用户名: 密码: 验证码:
新型内循环三相生物流化床气液传质特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内循环三相生物流化床是一种新型的生物处理技术,它将传统的活性污泥法和生物膜法有机结合并引入化工流态化技术,具有高负荷、高效率等特点,被认为是最具发展前途的污水处理技术之一。本文研制了一种内置静态混合器改进型内循环三相流化床(有效体积为94L),对其流体力学与氧传质特性进行了研究,总结归纳了主要物性因素、反应器性能参数气含率、液体循环速度及氧转移系数与结构参数的相关性,并对粉煤灰载体进行了尺寸优选和表面处理。试验结果表明:
     与普通内循环三相流化床相比较,在相同的试验范围内,改进型流化床上升区气含率ε_r、氧转移系数厅K_La、氧转移效率E_A和氧转移动力效率E_P均有显著提高,而液体循环流量则有所减小。用廉价的粉煤灰作为生物载体具有可行性,0.13~0.45mm是理想粒径范围,表面处理可以有效改善载体性能。
     本研究所得反应器较优结构参数和操作条件为:导流筒内径d=5.5cm,静态混合单元数n=10~13,表观气速U_g=16~22cms~(-1)。在此条件下,反应器流体力学和气液传质主要参数为:ε_r=16.21~20.68%,表观液速U_(Lr)=14.81~17.37cms~(-1),静态混合器局部摩擦阻力系数K_r=163.7~257.9,K_La=0.465~0.778min~(-1),E_A=39.16~48.81%,E_P=3.21~4.00 kgO_2(kWh)~(-1)。
     本研究结果对反应器的结构放大和实际运行操作具有重要的参考价值。
Internal-loop three-phase biological fluidized bed is a new type biological treatment technology. It integrates conventional activated sludge wastewater treatment process and biofilm process and utilized chemical engineering fluidized technique. Characterized as high loading and high efficiency, it is regarded as one of the most prospective biological treatment technique in the field of water pollution control.
    In this paper, a modified internal-loop three-phase fluidized bed (MITFB) whose draft tube was equipped with static mixers was developed. The effective volume of the experimented reactor is 94 liter. The reactor was performed for air-water system. The characteristics of hydrodynamics and oxygen mass transfer were investigated in MITFB. The effects of physical, structural and operating parameters on gas holdup, liquid circulation velocity and volumetric mass transfer of oxygen were also studied.
    It was bound from experiments that liquid circulation velocity, gas holdup and mass transfer coefficient increase with increase in the airflow rate. Compared with performance in conventional internal-loop three-phase fluidized bed (CITFB), the gas holdup in the riser (Er) obviously increased and average volumetric mass transfer coefficient (KLa), mass transfer efficiency (EA), mass transfer power efficiency (Ep) in MITFB increased by 21.8% to 41.5% respectively, whereas liquid circulation flow rate in MITFB decreased.
    
    
    
    The experiments performed on the optimum diameter and surface treatment of the carrier (fly ash) indicated that the optimum diameter is 0.13 to 0.45mm and the surface treatment can effectively improve the characteristics of the carrier.
    The optimum structure parameters and function conditions in this study are as follow: inside diameter of draft tube d = 5.5cm, number of static mixers n=10-13, superficial gas velocity Ug = 16-22cms-1. Under these circumstances, some characteristic parameters of the reactor are as follow: Er= 16.2120.68%, liquid circulation velocity in riser ULr=14.81-17.37cms-1, frictional loss coefficient of static mixers Kr= 163.7-257.9, KLa = 0.465-0.778min-1,EA =39.16-48.81%,
    The results can offer theoretical and practical foundation for the engineering scale-up and performances of the reactor.
引文
1.钱易,米祥友主编.现代废水处理新技术[M].北京:中国科学技术出版社,1993:1-10
    2.辛亮明等.用三相生物流化床处理炼油废水[J].化工环保,1986,6(4):193-199
    3.韦朝海等.生物好氧流化床废水处理技术研究进展[J].环境科学与技术,1998,(4):5.
    4.[美]L.S.Fan著,蔡平等译.气液固流态化工程.北京:中国石化出版社,1990
    5.室山胜彦.生物膜付着活性炭粒子用流动層好性水处理操作解析[J].水处理技术,1985,26(3):149-158.
    6.保坂幸尚等.流动層生物学的水处理(3)[J].化学装置,1986,28(4):102
    7. P. F. Cooper, et al. Fluidized and Expanded Bed Reactors for wastewater Treatment[J]. Wat. Pollut. Control., 1980, 286-300.
    8.王世和等.生物流化床水处理基本特性研究[J].中国环境科学,1991,11(4):290-295.
    9.王世和等.好氧流化床处理含酚废水的基本特性分析[J].中国给水排水,1991,7(5):3-8
    10. Kargi, F. et al. Optimal biofilm thickness for fluidized-bed biofilm reactors [J]. J. Chem. Tech. Biotechnol., 1982, 32(7): 743-748
    11.周平等.内循环三相生物流化床反应器的相含率及氧传递特性研究[J].环境科学学报,1996,16(2):211
    12.周定等.固定化微生物法处理含酚废水的研究[J].环境科学,1990,11(1):2-5
    13. Oppelt. et al. Biological Fluidized Bed Treatment of Water and Wastewater [M]. Ellis Horwood Limited Publishers, edited by P. F. Cooper, 1981: 165.
    14. G. Hoyland. Aerobic Treatment in 'Oxitron' Biological Fluidized Bed Plant at Coleshill[J]. Wat. Pollut. Control., 1983, 82(4): 479.
    15. P. F. Cooper. Complete Treatment of Sewage in a Two-Stage Fluidized-Bed System Plart 1[J]. Wat. Pollut. Control., 1982, 81(4): 447.
    16.崔连起等.生物流化床法处理废水技术发展概况[J].兰化科技,1986,4(1):47-52.
    17.Koch, B. et al. Sand and activated carbon as biofilm carriers for microbial degradation of phenols and nitrogen-containing aromatic compounds[J]. Wat. Res., 1991, 25(1): 1
    
