用户名: 密码: 验证码:
超疏水表面的制备及其对不同表面张力液体选择性分离的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
?润湿性是固体表面的重要特性之一,其应用十分广泛,如机械的润滑、摩擦、织物的印染、涂料的涂装等等,都与润湿性有着密切的关系。超疏水性表面是指水的接触角大于150°、滚落角小于10o的表面,由于它具有许多独特的表面性能,在自清洁材料、微流体、和减阻涂层等很多领域具有潜在的应用价值,因此在基础研究和实际应用中都受到了越来越密切的关注。
     表面自由能和表面几何结构是材料表面润湿性的两个决定性的影响因素,因此研究人员据这此设计出制备超疏水表面的途径:一是在疏水材料表面构建微/纳米粗糙结构;二是在粗糙表面上修饰低表面能的物质。然而目前的绝大部分制备超疏水的方法只能用来在实验室制备,同时其工艺过程较为复杂繁琐、工艺成本较高,制备的超疏水表面机械强度较低,难以实现规模化制备和实际应用。因此开发超疏水表面规模化制备技术成为其实际应用的关键环节。此外,由于很多有机溶剂的表面张力远远小于水,因此目前制备的很多超疏水表面具有亲油的性质,这为人们利用超疏水亲油表面分离表面张力不同的液体提供了可能性,现在已有一些超疏水滤网用于油水分离的报道,但超疏水多孔材料对于不同表面张力液体的吸附和分离,尤其是对混溶液体进行分离的应用研究较少,还缺少油水分离效率和不同表面张力的混溶体系分离的系统研究。
     本文开发了两种可规模化制备超疏水表面的方法,一种方法是利用工业原料聚苯硫醚微粉和疏水性二氧化硅纳米粉末,采用喷涂‐固化法在瓷砖表面制备疏水复合涂层,另一种方法是利用浸涂成膜法在滤纸/滤网的表面修饰了复合涂层,使滤纸/滤网具有超疏水亲油的特性。研究了制备条件与表面润湿性的关系和规律,并探索了其应用于分离不同表面张力液体的可行性。主要研究内容和结论如下:?
     1.利用喷涂-固化法在瓷砖表面制备了聚苯硫醚-疏水性二氧化硅纳米超疏水复合涂层,研究了热处理温度和和原料配比对涂层表面润湿性能的影响,在热处理温度280℃、疏水性二氧化硅与聚苯硫醚质量比为1:1的条件下,制得的复合涂层表面水接触角大于150°,滚落角小于4°,该涂层对pH值1~14的水溶液都具有超疏性,并且具有良好的耐刮伤性和自清洁效应,有望应用于防玷污领域。
     2.采用浸涂成膜法处理滤纸,获得了超疏水亲油特性,系统研究了涂层的制备条件对涂层表面结构和润湿性的影响,并将这种特殊润湿性滤纸应用于从水中分离低表面张力的液体。所制备的超疏水滤纸不但可以选择性地去除水面上漂浮的油,而且可以选择性地吸附乳液中乳化的油滴。超疏水滤纸对辛烷、柴油等非极性溶剂具有很强的吸附能力,吸附量可达到达2-3.4g/g。由于选择透过性,超疏水滤纸用于油水分离,具有96%~98%的油水分离效率,并且可以降低油中的水含量。此外,该超疏水滤纸还可以用来部分吸取乙醇-水混溶体系和异丙醇-水混溶体系中的低表面张力液体乙醇和异丙醇。所制备的超疏水滤纸具有可重复使用性和稳定性,使其在除油污、油水分离和油提纯领域具有应用前景。
     3.利用浸涂成膜方法制备了超疏水不锈钢滤网,在热处理温度60℃、疏水性二氧化硅与聚苯硫醚质量比为1:1的条件下,制得的滤网具有超疏水和亲油特性,水的接触角可以达到154°,滚落角仅有5°,而柴油在其表面可完全铺展。该滤网可应用于油水分离,在油水体积比大于1:15时,油水分离效率可以达到94.6%以上,在油水分离领域具有实际应用的前景。
Wettability of a solid surface is an important property which has been applied in various fields such as lubricating and friction of machines, printing and dyeing textile, coatings and so on. Superhydrophobic surfaces typically have a water contact angle higher than 150°and a low sliding angle (<10°). Because of their special surface properties, superhydrophobic surfaces can be potentially applied in diverse areas such as self-cleaning coatings, mico-fluidic devices, and friction-reduction coatings. Therefore, both academic and practical research attention has been focused on superhydrophobic surfaces.
