用户名: 密码: 验证码:
抗污染油水分离复合膜制备及分离性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含油废水作为一种常见的污染源,其对环境保护和生态平衡危害极大;而水是生产和生活的重要资源,因此含油废水的油水分离是十分重要的。传统的含油废水处理方法有的分离效率不高,有的由于添加过多化学药剂使物料二次污染,还有的能耗过高、费用高昂。为弥补这些不足,近年来膜分离技术开始运用于含油废水的处理,其主要用于分离稳定的乳化油,具有能耗低、分离效率高、装置小等优点。在使用膜分离法处理含油污水时,膜污染和浓差极化引起的分离性能下降制约了其技术潜力的发挥。因此,抗污染油水分离膜的研制具有十分重要的理论和实际意义。
     本文在国内外首次制备了用于油水乳化液分离的聚哌嗪酰胺/聚乙烯醇复合膜。该复合膜具有三层结构,包括多孔陶瓷(或聚乙烯)管式基膜、聚醚砜(或聚偏氟乙烯)超滤膜支撑层和聚哌嗪酰胺/聚乙烯醇复合功能层。超滤膜支撑层通过相转化法涂覆在多孔陶瓷管式膜上,复合功能层通过界面聚合法制备在超滤膜支撑层上。本文用FT-IR、SEM、XPS、SAXS和AFM对复合膜的结构进行了表征,较系统探索了复合膜支撑层的制备;复合膜支撑层和基膜对复合膜油水分离性能的影响;以聚偏氟乙烯(PVDF)为支撑层的复合膜功能层制备及其对分离性能的影响:以聚醚砜(PES)为支撑层的复合膜功能层制备及其对分离性能的影响;并在实验基础上建立了复合膜的水通量和截留率的经验公式,最后采用溶剂浸泡失重法研究复合膜在各种溶剂中的化学稳定性,取得了创新性的成果。
     在复合膜的研究中,高性能的支撑膜是制备高性能复合膜的基础。本文选用PES和PVDF作为制备复合膜支撑层的膜材,以PES为代表探讨了制备复合
    
    摘要
    膜支撑层中影响支撑层结构的各种因素的作用。随铸膜液中PES浓度的增加,
    形成的膜孔径愈加致密,为获得孔径分布良好的PES支撑层,PES浓度应选择
    在10%以上。铸膜液抽真空时间延长、凝胶浴氯化纳含量的增加、凝胶浴温度
    的下降、溶剂挥发时间延长,热处理温度的上升都会导致支撑层孔径变小。支
    撑层孔径和孔隙率会随添加剂聚乙二醇(P EG)含量的增加而减小,支撑层内部
    将形成指状孔。支撑层孔径和孔隙率会随添加剂氯化铿(LICI)含量的增加而增
    加,支撑层内部将形成海绵状孔。同时加入这两种添加剂,支撑层孔径可通过
    PEG和LICI的比例进行调整,支撑层内部具有良好的指状孔结构,有利于复合膜
    水通量增加。
     探讨了复合膜支撑层和基膜对纯水和油水乳化液在不同操作条件下的分离
    性能,以确定其对复合功能层的影响。提高操作温度有利于基膜水通量的增加,
    但实际工作温度应该考虑到复合功能层和支撑层的耐温性能。同一种基膜的孔
    径大小对复合膜分离性能影响很小。在0.1一0.4 MPa操作压力范围内,不同压力
    下的支撑层水通量呈良好的线形关系,且支撑层水通量随时间的变化趋势一致,
    因此可以认为操作压力在0.4 MPa以内不会对支撑层结构产生影响。支撑层表
    面孔径尺寸的选择应在保证复合膜功能层无缺陷的前提下尽可能大。
     为制备小孔径、亲水性油水分离膜以提高油水乳化液中油的截留率和增加
    膜分离含油污水时的抗污染性,本文选用对苯二甲酞氯( TC)和呱嗓(PA)
    作为界面聚合的反应单体,并在水相添加聚乙烯醇(PVA),共同在PVDF支
    撑层上反应构成复合膜的功能层,使用FT-IR、SEM、XPS和AFM对复合膜的
    形貌、组分进行分析,研究了制备复合膜功能层的各主要影响因素及其对分离
    性能的影响。PVDF支撑层的表面孔径随PVDF浓度的增加而减小。PVDF浓
    度过小,复合膜形成后缺陷多,截留率低;PVDF浓度过大,形成的复合膜水
    通量小。实验证实10%PVDF浓度支撑层的复合膜油水分离效果在水通量和截
    留率两方面都是最佳的。随呱嗦浓度增加,复合膜的水通量减小,截留率提高,
    复合膜表层接触角相应增加,复合膜的功能层也更加致密,呱嗦浓度高低对复
    合膜表面粗糙度影响不大。随TC浓度增加,复合膜功能层致密程度提高,截
    留率保持在高水平,同时还能使更多的PVA与之结合,增加复合膜的亲水性,
    降低膜污染,增加水通量。TC浓度对复合膜表面粗糙度影响很大,随浓度增
    
    摘要
    加,表面粗糙度增大,表面粗糙度的增加会增加膜面实际的过滤面积,从而增
    加水通量。随PVA浓度的增加,复合膜水通量下降,当PVA浓度高于60叭
    后,水通量下降幅度不大,复合膜亲水性变化很小。PVA浓度过高,复合膜功
    能层表面会形成PVA凝胶层,增大复合膜水力阻力,减小水通量。随反应温度
    上升,复合膜的接触角成线形下降,但下降幅度很小,亲水性提高不大。通过
    AFM对复合膜表面分析,PVDF支撑层上界面聚合复合膜的温度不宜超过
    50℃。实验证实复合膜具有良好的油水分离性能,无论水通量,还是截留率都
    优于PVDF超滤膜。
     为进一步提高复合膜油水分离性能,用亲水性较好的PES作为复合膜的支
    撑层,同样选用TC和PA作为界面聚合的反应单体,并在水相添加PVA共同
    在PES支撑层上反应构成复合膜的功能层。通过SEM观察复合膜在不同反应
    温度下的形貌变化,并考虑复合膜的亲水性,定出20℃是适合PES支撑层的制
    膜温度。以PES为支撑层制备复合膜,PVA浓度低于以PVDF为支撑层的复
    ?
Oily wastewater is a common pollution in the world which has lot of harm to environments, whereas water is important source of living and production. Thus, separation of oily wastewater is very important. Traditional treatments for oil/water separation had low efficiency or consumed lots of energy. In some case, water had been polluted by chemical additive. In recent years, membrane technologies have been successfully applied for treating oil/ waste emulsion which could supply a gap of those traditional treatments. However, the performances of membrane separation are limited by the membrane fouling and concentration polarization. Therefore, development of antifouling membranes is a most pressing task at present.A novel fouling-resistant polyamide/polyvinyl alcohol (PVA) composite membrane was developed for removal of oil-in-water (O/W) emulsions. The composite membrane was featured with an asymmetric three-layer structure, i.e., a tubular porous ceramic (or polyethylene) membrane, a polyethersulfone (or polyvinylidene fluoride) ultrafiltration substrate, and a polyamide/ PVA composite thin top-layer. The PES (or PVDF) polymer was cast onto the tubular porous ceramic (or PE) membrane with a sol-gel method, and the polyamide/PVA composite thin top-layer was fabricated with an interfacial polymerization method. FT-IR, SEM, XPS, SAXS and AFM were employed to characterize the composite membrane. In this study, investigations were systematically carried out on preparation of composite membrane and substrate of composite membrane. Separation performance of composite membrane had been also investigated, and some exciting results have been gotten.A composite membrane is based on the substrate which should have
    
    appropriate size, density, distributing of its pore and good chemical stability. PES and PVDF had been chosen as substrate of composite membrane in this study. The factors of preparing PES substrate had been investigated. The average pore size of substrate was smaller when PES concentration was increased in casting solution, and the result of experiments shows PES concentration should be higher than 10% for good structure of substrate. Prolonged vacuuming time of casting solution and volatile time of solvent were leading smaller average pore size of substrate. The average pore size of substrate was smaller when sodium chloride concentration was increased or ethanol concentration was decreased in casting solution. The average pore size was of substrate bigger when temperature of coagulation bath was decreased or temperature of heat treatment was increased. Lithium chloride (LiCl) and Polyethylene glycol (PEG) were employed as additives in the casting solution, in order to obtain desired membrane pore size for separation. The average pore size of substrate was smaller when PEG concentration increased, and the result was reverse as LiCl instead of PEG. The fingerlike hole appeared in interior of substrate when LiCl and PEG were employed together in casting solution. And this structure of substrate was availed to flux of composite membrane.Investigations of pure water and oil/water emulsion separation performance in different operation condition of PES (PVDF) substrate of composite membrane and tubular porous ceramic (or PE) membrane were carried out. The increasing of operating temperature would increase flux of tubular porous membrane. The change of pore size of same kind of tubular porous membrane had little effect on flux of composite membrane. The operating pressure which less than 0.4MPa wouldn't destroy the structure of substrate of composite membrane. The average pore size of substrate should be as big as possible when there was no disfigurement in top-layer of composite membrane by using the substrate.A small average pore size, high hydrophilic polyamide/PVA composite membrane based on PVDF substrate was prepared by using the method of interfacial polymerization for separating drastically emulsified oil/water emulsions. TC was
    
    organic monomer and PA was aqueous monomer. The aqueous solution was also in
引文
[1]刘茉娥.膜分离技术.北京,化学工业出版社,1998.