    
    18. Thomas, C. V. et al. Biological activated carbon in fluidized bed reactors for the treatment of groundwater contaminated with volatile aromatic hydrocarbons [J]. Wat. Res., 1992, 26(10): 1389-1401
    19. Jing. S. et al. Role of adsorption in granular activated carbon-fluidized bed reactors [J]. Wat. Environ. Res., 1995, 67: 302
    20. Imai A. et al. Removal of refractory organics and nitrogen from landfill leachate by the microorganism-attached activated carbon fluidized bed process [J]. Wat. Res., 1993, 27(1): 143-145
    21. Daniel E. Edwards, et al. Laboratory-scale evaluation aerobic fluidized bed reactor for the biotreatment of a synthetic, high-strength chemical industry waste stream [J]. Wat. Environ. Res., 1994, 66(1): 70-83
    22. Ouyang C. F. et al. Activated carbon based biological fluidized beds for contaminated water and wastewater treatment [J]. Wat. Sci. Technol., 1994, 29 (10-11): 183
    23.李探微等.气升式循环反应器生物载体的选择[J].污染防治技术,1999,12(4):231-232
    24.林怡辉等.采用新型载体的好氧流化床的动力学研究[J],环境技术,1999,(3):33-35
    25.梁伯庆等.加压曝气生物流化床研究[J].化工环保.1990,10(5):258
    26.Puhakka. J. A. et al. Aerobic fluidized-bed treatment of polychlorinated phenolic wood preservative constituents [J]. Wat. Research., 1992, 26(6): 765-770
    27.张金利等.生物流化床法处理高浓度含酚废水的研究[J].化学反应工程与工艺,2001, 17(2): 148-151
    28. C. T. M. J. Frijter, et al. Extensive nitrogen removal in a new type of airlift reactor [J]. Wat. Sci. Tech., 2000, 41(3-5): 469-476
    29. M. C. M. van loosdrecht, et al. Integration of nitrification and denitrification in biofilm airlift suspension reactors [J]. Wat. Sci. Tech., 2000, 41(3-5): 97-103
    30.栾金义等.复合生物流化床处理淀粉废水.第五届全国流态化会议文集.1990年4月:383-387
    
    
    31.何卫中等.好氧生物流化床反应器处理有机废水技术进展[J].化工环保,1999,19(5):278-283
    32.赵兴利等.固定化微生物流化床反应器的研究进展[J].环境科学,1997,13(1):33-35
    33.多田実等.固定化微生物用硝化促进型循环变法窒素処理[J].环境技术,1991,20(3):205
    34.角野立夫等.包括固定化微生物用排水処理.特集/最新[J].廃水処理技术(2).用水廃水,1990.34(11):27
    35.李月中等.固定化微生物细胞法处理含氰废水的研究[J].上海环境科学,1991,10(12):2
    36.欧阳平凯等.固定化细胞处理乙醛和醋酸废水的研究[J].环境工程,1993,11(4):3
    37.周平等.内循环生物流化床处理石化废水的中试研究[J].环境科学,1997,18(1):26-29
    38.夏毓荣等.生物流化床-固定床两段生化处理试验研究[J].化工环保,1983,3(4):184
    39.耿艳楼等.生物流化床在焦化废水治理中的应用[J].环境工程,1999,17(3):11-13
    40.叶正芳等.曝气生物流化床(ABFB)处理煤气化废水的研究[J].中国环境科学,2002,22(1):32-35
    41.蔡建安等.三相气提升循环流化床处理焦化废水[J].水处理技术,1997,23(2):110-114
    42.贾立敏等.气提式反应器在油脂废水处理中的应用[J].给水排水,1999,25(5):25-28
    43.张金利等.活性污泥法在喷射鼓泡环流三相反应器中处理染料废水的研究[J].化学反应工程与工艺.2000,16(1):19-22
    44.郑平等.气提式内循环生物反应器处理高浓度含氨废水的研究[J].浙江大学学报(农业与生命科学版),2001,27(1):23-27
    45. Hickey, R. F. et al [J]. US 4177144
    46. Green, M. K. et al. Development of a high-rate nitrification fluidized-bed process [J]. Wat. Pollut. Control., 1985, (2): 43-55
    47. Heijnen. J. J. US 4618418
    48.疏明君等.内循环好氧三相流化床处理造纸中段废水[J].工业水处理,2002,22(5):23-27
    49.谢澄等.生物流化床—化学絮凝法处理纸浆漂白废水[J].工业用水与废水,2002。
    
