用户名: 密码: 验证码:
新型多孔无机生物载体开发及应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物膜系统是与活性污泥系统并行发展的生物处理工艺,其中载体费用高、挂膜周期长是其应用中的主要问题。本研究选取资源丰富、价格低廉的珍珠岩为原料,试验开发出一种新型多孔轻型无机载体,并将该载体应用于紊动床生物膜反应器和复合式生物滤床。
     现有的紊动床生物膜反应器的主要特点是生物膜生长在悬浮载体的内表面上,载体尺寸较大,填充率较高(达70%),有关填充率对紊动床生物膜反应器的影响及生物膜脱附机理的研究很少。本试验开发的新型多孔载体利用外表面积,中等尺寸,试验在载体性能检测的基础上,首先进行了填充率对紊动床生物膜反应器的影响及效能研究;其次进行了紊动床反应器生物膜脱附机理研究;同时,将小粒径悬浮载体XEG-5应用于紊动床反应器研究其运行效果,以期为悬浮载体开发提供方向;最后将新型载体应用于复合式生物滤床中,主要进行了除碳和脱氮除碳的探索性试验。论文主要研究结果如下:
     (1) 载体加工过程中,焙烧是最关键的环节,温度与时间是最主要的影响因素。在合适的焙烧条件下,珍珠岩可形成表面粗糙、多孔(孔尺寸10μm左右)、适合于微生物附着的优良生物载体。该载体湿密度为1.102g/mL,接近于水的密度,易于紊动。
     (2) 填充率和紊动强度是影响紊动床生物膜反应器中生物膜厚度、结构以及活性的主要因素。紊动强度不变时,在10%、20%和30%的填充率下,生物膜厚度随着填充率的增大而减小,而生物膜活性则随着填充率的增大而提高。利用载体外表面的紊动床生物膜反应器,生物膜脱落为碰撞引起的连续过程,生物膜更新快,厚度小(<400μm),有利于DO和基质的渗透。当填充率为5%时,在短HRT、高负荷条件下,形成了生物膜与颗粒污泥共存的混合系统。
     (3) 应用XEG-5载体的序批式紊动床生物膜反应器,连续4个月的运行结果表明:反应器中生物膜为补丁膜,微生物呈现生物膜与活性污泥共存的特征,造
Although biofilm process is widely applied in municipal and industrial wastewater treatment, there are still some problems related to the process such as high initial investment and long start-up time. A porous biofilm supporter called perilite was first developed, which was cheap and rich in China. Then, the property of the carrier was investigated. Finally, the application of the carrier was researched. The main conclusions were gained as follows:(1) Roasting is the most important step and the factors influencing the quality of the carrier are roasting temperature and duration. Lower density carrier with coarse and porous surface can be developed under the condition of proper temperature and time.(2) Biofilm thickness, structure and activity were mainly influenced by package ratio and turbulent intensity in MBBR (moving bed biofilm reactor) with carrier of outer surface to be utilized. Biofilm thickness decreased and activity increased when package ratio was enhanced among 10%, 20% and 30% at the same turbulent intensity. The detachment in this MBBR was a continuous process, which was controlled by the collision of the carriers. Because of high detachment rate biofilm was thin (<400 μm) in this experiment, which favored diffusion of DO and other substrates. However granular sludge was formed in reactor with 5% package ratio when high COD loading rate and short HRT were executed.(3) The patchy biofilm dominated in Batch MBBR when XEG-5 carrier was used. At the same time the carrier wrapped in the sludge was frequently washed out from the reactor with the wasted sludge. So it seemed that small carrier was not fit for MBBR.(4) The mechanism of the biofilm detachment in MBBR was abrasion caused by the collision between carriers. The detachment rate from abrasion could be described by combination of collision frequency with energy required to produce a new surface as crystal formation. The relationship between the specific detachment rate r and the
    package ratio n and energy input G for a MBBR reactor filled with carriers of the average diameter d can be expressed as: r = η ·nd~3G~(3/2). The result of experiment showed that specific detachment rate was approximately consistent with the prediction in theory. So the detachment rate in MBBR could be controlled by change of package ratio and energy input in practical operation.(5) Hybrid biofilter with porous carrier united the characters of activated sludge and biofilter, which could make use of both advantages. No clog was found during 220 days operation and COD removal efficiency was above 80% under the organic loading of 4kgCOD/m~3·d.
引文
[1] Lazarova, V. and Manem. Biofilm characterization and activity analysis in water and wastewater treatment [J]. Wat. Res., 1995, Vol 29: 2227-2245.
    [2] P. A. Wilderer and W. G. Characklis. Structure and function of biofilms [M]. John Wiley & Sons Ltd, 1989: 5-17.