    [2]王学松.膜分离技术及其应用.北京,科学出版社,1994.
    [3]彭国平,郭立纬,徐而华.超滤技术应用对中药成分的影响.南京中医药大学学报(自然科学版),2002,18(6):339-341.
    [4]S. Alami-Younssi, A. Larbot, M. Prsin. Rejection of mineral salts on gamma alumina nanofiltration membrane, application to environmental process. J. Membr Sci., 1995, 102: 123-129.
    [5]B. Van tier Bruggen, J. Schaep, D. wilms. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J. Membr Sci., 1999, 156: 29-41.
    [6]蒲通,曾作样.高分子纳滤膜的制备技术.高分子通报,2001,21(3):57-63.
    [7]J.G. Wijmans, R.W. Bsker. The solution-diffusion model: a review. J. Membr. Sci., 1995, 107: 1-21.
    [8]俞三传,张建飞.复合纳滤膜及其应用.水处理技术,1997,23(3):139-145.
    [9]R.J. Petersen. Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci., 1993, 83: 81-150.
    [10]松本峰,岑运华.日本NF膜、低压超低压RO膜及应用技术的发展.膜科学与技术,1998,18(5):11-18.
    [11]唐燕辉,梁伟,柴章民.含油污水膜技术处理.精细石油化工,1998,2:37-39.
    [12]李海波,胡莜敏,罗茜.含油废水的膜处理技术.过滤与分离,2000,10(4):10-14.
    [13]M. Cheryan, N. Rajagopalan. Membrane processing of oily streams wastewater treatment and waste reduction. J Membr. Sci., 1998, 151: 13-28.
    [14]戴军,袁惠新,俞建峰.膜技术在含油废水处理中的应用.膜科学与技术,2002,22:59-64.
    [15]诸林,潘亿永.含油污水处理技术进展.上海环境科学,1997,16(8):38-4.
    [16]郭大光.新型膜分离过程-膜分相技术和应用.石油化工高等学校学报,1995,8(2):24-27.
    [17]M.Mulder.膜技术基本原理.北京,清华大学出版社,1999.
    
    [18]王兰娟,张才菁.含乳化油污水的超滤膜分离模型.石油大学学报(自然科学版),1998,22(3):79-81.
    [19]吴秋林.用膜分相从水中除去油珠的研究.环境科学,1986,4(6):1-5.
    [20]孙勇.一种新型膜法破乳技术.现代化工,2000.20(3):16-18.
    [21]J. Kong, K. Li. Oil Removal from oil-in-water emulsions using PVDF membranes. Chem. Sep. Pur. Technol., 1999, 16: 83-93.
    [22]R. R. Bhave. Inorganic Membranes Synthesis, Characteristics and Applications. Van Nostrand Reinhold, New York, 1991.
    [23]N.R Xu. Progress of inorganic membranes studies. Hua Gong Jin Zhan, 1995, 3(7): 11-15.
    [24]R.J. Higgins, B. A. Bishop, R. L. Goldsmith. Reclamation of waste lubricating oil using ceramic membranes. The Proceeding of the Third International Conference on Inorganic Membranes, Worcester, Massachusetts, 1994: 447-463.