     Studies have revealed that the surface wettability depends on the chemical composition and the morphology of the surface. Accordingly, various artificial superhydrophobic surfaces have been fabricated by constructing special hierarchical roughness on hydrophobic materials or modifying rough surfaces using materials with low free energy. However, most of these approaches can only be used to prepare small surface in laboratory. Meanwhile, the process is very complicated and the cost is relatively high. Especially, because the mechanical properties of the obtained surfaces are very poor, it is very difficult to employ these surfaces for practical applications. Therefore, it is crucial to develop fabrication method of large-scale superhydrophobic surfaces. In addition, owing to their low surface tensions, organic solvents can easily wet many superhydrophobic surfaces, which makes it possible to separate liquids differing in surface tensions with superhydrophobic surfaces. A few literatures have reported attempts to separate oil-water mixtures using superhydrophobic and superoleophilic meshes. However, the separation of liquids differing in surface tension especially miscible solutions with superhydrophobic surfaces has not been reported so far and the separation efficiency of oil-water mixtures still requires systematic investigation.
     This dissertation concentrated on developing two fabricating methods of superhydrophobic coatings. The first one is to fabricate superhydrophobic coatings on tile with a simple spray-and-dry approach using commercial available polyphenylene sulfide (PPS) and hydrophobic silica (H-SiO2) powder; and the second one is to generate superhydrophobic and superoleophilic coatings on filter paper/mesh with a dip-coating approach. The relationship between surface wettabilities and processing conditions was systematically studied, and the surfaces were applied to separate liquids differing in surface tension.
     1. Commercially available polyphenylene sulfide (PPS) and hydrophobic silica (H-SiO2) powder were used to fabricate superhydrophobic composite coatings on tile with a simple spray-dry method. The influence of thermal treatment temperature and weight ratio of raw materials on the surface wettability was investigated. The surface coating obtained at 280℃with the weight ratio of H-SiO2 to PPS 1:1 showed a water contact angle higher than 150°and a sliding angle lower than 4°. The surface coatings exhibited superhydrophobic properties for all the aqueous solutions with pH ranging from 1 to 14. Moreover, the as-prepared surfaces were stable and showed self-cleaning properties, implying possible applications in anti-dirty coatings.
     2. A simple dip-coating approach was used to endow filter paper with both superhydrophobic and superoleophilic properties. The specific wettability was used to separate liquid with low surface tension, such as diesel oil, from water. The treated filter paper could remove not only diesel oil floating on a water surface, but also emulsified oil in aqueous suspensions. In particular, it exhibited reproducible selective adsorption of a collection of organic solvents such as hexane and dodecane that reached 2.0-3.4 times its original weight. Moreover, the superhydrophobic filter paper was effectively used to separate oil and water, leading to a decrease in water content in the oil. The filter paper was also able to partly extract ethanol and isopropanol from aqueous solutions. Its reproducible and stable properties mean that the superhydrophobic filter paper is an ideal candidate for applications in the cleanup of oil pollutants and the separation of oil and water.
     3. Superhydrophobic and superoleophilic stainless steel mesh was also prepared with the above mentioned dip-coating approach. The surface coating with the weight ratio of H-SiO2 to PS 1:1 and thermally treated at 60℃showed a water contact angle of 154°and a sliding angle of 5°, with diesel oil spreading quickly on the modified surface. The as-prepared filter mesh was successfully used in separatiing oil-water mixtures and the separation efficiency was higher than 94.6% when the volume ratio of diesel oil to water was greater than 1:15.