    [3] Maarten A. Siebel and William G. Characklis. Observations of binary population biofilms [J]. Biotechnology and Bioengineering., 1991.Vol. 37: 778-789.
    [4] Ira N.Levine著,褚德萤 李之芬 张玉芬译。物理化学(上册)[M],北京大学出版社,1987:553~554.
    [5] V. Korstgens, H. C. Flemming, J. Wingender, W. Borchard. Influence of calcium ion on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa [J]. Wat. Sci. Tech.
    ??Vol.43, 2001, No.6: 49-57.
    [6] Xiaoqi Zhang, Paul L. Bishop and Brian K. Kinkle. Comparison of extraction methods for quantifying extracellular polymers in biofilms [J]. Wat Sci Tech., 1999, 39 (7): 211-218.
    [7] Nielsen, P.H., Jahn, A. and Palmgren, R. Conceptual model for production and composition of exopolymers in biofilms [J]. Wat. Sci. Tech, 1997, Vol.36, No.l: 11-19.
    [8] Jahn, A. and Nielsen, P.H. Extraction of extracellular polymeric substances (EPS) from biofilms using a cation exchange resin [J]. Wat. Sci. Tech., 1996, Vol.32, No.8: 157-164.
    [9] H-C.Flemming and J.Wingender. Relenvance of microbial extracellular polymetric substances (EPS)—Part I: structural and ecological aspects [J]. Wat. Sci. Tech., 2001, Vol.43, No.6: 1-8.
    [10] Paul.L.Bishop and Tong Yu. A microelectrode study of redox potential change in biofilms [J]. Wat. Sci. Tech, 1999, Vol.39, No.7: 179-185.
    [11] Mosey, F.E. "Biofilms on Kaldnes carrier particles". Proc. [M]. from siminar organized by ny Anglian Water. Cambridgeshire, UK 27-29 Nov 1996.
    [12] De Beer, D., Stoodley, P. and Lewandowski, Z. Liquid flows in heterogeneous biofilms [J]. Biotechnology and Bioengineering., 1994, 44: 636-641.
    [13] De Beer, D., Stoodley, P. and Lewandowski, Z. Liquid flows and mass transport in heterogeneous biofilms [J]. Wat Res., 1996, Vol.30: 2761-2765.
    [14] Stewart, P.S., Murga. R., SriniVSan, R. and de Beer, D. Biofilm structure heterogeneity visualized by three microscopic methods [J]. Wat Res., Vol. 1995,29: 2006-2009.
    [15] Costerton, J.W., Lewandowski, Z., De Beer, D. Caldwell, D., Korber, D. and James, G Minireview: biofilms, the customized micronich [J]. Bacteriology, 1994, 176 (8): 2137-2142.
    [16] Wolfaardt, G. M., Lawrence, J. R., Robarts, R .D. and Caldwell, D.E. Multicellular organization in a degradative biofilm community [J]. Appl.Environ.Microbiol., 1994, 60: 434-446.
    [17] Massol-Deya, A.A., Whallon, J., Hickey, R.F. and Tiedje, J.M. Channel structures in aerobic biofilms of fixed-film reactors treating contaminated groundwater [J]. Appl.Environ.Microbiol, 1994,61 (2): 769-777.
    [18] Zhang and Bishop. Density, Porosity and Pore structure of Biofilm [J]. Wat Res., 1994, Vol.28: 2267-2277.
    [19] Stewart, P.S., Murga, R., SriniVSan, R. and de Beer, D. Biofilm structure heterogeneity visualized by three microscopic methods [J]. Wat Res., 1995, Vol.29: 2006-2009.
    [20] Lewandowski, Z. Stoodley, P. and Altobelli, S. Experimental and conceptual studies on mass transport in biofilms [J]. Wat. Sci. Tech., 1995, Vol 31(1): 153-162.
    [21] De Beer, D., Stoodley, P., Roe, F. and Lewandowski, Z. Effects biofilm structures on Oxygen distribution and mass transport [J]. Biotechnology and Bioengineering., 1994b, 43: 1131-1138.
    [22] Massol-Deya, A.A., Whallon, J., Hickey, R.F. and Tiedje, J.M. Channel structures in aerobic biofilms of fixed-film reactors treating contaminated groundwater [J]. Appl. Environ. Microbiol., 1994, 61(2): 769-777.
    [23] Buce E. Rittmann. International specialty conference on the microbial ecology of Biofilms [J]. Wat. Sci. Tech., 1999, Vol. 39, No. 7: 1-3.