    33 (1): 27-30
    50. JAAKKO. A. PUHAKKA et al. Aerobic fluidized bed treatment of polychlorinated phenolic wood reservative constituents [J]. Wat. Res., 1992, 26(6): 765-770
    51. M. FAHMY et al. Anaerobic-aerobic fluidized bed biotreatment of sulphite pulp bleaching effluents [J]. Wat. Res., 1994, 28(9): 1987-2010
    52.何强等.三相生物流化床处理屠宰废水中试研究[J].重庆建筑工程学院学报,1994,16(4):67-71
    53. Gavrilescu M et al. Mixing times in an external-loop airlift bioreactor with static mixers [J]. Acta. Biotechnol., 1996, 16(2-3): 145-153,
    54. Gavrilescu M et al. Intensification of transfer processes in biotechnology and chemical engineering using static mixers [J]. Acta. Biotechnol., 1995, 15(1): 3-26
    55.韦朝海等.生物三相流化床结构特征及性能影响分析[J].化工时刊,2001.(4):4~8.
    56.彭党聪等.内循环生物流化床水力及生物硝化特性研究[J].中国给水排水,1999,15(5):16~19
    57.韦朝海等.三重环流生物流化床的流体力学与传质特性[J].化学反应工程与工艺,1999.15(2):166~173.
    58. Chaohai Wei. et al. Hydrodynamics in an internal loop airlift reactor with a convergence-divergence draft tube [J]. Chem. Eng. &Tech., 2000, 23(1): 38-45
    59. Xiaoping Lu. et al. Comparison of the hydrodynamics and mass transfer characteristcs of a modified square airlift reactor with common airlift reactors[J]. Chem. Eng. Sci, 2000, 55: 2257~2263
    60.许贤华等.198L分段式内循环气升式反应器混合特性的研究[J].食品与机械,1999,3:15-16
    61.陈钺等.内溢流式工业环流反应器的流体力学和传递性能[J].化学反应工程与工艺,1999.15(3):243~248
    62. Kawagoe Mikio. et al. Radial liquid velocity distribution in an externa1-loop airlift column with a tapered riser [J]. Canadian Journal of Chem. Eng., 1999, 77: 811-815
    
    
    63.龟原新吾著,王德成,马尔东译.静态混合器[M].北京:纺织工业出版社,1985
    64.陈晓春等.新型静态混合器的数值模拟比较研究[J].给水排水,2002,28(9):66-69
    65.姜信真.气液反应理论与应用基础[M],烃加工出版社,1989
    66.韩威等.气升式环流反应器中气含率的研究[J].化工学报,1985,2:25
    67.汪叔雄等.隔板式环流反应器研究[J].化学反应工程与工艺,1992,8(3):287-296
    68.刘永民等.多管气升式环流反应器的流体动力学[J].石油化工,2001,30(4):289-292
    69. Chisti. M. Y. et al. liquid circulation in airlift reactors [J]. Chem. Eng. Sci., 1988, 43(3): 451-457
    70.许保玖.当代给水与废水处理原理(第二版)[M].北京:高等教育出版社,2000
    71.张元兴,许学书.生物反应器工程[M].上海:华东理工大学出版社,2001:93-120
    72.晏波,新型内循环生物流化床处理生活污水,[硕士学位论文],四川大学,2001
    73.崔鹏等.三相流化床中光催化降解反应特性的研究[J].高校化学工程学报,2002,16(1):53-57
    74.罗运柏等.烟气脱硫三相流化床反应器的数学模拟与预测放大[J].化工学报,2002,53(2):122-127
    75.谢嘉等.水污染控制原理[M].成都:成都科技大学出版社,1994:190-204
    76.谢波等.缩放型导流筒气升式内环流生物反应器流体力学与传质特性[J].高校化学工程学报,1999,13(2),121-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700