    [25]C. Guizard, D. Rambault, D. Urhing. Deasphalting of a long residue using ultrafiltration inorganic membranes. The Proceeding of the Third International Conference on Inorganic Membranes, Worcester, Massachusetts, 1994: 345-354.
    [26]A. Larbot, J. P. fabre, C. Guizard. New inorganic ultrafiltration membranes: titania and zirconnia membranes. J. Am. Ceram. Soc., 1989, 72: 257-261.
    [27]国家环境保护局.膜分离技术及其应用.北京,中国环境科学出版社,1991.
    [28]丁健.具有PIN结构的复合超滤膜在华北油田的应用研究.工业水处理,2000,20(3):21-23.
    [29]刑卫红.微滤和超滤过程中浓度差极化和膜污染控制方法研究.化工进展,2000,19(1):44-48.
    [30]S. Khan, A. K. Ghosh, V. Ramachandhran. Synthesis and characterization of low molecular weight cut off ultrafiltration membranes from cellulose propionate polymer. Desalination, 2000, 128: 57-66.
    [31]S. H. Lin, W. J. Lan. Waste oil/water emulsion treatment by membrane processes. Journal of Hazardous Materials, 1998, 59: 189-199.
    [32]A. Philippe, C. Michaei. Synthetic membranes, Science Engineering and Applications. C. D. Reidelpubishing Company, 1986: 249-273.
    [3
    
    [33]Y. Chao, G. S. Zhang, N. P. Xu. Preparation and application in oil-water separation of ZrO_2/α-Al_2O_3 MF membrane. J. Membr. Sci., 1998, 142: 235-243.
    [34]S. panpanit, C. Visvanathan, S. Muttamara. Separation of oil-water emulsion from car washes. Water Science and Technology, 2000, 41: 109-116.
    [35]U. Hajime, S. Hisao, A. Takash. Oil separation from oil-water mixture by a porous poly (tetrafluoroethylene)(PTFE) membrane. Journal of chemical engineering of Japan, 1986, 19(4): 281-286.
    [36]M.M. Dal-Cin, C. N. Lick, A. Kumar. Dispersed phase back transport during ultrafiltration of cutting oil emulsion with a spinning membrane disc geometry. J. Membr. Sci., 1998, 141: 165—181.
    [37]K. Ueyyama, K. Fukuura, S. Furusaki. Oil-phase permeation behaviour of o/w emulsion through a porous polytetrafluoroethylene membrane. J. Chem. Engng. Japan, 1987, 20: 618-622.
    [38]N. P Trirmizi, B. Raghuraman, J. Wiencek. Demulsification of water/oil/solid emulsions by hollow-fibre membranes. AICHE J, 1996, 42: 512-518.
    [39]魏复盛.水和废水监测分析方法.北京,中国环境科学出版社,1989.
    [40]周厚安.钻井污水处理技术和设备进展.重庆环境科学,1996,18(1):27-30.
    [41]张琳,张元月.新型污水处理装置—膜生物反应器.重庆环境科学,1996,18(4):51-55.
    [42]刘忠洲.微滤超滤过程中的膜污染与清洗.水处理技术,1997,23(4):187-190.
    [43]王晓琳.膜的污染和额略劣化及其防止对策.工业水处理,2001,21(9):1-5.
    [44]王锦,王晓昌,石诚.膜的污染种类及其控制方法.给水排水,2000,26(9):18-80.
    [45]AWWA Membrane Technology Research Committee Report: Membrane Processes. AWWA, 1998, 90(6): 91-105.
    [46]V. Gekas, K. M. Persson, M. Warhlgen, B. Sivik. Contact angles of ultrafiltration membranes and their possible correlation to membrane performance. J Membr. Sci., 1992, 72: 293-297.
    [47]H. Yamagishi, J. V. Grivello, G. Belfort. Development of a novel photochemical technique for modifying poly(arylsulfone) ultrafiltration membranes. J. Membr. Sci.,1995, 105: 237-247.
    
    [48] S. Belfer, R. Fainchtain, Y. Purimson. Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. J.Membr. Sci., 2000,172: 113-124.