引文
1 Nakajima A., Hashimoto K., Watanabe T., Recent Studies on Superhydrophobic Films, Monatsh. Chem., 2001, 132, 31-41
    2 Gao X., Jiang L., Water-repellent Legs of Water Striders, Nature, 2004, 432, 36-36
    3 Chen T H., Chuang Y J., Chieng C C., Tseng F G., A Wettability Switchable Surface by Microscale Surface Morphology Change, J. Micromech. Microeng., 2007, 17, 489-495
    4 Gras S L., Mahmud T., Rosengarten G., Mitchell A., Kalantarzadeh K., Intelligent Control of Surface Hydrophobicity, Chem. Phys. Chem., 2007, 8, 2036-2050
    5 Marmur A., The Lotus Effect: Superhydrophobicity and Metastability, Langmuir, 2004, 20, 3517-3519
    6 McHale G., Shirtcliffe N J., Newton M I., Contact-angle Hysteresis on Super-hydrophobic Surfaces, Langmuir, 2004, 20, 10146-10149
    7 Blossey R., Self-cleaning surfaces-virtual realities. Nat. Mater. 2003, 2, 301-306.
    8 Wenzel R N., Resistance of Solid Surfaces to Wetting by Water, Ind. Eng. Chem., 1936, 28, 988-994
    9 Cassie A B D., Baxter S., Wettability of Porous Surfaces, Trans. Faraday. Soc., 1944, 40, 546-551
    10 Jopp J., Grull H., Yerushalmi R., Wetting Behavior of Water Droplets on Hydrophobic Micro- textures of Comparable Size, Langmuir, 2004, 20, 10015-10019
    11 Bico J., Tordeux C., QuéréD., Wetting of Textured Surfaces, Colloids. Surf., 2002, 206, 41-46
    12 Feng L., Li S., Li H., et al., Super-hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers, Angew. Chem. Int. Ed., 2002, 41, 1221-1223
    13 Feng L., Yang Z., Zhai J., et al., Superhydrophobicity of Nanostructured Carbon Films in A Wide Rang of pH Values, Angew. Chem. Int. Ed., 2003, 42, 4217-4220
    14 Feng L., Song Y., Zhai J., et al., Creation of a Superhydrophobic Surface from an Amphiphilic Polymer, Angew. Chem. Int. Ed., 2003, 42, 800-802
    15 Jin M., Feng X., Feng L., et al., Superhydrophobic Aligned Polystyrene Nanotube Films with High Adhesive Force, Adv. Mater., 2005, 17, 1977-1981
    16金美花,冯琳,封心建,翟锦,江雷,白玉白,李铁津,阵列聚合物纳米柱膜的超疏水性研究,高等学校化学学报, 2004, 25, 1375-1377
    17 Sun M., Luo C., Xu L., et al., Artificial Lotus Leaf by Nanocasting, Langmuir, 2005, 21, 8978-8981
    18 Gu Z Z., Uetsuka H., Takahashi K., et a.l, Structural Color and The Lotus Effect, Angew. Chem. Int. Ed., 2003, 42, 894-897
    19 Lee W., Jin M K., Yoo W C., Lee J K., Nanostructuring of A Polymeric Substrate With Well- defined Nanometer-scale Topography and Tailored Surface Wettability, Langmuir, 2004, 20, 7665-7669
    20 Jiang W., Wang G., He Y., et al., Photoswitched Wettability on An Electrostatic Self- assembly Azobenzene Monolayer, Chem. Commun., 2005, 28, 3550-3552
    21 Jisr R M., Rmaile H H., Schlenoff J B., Hydrophobic and Ultrahydrophobic Multilayer Thin Films from Perfluorinated Polyelectrolytes, Angew. Chem. Int. Ed., 2005, 44: 782-785
    22 Zhao Y., Li M., Lu Q.H., Superhydrophobic Polyimide Films with a Hierarchical Topography: Combined Replica Molding and Layer-by-Layer Assembly, Langmuir, 2008, 24,12651-12657
    23 Han J T., Zheng Y., Cho K., et al., J. Phys. Chem., B, 2005, 109, 20773-20778
    24 Lim H S., Han J T., Kwak D., et al., Photoreversibly Switchable Superhydrophobic Surface with Erasable and Rewritable Pattern, J.Am.Chem.Soc., 2006, 128, 14458
    25 Minko S., Müller M., Motornov M., Two Level Structured Self-adaptive Surfaces With Reversibly Tunable Properties, J. Am. Chem. Soc., 2003, 125, 3896-3900
    26 Chen W., Fadeev A Y., McCarthy T J., et al., Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples, Langmuir, 1999, 15, 3395-3399
