid) on electrospun poly (vinylidene fluoride) nanofiber membrane. Langmuir 2007,23,13085-13092.
    [150]Dargaville, T.R.; George, G.A.; Hill, D.J. et al., High energy radiation grafting of fluoropolymers. Progress in Polymer Science 2003,28,1355-1376.
    [151]Wang, W.C.; Wang, J.; Liao, Y. et al., Surface initiated ATRP of acrylic acid on dopamine-functionalized AAO membranes. Journal of Applied Polymer Science 2010,117,534-541.
    [152]Cao, Y.; Zhang, X.; Tao, L. et al., Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Applied Materials & Interfaces 2013,5,4438-4442.
    [153]Yamamoto, S.-i.; Pietrasik, J.; Matyjaszewski, K., ATRP synthesis of thermally responsive molecular brushes from oligo (ethylene oxide) methacrylates. Macromolecules 2007,40,9348-9353.
    [154]Lowe, A.B.; McCormick, C.L., Synthesis and solution properties of zwitterionic polymers. Chemical Reviews 2002,102,4177-4190.
    [155]Ponzio, F.; Ball, V., Persistence of dopamine and small oxidation products thereof in oxygenated dopamine solutions and in "polydopamine" films. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2014,443,540-543.
    [156]王兆钺,血小板与凝血因子的相互作用及其意义.中华血液学杂志2004,25,187-189.
    [157]袁江;袁幼菱;沈健et al.,聚氨酯表面构建磺铵两性离子结构及其抗血小板粘附性的研究.高等学校化学学报2003,24,916-919.
    [158]Groth, T.; Campbell, E.; Herrmann, K. et al., Application of enzyme immunoassays for testing haemocompatibility of biomedical polymers. Biomaterials 1995,16,1009-1015.
    [159]Goodman, S.L., Sheep, pig, and human platelet-material interactions with model cardiovascular biomaterials. Journal of Biomedical Materials Research 1999,45,240-250.
    [160]Goodman, S.; Grasel, T.; Cooper, S. et al., Platelet shape change and cytoskeletal reorganization on polyurethaneureas. Journal of Biomedical Materials Research 1989,23,105-123.
    [161]何淑漫;周健,抗凝血生物材料.化学进展2010,22,760-772.
    [162]Hilal, N.; Ogunbiyi, O.O.; Miles, N.J. et al., Methods employed for control of fouling in MF and UF membranes:a comprehensive review. Separation Science and Technology 2005,40,1957-2005.
    [163]Liu, X.; Xu, Y.; Wu, Z. et al., Poly(N-vinylpyrrolidone)-Modified Surfaces for Biomedical Applications. Macromolecular Bioscience 2013,13,147-154.
    [164]Higuchi, A.; Shirano, K.; Harashima, M. et al., Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials 2002,23,2659-2666.
    [165]Wu, Z.; Tong, W.; Jiang, W. et al., Poly(N-vinylpyrrolidone)-modified poly(dimethylsiloxane) elastomers as anti-biofouling materials. Colloids and Surfaces B:Biointerfaces 2012,96,31-43.
    [166]Zhang, Q.; Liu, Y.; Chen, K.C. et al., Surface biocompatible modification of polyurethane by entrapment of a macromolecular modifier. Colloids and Surfaces B:Biointerfaces 2013,102,354-360.
    [167]Robinson, S.; Williams, P.A., Inhibition of Protein Adsorption onto Silica by Polyvinylpyrrolidone. Langmuir 2002,18,8743-8748.
    [168]Pieracci, J.; Crivello, J.V.; Belfort, G., Photochemical modification of lOkDa polyethersulfone ultrafiltration membranes for reduction of biofouling. Journal of Membrane Science 1999,156,223-240.
    [169]Liu, Z.M.; Xu, Z.K.; Wang, J.Q. et al., Surface modification of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone. European Polymer Journal 2004,40,2077-2087.
    [170]Liu, Z.M.; Xu, Z.K.; Wan, L.S. et al., Surface modification of polypropylene microfiltration membranes by the immobilization of poly(N-vinyl-2-pyrrolidone): a facile plasma approach. Journal of Membrane Science 2005,249,21-31.