    [49] A.E. Childress, M. Elimelech. Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. J. Membr. Sci., 1996, 119:253-268.
    [50] A.E. Childress, S.S. Deshmukh. Effect of humic substances and anionic surfactant on the surface charge and performance of reverse osmosis membranes. Desalination, 1998,118:167-174.
    [51] A. Koltuniewicz, R.W. Field, T.C. Arnot. Cross-flow and dead-end microfiltration of oil-water emulsion. Part I. Experimental study and analysis of flux decline. J. Membr.Sci., 1995, 102: 193-207.
    [52] A. Koltuniewicz, R.W. Field, T.C. Arnot. Cross-flow and dead-end microfiltration of oily-water emulsions Part II. Mechanisms and modelling of flux decline. J. Membr. Sci.,2000, 169: 1-15.
    [53] R.S. Faibish, M . Elimelech, Y. Cohen. Effect of Interparticle electrostatic double layer interactions on permeate flux decline in crossflow membrane filtration of colloidal suspensions: an experimental investigation. J. Colloid Interface Sci., 1998, 204: 77-86.
    [54] J. Mueller, Y. Cen, R.H. Davis. Crossflow microfiltration of oily water. J. Membr. Sci.,1997, 129:221-235.
    [55] A.B. Koltuniewicz, R.W. Field. Process Factors during removal of oil-in-water emulsions with crossflow mcrofiltration. Desalnation, 1996, 105:79-89.
    [56] V. Chen, A.G. Fane, C.J.D. Fell. The use of anion surfactants for reducing fouling of ultrafiltration membranes: their effects and optimization. J. Membr. Sci., 1992, 67:249-261.
    [57] J. Lindau, A.S. Jonsson. Cleaning of ultrafiltration membranes after treatment of oily waste water. J. Membr. Sci., 1992, 87: 71-78.
    
    [58] S. Vigneswaran, S. Boonthanon, H. Prasanthi. Filter backwash water recycling using crossflow microfiltration. Desalination, 1996, 106: 31-38.
    [59] S. Redkar, V. Kuberkar, R.H. Davis. Modelling of concentration polarization and depolarization with high-frequency backflushing. J. Membr. Sci., 1996, 121:229-242.
    [60] P. Srijaroonrat, E. Mien, Y. Aurelle. Unstable secondary oil/water emulsion treatment using ultrafltration: fouling control by backfushing. J. Mem. Sci., 1999, 159: 11-20.
    [61] H. Iwata, Y. Uyama, H. Amemiya, Y. Ikada. Preparation of temperature sensitive membranes by graft polymerization onto a porous membrane. J. Membr. Sci., 1991, 55:119-126.
    [62] R.S. Faibish, Y. Cohen. Fouling-resistant ceramic supported polymer membranes for ultrafiltration of oil-in-water microemulsions. J. Membr. Sci., 2001, 185: 129-143.
    [63] M. Ulbricht, G. Belfort. Surface modification of ultrafiltration membranes by low temperature plasma. II. Graft polymerization onto polyacrylonitrile and polysulfone. J.Membr. Sci., 1996, 111: 193-215.
    [64] D. Lucasa, M. Rabiller-Baudry, L. Millesime. Extraction of a-lactalbumin from whey protein concentratewith modied inorganic membranes. J. Membr. Sci., 1998, 148: 1-12.
    [65] M.R. Pereira, J. Yarwood. Depth-profiling of polymer laminates using Fourier transform infrared (ATR) spectroscopy: The barrier film technique. J. Polym. Sci. Part B, 1994,32(11): 1881-1887.
    [66] A. Kesting. Membrane process and their application: needs unsolved problems and challenges in the 1990' S. Desalination, 1990, 77: 5-9.
    [67] M.L. Steen, L. Hymas, E.D. Havey. Low temperature plasma treatment of polysulfone membrane for permanent hydrophilic surface modification. J. Membr. Sci., 2001, 188:97-114.
    [68] D.L. Cho, O. Ekengren. Composite membrane formed by plasma-polymerized acrylic acid for ultrafiltration for bleach effluent. J. Appl. Polym. Sci., 1993, 47: 2125-2133.
    [69] K. Rodemann, E. Staude. Preparation and characterization of porous polysulfone membranes with spacer honded N-containing group. J. Appl. Polym. Sci., 1995, 57:901-910.