    27 Oner D., McCarthy T J., Ultrahydrophobic Surfaces: Effects of Topography Length Scales on Wettability, Langmuir, 2000, 16, 7777-7782
    28 Fresnais J., Chapel J P., Poncin-Epaillard F., Synthesis of Transparent Superhydrophobic Poly- ethylene Surfaces, Surf. Coat. Technol., 2006, 200, 5296-5305
    29 Jin M.H., Feng X J., Xi J M., et al., Super-Hydrophobic PDMS Surface with Ultra-Low Adhesive Force, Macromol. Rapid. Commun., 2005, 26, 1805-1809
    30 Kim S H., Kim J H., Kang B K., Uhm H S., Superhydrophobic CFx Coating via In-Line Atmo- spheric RF Plasma of He?CF4?H2, Langmuir, 2005, 21, 12213-12217
    31 Zhao N., Xie Q D., Xu J., et al., Superhydrophobic Surface from Vapor-induced Phase Separation of Copolymer Micellar Solution, Macromolecules, 2005, 38, 8996-8999
    32 Xie Q., Fan G.., Zhao N., et al., Facile Creation of A Bionic Super-hydrophobic Block Copolymer Surface, Adv. Mater., 2004, 16, 1830-1833
    33 Zhao N., Xu J., Xie Q., et al., Fabrication of Biomimetic Superhydrophobic Coating with A Micro- nano-binary Structure, Macromol. Rapid Commun., 2005, 26, 1075-1080
    34 Erbil H Y., Demirel A L., Avci Y., Mert O., Transformation of a Simple Plastic into a Super- hydrophobic Surface, Science, 2003, 299: 1377-1380
    35 Lu X Y., Zhang C C., Han Y C., Low-Density Polyethylene Superhydrophobic Surface by Control of Its Crystallization Behavior, Macromol. Rapid Commun., 2004, 25, 1606-1610
    36 Li X., Chen G., Ma Y M., Preparation of A Super-hydrophobic Poly (vinyl chloride) Surfacevia Solvent–nonsolvent Coating, Polymer, 2006, 47, 506-509
    37 Peng M., Li H., Wu L., et al., Porous Poly (Vinylidene Fluoride) Membrane with Highly Hydro- phobic Surface, J. Appl. Polym. Sci., 2005, 98, 1358-1363
    38 Ma Y., Cao X Y., Feng X J., et al., Fabrication of Super-hydrophobic Film from PMMA with Intrinsic Water Contact Angle below 90 (degree), Polymer, 2007, 48, 7455-7460
    39 Vogelaar L., Lammertink R G H., Wessling M., Superhydrophobic Surfaces Having Two-fold Adjustable Roughness Prepared in A Single Step, Langmuir, 2006, 22, 3125-3130
    40 Jiang L., Zhao Y., Zhai J., A Lotus-leaf-like Superhydrophobic Surface: A Porous Microsphere/ Nano Fiber Composite Film Prepared by Electrohydrodynamics, Angew. Chem. Int. Ed., 2004, 43, 4338-4341
    41 Zhu Y., Zhang J., Zheng Y., Huang Z., Feng L., Jiang L., Stable Superhydrophobic and Conductive Polyaniline/polystyrene Films for Corrosive Environments, Adv. Funct. Mater., 2006, 16, 568-574
    42 Zhu Y., Zhang J., Zhai J.,et al, Multifunctional Carbon Nanofibers with Conductive, Magnetic and Superhydrophobic Properties, ChemPhysChem., 2006, 7, 336-341
    43 Acatay K., Simsek E., Menceloglu Y Z., et al., Angew. Chem. Int. Ed., 2004, 43, 5210-5213
    44 Zheng J., He A., Li J., Xu J., Han C C., Studies on The Controlled Morphology and Wettability of Polystyrene Surfaces by Electrospinning or Electrospraying, Polymer, 2006, 47, 7095-7102
    45 Zhu M F., Zou W., Yu H., et al., Superhydrophobic Surface Directly Created by Electrospinning Based on Hydrophilic Material, J. Mater. Sci., 2006, 41, 3793-3797
    46 Singh A., Steely L., Allcock H. R., Poly[bis(2,2,2-trifluoroethoxy)phosphazene] Superhydrophobic Nanofibers, Langmuir, 2005, 21, 11604-11607
    47 Ma M., Hill R M., Lowery J L.,et al., Electronspun Poly(styrene-block-dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity, Langmuir, 2005, 21, 5549-5554
    48 Shang H M., Wang Y., Limmer S J.,et al., Optically Transparent Superhydrophobic Silica-based Films, Thin Solid Films, 2005, 472, 37-43
    49郭志光,周峰,刘维民,溶胶凝胶法制备仿生超疏水性薄膜,化学学报,2006, 64, 761-766