    [171]Laborde, B.; Moine-Ledoux, V.; Richard, T. et al., PVPP-polyphenol complexes:A molecular approach. Journal of Agricultural And Food Chemistry 2006,54,4383-4389.
    [172]Zhang, Y.; Thingholm, B.; Goldie, K.N. et al., Assembly of poly(dopamine) films mixed with a nonionic polymer. Langmuir 2012,28,17585-17592.
    [173]Raab, M.; Scudla, J.; Kozlov, A. et al., Structure development in oriented polyethylene films and microporous membranes as monitored by sound propagation. Journal of Applied Polymer Science 2001,80,214-222.
    [174]朱利平;徐又一;奚振宇et al., DOPA在聚乙烯微孔膜上的自聚合及肝素固定化.高分子学报2009,1,394-397.
    [175]Blawas, A.; Oliver, T.; Pirrung, M. et al., Step-and-repeat photopatterning of protein features using caged-biotin-BSA:Characterization and resolution. Langmuir 1998,14,4243-4250.
    [176]Delehanty, J.B.; Shaffer, K.M.; Lin, B., Transfected cell microarrays for the expression of membrane-displayed single-chain antibodies. Analytical Chemistry 2004,76,7323-7328.
    [177]De Queiroz, A.A.; Soares, D.A.; Trzesniak, P. et al., Resistive-type humidity sensors based on PVP-Co and PVP-I2 complexes. Journal of Polymer Science Part B:Polymer Physics 2001,39,459-469.
    [178]Michaels, A., Membranes, membrane processes, and their applications:needs, unsolved problems, and challenges of the 1990's. Desalination 1990,77,5-34.
    [179]Hirata, N.; Shizume, Y.; Shirokaze, J.i. et al., Plasma separator plasmaflo OP. Therapeutic Apheresis and Dialysis 2003,7,64-68.
    [180]Iwasaki, Y.; Uchiyama, S.; Kurita, K. et al., A nonthrombogenic gas-permeable membrane composed of a phospholipid polymer skin film adhered to a polyethylene porous membrane. Biomaterials 2002,23,3421-3427.
    [181]Ishihara, K.; Iwasaki, Y.; Ebihara, S. et al., Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance. Colloids and Surfaces B: Biointerfaces 2000,18,325-335.
    [182]李端;殷明,药理学(第六版).2007,人民卫生出版社.p.275-277.
    [183]Amiji, M.; Park, K., Surface modification of polymeric biomaterials with poly (ethylene oxide), albumin, and heparin for reduced thrombogenicity. Journal of Biomaterials Science, Polymer Edition 1993,4,217-234.
    [184]Li, G.; Sun, Q.; Hou, X., Graft copolymerization of glycidyl methacrylate onto a polypropylene surface initiated by glow discharge and immobilization of heparin. Acta Polymerica Sinica 1997,5,589-591.
    [185]Nho, Y.C.; Kwon, O.H., Blood compatibility of AAc, HEMA, and PEGMA-grafted cellulose film. Radiation Physics and Chemistry 2003,66, 299-307.
    [186]Goddard, J.M.; Hotchkiss, J., Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science 2007,32,698-725.
    [187]Hattersley, P.G., Activated coagulation time of whole blood. Jama 1966,196, 436-440.
    [188]Gastineau, D.A.; Kazmier, F.J.; Nichols, W.L. et al., Lupus anticoagulant:an analysis of the clinical and laboratory features of 219 cases. American Journal of Hematology 1985,19,265-275.
    [189]Liu, Z.; Deng, X.; Wang, M. et al., BSA-modified polyethersulfone membrane: preparation, characterization and biocompatibility. Journal of Biomaterials Science, Polymer Edition 2009,20,377-397.
    [190]Shen, C.; Zhang, G.; Qiu, H. et al., Acetaminophen-induced hepatotoxicity of gel entrapped rat hepatocytes in hollow fibers. Chemico-Biological Interactions 2006,162,53-61.
    [191]Ku, S.H.; Park, C.B., Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials 2010,31, 9431-9437.
    [192]Wang, J.L.; Ren, K.F.; Chang, H. et al., Direct adhesion of endothelial cells to bioinspired poly (dopamine) coating through endogenous fibronectin and integrin α5p1. Macromolecular Bioscience 2013,13,483-493.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700