    
    [70]H. Yamagishi, J. V. Crivello, G. Belfort. Development of a novel photochemical technique for modifying poly(arysulfone) ultrafiltration membranes, or. Membr Sci., 1995, 105(3): 237-247.
    [71]L.E.S. Brink, S.J.G. Elbers, T. Robbertsen. The anti-fouling action of polymers preadsorbed on ultrafiltration and microfiltration membranes. J. Membr. Sci., 1993, 76: 281-286.
    [72]A. Michaels. Evanlnation of photochemically modified poly(arrlsulfone) ultrafiltration membrane. J Membr Sci., 1995, 105: 249-256.
    [73]J. T. Beck. Modeling of fouling of crossflow microfiltration membranes. Sep. Purif Methods, 1992, 21: 75-87.
    [74]L.E.S. Brink, S.J.G. Elbers, T. Robbertsen, P. Both. The anti-fouling action of polymers preadsorbed on ultrafiltration and microfiltration membranes. J. Membr. Sci., 1993, 76: 281-288.
    [75]P. Lipp, C.H. Lee. A fundamental study of the ultrafiltration of oil—water emulsions. J. Membr. Sci., 1988, 36: 161-167.
    [76]G. Thiele. Membrane fouling in sterile filtration of recombinant human growth herm one. Biotechn. Bioengr, 1996, 50: 319-325.
    [77]E. M. Tracey, R. H. Davis. Protein fouling of track-etched polycarbonate microfiltration membrane. J. Colloid. Interface Sci., 1994, 167: 104-112.
    [78]K. M. Simms. Ongoing Evaluation of MF and UF Membranes for produced water Treatment Produced water seminar. American Filtration Society, Texas, 1992: 529-536.
    [79]丁健,谭欣,张裕卿.用于油水分离的具有IP结构的耐污染复合超滤膜的研究.天津理工学院学报,1999,15(4):86-95.
    [80]T. Uemura, M. Kurihara. High performance semi permeable composite membrane and process for producing the same. US, 4559139, 1985.
    [81]张国昌,陈运法,王立新.复合分离膜的研究进展.化工冶金,1999,20(1):105-112.
    [82]张玉忠,李然,李泓.中空纤维超滤膜处理油田含油污水.环境化学,1997,16(3):241-246.
    [83]V. Chen, A. G. Fane, C. J. D. Fell. The use of anionic surfactants for reducing fouling of ultrafiltration membranes, their effects and optimization. J. Membr. Sci., 1992, 67: 249-261.
    [8
    
    [84]C. H. Kim, M. Hosomi, A. Murakami, M. Okada. Effect of clay on the fouling by organic substances in portable treatment by ultrafiltration. J. Water Sci. Technol., 1994, 30(9): 159-168.
    [85]M. Nystrom. Ultrafiltration of O/W emulsion stabilized by limiting amount of tall oil. J. Colloids Surf., 1991, 57: 99-111.
    [86]B. Tansel, J. Regula, R. Shalewitz. Treatment of fuel oil and crude oil contaminated waters by ultrafiltration membranes, J. Desalination, 1995, 102: 301-311.
    [87]M. Bodzek, K. Konieczny. The use of ultrafiltration membranes made of various polymers in the treatment of oil-emulsion wastewaters. Waste Manage, 1992, 12: 75-84.
    [88]S. H. Hyun, G. T. Kin. Synthesis of ceramic microfiltration membranes for oil/water Separation. Sep. Sci. Technol., 1997, 32: 2927-2943.
    [89]R. I. Jitsuhara, S. Kimura. Rejection of inorganic salts by charge ultrafiltration membranes made of sulfonated polysulfone. J. Chem. Eng. Japan, 1983, 16: 394-405.
    [90]M. O. David, Q. T. Nguyen, J. Neel. Pervaporation membranes endowed with catalytic properties based on polymer blends, d. Memb. Sci., 1992, 73: 129-141.
    [91]M. G. Suer, L. Yilmaz. Gas Permeation characteristics of polymer-zeolite mixed matrix membranes. J. Membr. Sci., 1994, 91: 77-86.
    [92]李发水,李阳初,孙亮.含油污水的超滤法处理.水处理技术,1995,21(3):145-148.