    50 Hikita M., Tanaka K., Nakamura T., et al., Super-liquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl Groups, Langmuir, 2005, 21, 7299-7302
    51 Han J T., Lee D H., Ryu C Y., Cho K., Fabrication of Superhydrophobic Surface from A Supramolecular Organosilane with Quadruple Hydrogen Bonding, J. Am. Chem. Soc., 2004, 126, 4796-4797
    52 Rao A V., Kulkarni M M., Amalnerkar D P., Seth T., Superhydrophobic Silica Aerogels Based on Methyltrimethoxysilane Precursor, J. Non-Cryst. Solids., 2003, 330, 187-195
    53 Shirtcliffe N J., McHale G., Perry C C., Intrinsically Superhydrophobic Organosilica Sol-Gel Foams, Langmuir, 2003, 19, 5626-5631
    54 Wang S., Feng L., Jiang L., One-step Solution-immersion Process for The Fabrication of Stable Bionic Superhydrophobic Surfaces, Adv. Mater., 2006, 18, 767-770
    55 Zhang X., Shi F., Yu X., et al., Polyelectrolyte Multilayer as Matrix for Electrochemical De- position of Gold Clusters: Toward Super-hydrophobic Surface, J. Am. Chem. Soc., 2004, 126, 3064-3065
    56 Zhang H., Lamb R., Lewis J., Engineering nanoscale roughness on hydrophobic surface-pre- liminary assessment of fouling behaviour, Science and Technology of Advanced Materials, 2005, 6, 236-239
    57 Liu H., Feng L., Zhai J., et al., Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film Between Superhydrophobicity and Superhydrophilicity, Langmuir, 2004, 20, 5659-5661.
    58 Wang S T., Song Y L,, Jiang L., Microscale and Nanoscale Hierarchical Structured Mesh Films with Superhydrophobic and Superoleophilic Properties Induced by Long-chain Fatty Acids, Nanotechnology, 2007, 18, 1-5
    59 Pan Q. M., Wang M., Wang H. B., Separating small amount of water and hydrophobic solvents by novel superhydrophobic copper meshes,Applied Surface Science 2008, 254, 6002.
    60 Ma M., Hill R M., Lowery J L., et al., Electrospun Poly(Styrene-block-dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity, Langmuir, 2005, 21, 5549-5554
    61 Pilotek S., Schmidt H K., Wettability of Microstructured Hydrophobic Sol-Gel Coatings, J. Sol–Gel. Sci. Technol., 2003, 26 ,789-792
    62 Satoh K., Nakazumi H., Morita M., Preparation of Super-Water-Repellent Fluorinated Inorganic- Organic Coating Films on Nylon 66 by the Sol-Gel Method Using Microphase Separation, J. Sol–Gel Sci. Technol., 2003, 27,327-332
    63 Daoud W A., Xin J H., Tao X M., Superhydrophobic Silica Nanocomposite Coating by A Low- temperature Process, J. Am. Ceram. Soc., 2004, 87 ,1782–1784
    64 Xue C H., Jia S T., Zhang J., Tian L Q., Preparation of Superhydrophobic Surfaces on Cotton Textiles, Sci. Technol. Adv., Mater. 2008, 9, 1-7
    65 Yua M H., Gua G T., Menga W D., Qing F L., Superhydrophobic Cotton Fabric Coating Based on A Complex Layer of Silica Nanoparticles and Perfluorooctylated Quaternary Ammonium Silane Coupling Agent, Applied Surface Science, 2007, 253, 3669-3673
    66 Watanabe K., Yanuar., Udagawa H., Drag Reduction of Newtonian Fluid in A Circular Pipewith A Highly Water-repellent Wall, J. Fluid Mech., 1999, 381, 225-238
    67 Kim J., Kim C J., Proceedings of the IEEE Conference MEMS, LasVegas, NV, IEEE, New York, 2002, 479.
    68 Ou J., Rothstein J P., Direct Velocity Measurements of The Flow Past Drag-reducing Ultra- hydrophobic Surfaces, Phys. Fluids., 2005, 17, 103606:1-10
    69 Fukagata K., Kasagi N., Koumoutsakos P., A Theoretical Prediction of Friction Drag Reduction in Turbulent Flow by Superhydrophobic Surfaces, Phys. Fluids., 2006,18, 051703
    70 Su B., Li M., Lu Q.H., Towards Understanding Whether Superhydrophobic Surfaces Can Really Decrease Fluidic Friction Drag, Langmuir, In Press.