    [93]张裕媛,张裕卿.用于含油废水处理的复合膜研制.中国给水排水,2001,6(4):58-60.
    [94]张裕卿,丁建,常俊石.聚砜-Al_2O_3复合膜处理油田含油污水.工业水处理,2000,20(2):24-25.
    [95]张裕卿,丁建.Al_2O_3的添加对聚砜膜的影响.化学工程,2000,28(5):42-44.
    [96]姜云鹏,王榕树.纳米SiO_(2-)聚乙烯醇复合超滤膜的制备及应用.工业水处理,2000,22(5):12-14.
    [97]张效林,贺蝉英,党鑫让.PS-Ti复合超滤膜油脂精练技术研究.中国粮油学报,1990,5(1):48-54.
    
    [98]丘运仁,方惠会,熊日华.金属-改性PVA复合亲水分相膜处理含油乳化废水.膜科学与技术,2001,12(6):16-20.
    [99]H. M Huotari, I. H. Huisman, G. Tragardh. Electrically enhanced crossflow membrane filtration of oily waste water using the membrane as a cathode. J. Membr. Sci., 1999, 156 49-60.
    [100]J. M. M. Peeters, J. P. Boron, M. H. V. Mulder, H. Strathmann. Retention measurements of nanofiltration membranes with electrolyte solutions. J. Membr. Sci., 1998, 145: 199-209.
    [101]J. M. Radovich, B. Behnam, C. Mulion. Steady-state modeling of electroultrafiltration at constant concentration. Sep. Sci. Technol., 1985, 20(4): 315-329.
    [102]I. H. Huisman, B. Dutre, K. M. Persson. Water permeability in ultrafiltration and microfiltration: viscous and electroviscous effects. Desalination, 1997, 113: 95-103.
    [103]P.F. Levy. Comparation between Taylor and crossflow filtration of protein and mammalian cell broths. Adv. Filtr. Sep. Technol., 1991, 4: 128-133.
    [104]G. Belfort. The behavior of suspension and macromolecule solution in cross flow microfiltration. J. Mem. Sci., 1994, 96: 1-58.
    [105]R. M. Lueptow. Stability of axial flow in an annulus with a rotating inner cylinder. Phys. Fluid A, 1992, 4(11): 2446-2455.
    [106]李海波,杨瑞菘,徐新阳.加电场的旋转管式膜滤处理含油污水的过滤模型.金属矿山,2002,10:51-54.
    [107]J.P. Hsu, J.H. Lu, Y.C. Kuo. Electrical interaction between two cylinders with an ion-penetrable charged membrane in an oil/water interface. Colloids Surf B, 2001, 21: 265-272.
    [108]Z. Cui, K. Wright. Gas-liquid two phase cross-flow ultrafiltration of BSA and dextran solutions. J. Membr. Sci., 1994, 90: 183-189.
    [109]Z. Cui, K. Wright. Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism. J. Membr. Sci., 1996, 117: 109-116.
    [110]S. J. Lee, K. H. Choo, C. H. Lee. Conjunctive use of ultrafiltration with powdered activated carbon adsorption for removal of synthetic and natural organic matter. J. Ind. Eng. Chem., 2000, 6: 356-363.
    
    [111] S. Najarian, B. Bellhouse. Enhanced microfiltration of bovine blood using a tubular membrane with a screw-threaded insert and oscillatory flow. J. Membr. Sci., 1996, 112:249-261.
    [112] S.H. Yoon, C.H. Lee, K..Y. Chung. Flux Enhancement with gas injection in crossflow ultrafiltration of oiliy wastewater. Wat. Res., 2001, 35: 4095-4101.
    [113] L. Broussousa, P. Schmitz , E. Prouzet. New ceramic membranes designed for crossflow filtration enhancement. Sep. Purification Techno!., 2001, 25: 333-339.
    [114] S. Panpanit, C. Visvanathan. The role of bentonite addition in UF flux enhancement mechanisms for oil/water emulsion. J. Membr. Sci., 2001, 184: 59-68.
    [115] M. Gryta, K. Karakulski, A.W. Morawski. Purifaction of oily wastewater by hybrid UF/MD. Wat. Res., 2001, 35: 3665-3669.
    [116] M.Hlavacek, F. Bouchet. Constant flowrate blocking laws and example of their applaction to dead-end microfiltration of protein solutions. J. Mem. Sci., 1993, 82:285-295.
    [117] S. Lee, Y. Aurelle, H. Roques. Concentration polarization, membrane fouling and cleaning in ultrafiltration of soluble oil. J. Membr. Sci., 1984, 19: 23-38.
    [118] I.G. Wenten. Mechanisms and control of fouling in crossflow microfiltration. Filtration Sep., 1995,5:252-253.
    [119] J. Shaep, B. Van Der Bruggen, C. Vandecasteele. Influence of can size and change in nanofiltration. Sep. Purification TechnoL, 1998, 11: 155-162.
    [120] B. Chandar Shekar, V. Veeravazhuthi, S. Sakthivel. Growth, structure, dielectric and AC conduction properties of solution grown PVA films. Thin Solid Films, 1999, 348:122-129.
    [121] E.H. Park, E.R. George, M.A. Moldoon, A. Flammino. Thermoplastic starch blends with polyvinyl alcohol: processability, physical properties, and biodegradability. Polymer News, 1994, 19:230-238.
    [122] A.J. Aleyamma, C.P. Sharma. Poly(vinyl alcohol)-polyelectrblyte blended membranes-blood compatibility and permeability properties. Polymer Material Science Engineering, 1988, 59: 673-692.
    
    [123]S. H. Hyon, Y. Ikada. Slow release of drugs with use of PVA hydrogeis. Pharmacological Factorey, 1986, 6: 290-294.
    [124]M. L. Young, H. K. Su, J. K. Seon. Preparation and characteristics of B-chitin and poly(vinyl alcohol) blend. Polymer, 1996, 37: 5897-5905.
    [125]R. H. Li, T. A. Barbari. Performance of poly(vinyl alcohol) thin-gel composite ultrafiltration membranes. J. Membr. Sci., 1995, 105: 71-78.
    [126]胡家俊,郑领英.湿法相分离不对称超滤膜形成机理.水处理技术,1994,20(4):185-191.
    [127]郑炳云,杜邵龙,董声雄.小截留分子量PVDF超滤膜的制备研究.福州大学学报(自然科学版),2000,28(5):95-97.
    [128]陈坚锐,黄加乐,董声雄.PES超滤膜的制备工艺条件及化学稳定性研究.沈阳化工学院学报,2002,6(4):294-298.
    [129]陈萍华.N型微孔滤膜化学稳定性的定量测试.膜科学与技术,1983,3(3):21-25.
    [130]刘廷惠.超滤发展中的主要问题.水处理技术,1988,14(3):236-240.
    [131]陆晓峰,施柳青,卞晓揩.NF系列复合膜的制备及结构性能的研究.膜科学与技术,2001,21(3):11-15.
    [132]J. E. Cadotte, R. forestwr, M. kim. Nanofiltration membranes broaden the use of membranes separation technology. Desalination, 1998, 70: 77-86.
    [133]卢红梅.纳滤膜的特性及其在国内水处理中的应用进展.过滤与分离,2002,12(1):38-41.
    [134]G.Y. Chai, W.B. Krantz. Formation and characterizationof polyamide membranes via interfacial polymerization. J. Membr. Sci., 1994, 93: 175-182.
    [135]宋玉军,刘福安,杨瑞华.界面聚合反应动力学及膜结构的表征方法研究.天津纺织工学院学报,1999,18(4):102-111.
    [136]J. Dickson, R. F. Childs, B. E. McCarry. Mathematical model for the formation of thin-film composite membranes by interfacial polymeriation: porous and dense films. Macromolecules, 2000, 33: 624-633.
    [137]A. R. Prakash, S. V. Joshi, J. J. Trivedi. Structure-performance correlation of polyamidethin film composite membranes: effect of coating conditions on film formation, J, Membr. Sci., 2003, 211: 13-24.
    [1
    
    [138]董声雄,张金,洪俊明.小角X射线散射法测定超滤膜孔径.福州大学学报(自然科学版),1997,25(3):112-115_
    [139]江体乾.化工数据处理.北京,化学工业出版社,1984.
    [140]谭天恩,麦本熙,丁惠华.化工原理.北京,化学工业出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700