    71 Zhang F Z., Zhao L L., Chen H Y., et al., Corrosion Resistance of Superhydrophobic Layered Double Hydroxide Films on Aluminum, Angew. Chem. Int. Ed., 2008, 47, 2466-2469
    72 Yabu H., Shimomura M., Single-step Fabrication of Transparent Superhydrophobic Porous Poly- mer Films, Chem. Mater., 2005, 17, 5231-5234
    73 Hong X., Gao X., Jiang L., Application of Superhydrophobic Surface With High Adhesive Force in No Lost Transport of Superparamagnetic Microdroplet, J. Am. Chem. Soc., 2007, 129, 1478-1479
    74 Li W Z., Wang X, Chen Z W., Waje M., Yan Y., Carbon Nanotube Film by Filtration as Cathode Catalyst Support for Proton-Exchange Membrane Fuel Cell, Langmuir, 2005, 21,9386-9389
    1.于毅冰,刘莲英,孙玉凤,何辰凤,杨万泰,多官能单体TMPTA在LDPE表面光接枝聚合研究高分子学报, 2006, 3, 455-460
    2. Gao X. F., Jiang L., Water-repellent Legs of Water Striders, Nature, 2004, 432, 36-36
    3. Chen T. H., Chuang Y. J., Chieng C. C. et al. A Wettability Switchable Surface By Microscale Surface Morphology Change, J. Micromech. Micro.Eng, 2007, 17,489-495
    4. SallyL.G., Tanveer M., Gary R. G., et al., Intelligent Control of Surface Hydrophobicity, ChemPhysChem, 2007, 8, 2036- 2050
    5.谷国团,张治军,党鸿辛,一种可溶性低表面自由能聚合物的制备及其表面性质,高分子学报, 2002,6, 770-774
    6. Xi J. M., Jiang L. Biomimic Superhydrophobic Surface with High Adhesive Forces, Ind. Eng. Chem. Res., 2008, 47, 6354–6357
    7. Tu C. W., Tsai C. H., Wang C. F., Fabrication of Superhydrophobic and Superoleophilic Polystyrene Surfaces by a Facile One-step Methods, Macromol. Rapid Commun. 2007, 28, 2262–2266
    8. Xu W. G., Liu H. Q., Lu S. X., Fabrication of Superhydrophobic Surfaces with Hierarchical Structure through a Solution-Immersion Process on Copper and Galvanized Iron Substrates, Langmuir, 2008, 24,10895-10900
    9. Sun T. L., Feng L., Gao X. F., Jiang L., Bioinspired Surfaces With Special Wettability, Acc. Chem. Res., 2005, 38,644-652
    10. Zhao N., Xu J., Xie Q. D., et al. Fabrication of Biomimetic Superhydrophobic Coating With a Mirco-nano-binary Structure, Macromol. Rapid. Commun. 2005, 26, 1075-1080
    11. Shiu J. Y., Kuo C. W., Chen P. L., et al., Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography, Chem. Mater.,2004,16,561-564
    12. Minko S., Müller M., Motornov M., Reversible Chemical Patterning on Stimuli-Responsive Polymer Film: Environment-Responsive Lithography, J. Am. Chem. Soc. 2003, 125, 3896-3900
    13. Dhindsa M.S., Smith N.R., Heikenfeld J., Reversible Electrowetting of Vertically Aligned Superhydrophobic Carbon Nanofibers, Langmuir, 2006,22, 9030- 9034
    14. Yu X., Wang Z. Q., Jiang Y. G., et al., Reversible PH-responsive Surface: From Superhydrophobicity to Superhydrophilicity, Adv.Mater, 2005,17, 1289-1293
    15. Zhang J. L., Han Y. C., Superhydrophobic PTFE Surfaces by Extension, Macromol. Rapid Commun, 2004, 25, 1105-1108
    16. Zhang J. L., Lu X. Y., Huang W. H., et al., Macromol. Rapid Commun. , 2005, 26, 477-480
    17. Lahann J., Mitragotri S., Tran T. N., A Reversibly Switching Surface, Science, 2003,299, 371-374
    18. Zhao Y., Lu Q. H., Chen D. S., Superhydrophobic modification of polyimide films based on gold-coated porous silver nanostructures and self-assembled monolayers, J. Mater. Chem., 2006, 16, 4504-4509
    19. Xu J. H., Li M., Zhao Y.,et al. Phase Transformation and Textual Properties of an Unpromoted Iron Fisher-Tropsch Catalyst, Colloids Surf. A: Physicochem.Eng. Aspects, 2007, 302,136- 140
    20. Li M., Xu J. H., Lu Q. H., Creating Superhydrophobic surfaces with flowery structures on nickel substrates through a wet-chemical-process J.Mater.Chem., 2007, 17, 1-6
    21. Luo Z. Z., Zhang Z. Z., Hu Litian, et al. Stable Bionic Superhydrophobic Coating Surface Fabricated by a Conventional Curing Process Adv. Mater. 2008, 20, 970-974.
    1. Lenz, P. Wetting Phenomena on Structured Surfaces, Adv. Mater. 1999, 11, 1531-1534.
    2. Yoo, D.; Shiratori, S. S.; Rubner, M. F. Controlling Bilayer Composition and Surface Wettability of Sequentially Adsorbed Multilayers of Weak Polyelectrolytes, Macromolecules 1998, 31, 4309-4318.
    3. Neinhuis, C.; Barthlott, W. The Lotus Effect: Superhydrophobicity and Metastability, Ann. Bot. (Lond.) 1997, 79, 667-677.
    4. Barthlott, W.; Neinhuis, C. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces, Plata 1997, 202, 1.
    5. Gao, X.F.; Jiang, L. Water-repellent Legs of Water Striders, Nature 2004, 432, 36-36.
    6. Parker, A. R.; Lawrence, C. R. Water Capture by a Desert Beetle, Nature 2001, 414, 33-34.
    7. Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Adv. Mater. 1999, 11, 1365-1367.
    8. Herminghaus, S. Europhys. Lett. 2000, 52, 165-170.
    9. Wenzel, R. N. Ind. Eng. Chem. 1936, 28, 988.
    10. Cassie, A. B. D. Discuss. Faraday Soc. 1948, 3, 11.
    11. Tadanaga, T.; Morinaga, J.; Matsuda, A.; Minami, T. Chem. Mater. 2000, 12, 590-592.
    12. Nakajima, A.; Hashimoto, K.; Watanabe, T.; Takai, K.; Yamauchi, G.; Fujishima, A. Transparent Superhydrophobic Thin Films with Self-cleaning Properties, Langmuir 2000, 16, 7044-7047.
    13. Genzer, J.; Efimenko, K. On Designing and Creating Long-lived Superhydrophobic Surfaces, Science 2000, 290, 2130-2133.
    14. Erbil, H. Y.; Demirel, A. L.; Avci, Y.;et al. Control over the Wettability of an Aligned Carbon Nanotube Film, Science 2003, 299, 1377-1380.
    15. Woodward, I.; Schofield, W. C. E.; Roucoules, C.; et al. Super-hydrophobic Surfaces Produced by Plasma Fluorination of Polybutadiene Films, Langmuir 2003, 19, 3432-3438.
    16. Levkin, P. A.; Svec, F.; Fréchet, J. M. J. Porous Polymer Coatings: A Versatile Approach to Superhydrophobic Surfaces, Adv. Funct. Mater. 2009, 19, 1993-1998.
    17. Cheng, Y.; Rodak, D. E. Microscopic Observations of Condensation of Water on Lotus Leaves, Appl. Phys. Lett. 2005, 86, 144101.
    18. Feng, L.; Zhang, Z. Y.; Mai, Z. H.; et al. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water, Angew. Chem. Int. Ed. 2004, 43, 2012-2014.
    19. Wang, C. X.; Yao, T. J.; Wu, J.; et al. Facile Approach in Fabricating superhydrophobic and Superoleophilic Surface for Water and Oil Mixture Separation, ACS Appl. Mater. Interfaces 2009, 1, 2613-2617.
    1. Lenz, P. Wetting Phenomena on Structured Surfaces, Adv. Mater. 1999, 11, 1531-1534.
    2. Yoo, D.; Shiratori, S. S.; Rubner, M. F. Controlling Bilayer Composition and Surface Wettability of Sequentially Adsorbed Multilayers of Weak Polyelectrolytes, Macromolecules 1998, 31, 4309-4318.
    3. Neinhuis, C.; Barthlott, W. The Lotus Effect: Superhydrophobicity and Metastability, Ann. Bot. (Lond.) 1997, 79, 667-677.
    4. Barthlott, W.; Neinhuis, C. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces, Plata 1997, 202, 1.
    5. Gao, X.F.; Jiang, L. Water-repellent Legs of Water Striders, Nature 2004, 432, 36-36.
    6. Parker, A. R.; Lawrence, C. R. Water Capture by a Desert Beetle, Nature 2001, 414, 33-34.
    7. Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Adv. Mater. 1999, 11, 1365-1367.
    8. Herminghaus, S. Europhys. Lett. 2000, 52, 165-170.
    9. Wenzel, R. N. Ind. Eng. Chem. 1936, 28, 988.
    10. Cassie, A. B. D. Discuss. Faraday Soc. 1948, 3, 11.
    11. Tadanaga, T.; Morinaga, J.; Matsuda, A.; Minami, T. Chem. Mater. 2000, 12, 590-592.
    12. Nakajima, A.; Hashimoto, K.; Watanabe, T.; Takai, K.; Yamauchi, G.; Fujishima, A. Transparent Superhydrophobic Thin Films with Self-cleaning Properties, Langmuir 2000, 16, 7044-7047.
    13. Genzer, J.; Efimenko, K. On Designing and Creating Long-lived Superhydrophobic Surfaces, Science 2000, 290, 2130-2133.
    14. Erbil, H. Y.; Demirel, A. L.; Avci, Y.;et al. Control over the Wettability of an Aligned Carbon Nanotube Film, Science 2003, 299, 1377-1380.
    15. Woodward, I.; Schofield, W. C. E.; Roucoules, C.; et al. Super-hydrophobic Surfaces Produced by Plasma Fluorination of Polybutadiene Films, Langmuir 2003, 19, 3432-3438.
    16. Levkin, P. A.; Svec, F.; Fréchet, J. M. J. Porous Polymer Coatings: A Versatile Approach to Superhydrophobic Surfaces, Adv. Funct. Mater. 2009, 19, 1993-1998.
    17. Cheng, Y.; Rodak, D. E. Microscopic Observations of Condensation of Water on Lotus Leaves, Appl. Phys. Lett. 2005, 86, 144101.
    18. Feng, L.; Zhang, Z. Y.; Mai, Z. H.; et al. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water, Angew. Chem. Int. Ed. 2004, 43, 2012-2014.
    19. Wang, C. X.; Yao, T. J.; Wu, J.; et al. Facile Approach in Fabricating superhydrophobic and Superoleophilic Surface for Water and Oil Mixture Separation, ACS Appl. Mater. Interfaces 2009, 1, 2613-2617.
    1. Wenzel, R. N. Ind. Eng. Chem. 1936, 28, 988.
    2. Cassie, A. B. D. Discuss. Faraday Soc. 1948, 3, 11.
    3. Cheng, Y.; Rodak, D. E. Microscopic Observations of Condensation of Water on Lotus Leaves, Appl. Phys. Lett. 2005, 86, 144101.
    4. Feng, L.; Zhang, Z. Y.; Mai, Z. H.; et al. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water, Angew. Chem. Int. Ed. 2004, 43, 2012-2014.
    5. Pan, Q. M.; Wang, M.; Wang, H. B. Separating Small Amount of Water and Hydrophobic Solvents by Novel Superhydrophobic copper meshes, Appl. Surf. Sci. 2008, 254, 4786-4792.
    6. Wang, C. X.; Yao, T. J.; Wu, J.; et al. Facile Approach in Fabricating superhydrophobic and Superoleophilic Surface for Water and Oil Mixture Separation, ACS Appl. Mater. Interfaces 2009, 1, 2613-2617.
    7. Li M., Xu J. H., Lu Q. H., Creating Superhydrophobic surfaces with flowery structures on nickel substrates through a wet-chemical-process J.Mater.Chem., 2007, 17, 1-6 ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700