    [24] Van Loosdrecht, M. C. M., Eikelboom, D., Gjaltema, A., Mulder, A., Tijhuis, L. and Heijnen, J. J. Biofilm structures [J]. Wat. Sci. Tech., 1995, Vol. 32 (8): 35-42.
    [25] C. Picioreanu, van Loosdrecht and J. J. Heijnen. Discrete-differential modelling of biofilm structure [J]. Wat. Sci. Tech., 1999, Vol 39(7): 115-122.
    [26] Van Loosdrecht, M. C. M. Eikelboom, D. Gjaltem .A., Mulder, A., L.Tijhuis, Heijnen. J. J. Biofilm structure [J]. Wat. Sci. Tech., 1995b, Vol. 31: 163-171.
    [27] 刘雨,赵庆良,郑兴灿,生物膜法污水处理技术[M],中国建筑工业出版社,2000.3
    [28] Nobuo Araki, Akiyoshi Ohashi, Izarul Machdar and Hideki Harada. Behavors of nitrifiers in a novel biofilm reactor employing hanging sponge-cubes as attachment site [J]. Wat. Sci. Tech., 1999, 39 (7): 23-31.
    [29] A. Schramm, L. H. Larsen, N. P. Revsbech and R. I. Amann. Structure and Function of a nitrifying biofilm as determined by Microelectrodes and Fluorescent oligonueleotide probes [J]. Wat. Sci. Tech., 1999, 36 (1): 263-270.
    [30] Hooijmans C. M., Briasco. C. A., Huang. J., et al. Measurement of oxygen concentration gradients in gel-immoilized recombinant Escherichia coli [J]. Appl. Microbiol. Biotechnol., 1990, 33: 611-618.
    [31] Tijhuis. M. C. M. van Loosdrecht, and J. J. Heijnen. Formation and Growth of Heterotrophic Aerobic Biofilms on Small Suspended Particles in Airlift Reactors [J]. Biotech Bioengi., 1994, Vol 44: 595-608.
    [32] Borregaard V. R. Experience with nutrient removal in a fixed-film system at full-scale wastewater treatment plants [J]. Wat Sci. Technol., 1997, 36 (1): 129.
    [33] 潘涛等,三相生物流化床中生物膜厚度研究[J].中国给水排水,1999,15(6):5~9.
    [34] 邢国平等,循环载体生物过滤技术研究[J].中国给水排水,1997,13(5):9~14.
    [35] 贾立敏等,气提反应器在油脂废水处理中的应用[J].给水排水,1999,25(5):25~28.
    [36] H. Odegaard, B. Gisvold and J. Strickland. The influence of carder size and shape in the moving bed biofilm process [J]. Wat. Sci. Tech., 2000, Vol. 41, No. 4~5: 383-391.
    [37] 金冬霞,田刚,施汉昌,悬浮填料的选取及其性能试验研究[J],环境科学学报,Vol 22,No 3:333-337
    [38] A. J. Cooke, R. K. Rowe, B, E. Rittmann and I. R. Fleming. Modelling biochemically driven mineral precipitation in anaerobic biofilms [J]. Wat. Sci. Tech., 1999, 39(7): 57-64.
    [39] Michael G. Trulear, William G. Characklis. Dynamics of biofilm processes [J]. Journal WPCF, 1982, Vol 54, No 9: 1288-1301.
    [40] Capdeville B. Nguyen K. M. Kinetics and modeling of aerobic and anaerobic film growth [J]. Wat. Sci. Technol., 1990, 22: 149-170
    [41] Heijnen. J. J., van Loosdrecht. M. C. M. Mulder. A, Tijhuis. L. Formation of biofilm in a biofilm air-lift suspension reactor [J]. Wat. Sci. Technol., 1992, 26: 647-654.
    [42] M. Espinosa-Urgel and J-L. Rmos. Genetics of biofilm formation [M]: in Biofilms in Medicine, Industry and Environmental Biotechnology. edited by Piet Lens, Anthony P. Moran, Therese Mahony et al. 2003 IWA published: 49.
    [43] Biofilm Ⅱ process analysis and applications [M]. 2001, edited by James D. Bryers.
    [44] Rittmann and McCarty edited, Environmental Biotechnology: Principles and Applications [M].
    [45] Chang, H. T., Rittman, B. E. A comparative study of biofilm on activated carbon [J]. Water Pollut. Control Fed. 1988, 60: 362-368.
    [46] Wanner, O., Gujer, W. A multispecies biofilm model [J]. Biotechnol. Bioengi. 1986, 28: 314-328.
    [47] Bryer, J. D. Biofilm formation and chemostat dynamics: pure and mixed culture considerations [J]. Biotechnol. Bioengi. 1984, 26: 948-958.
    [48] Philip S. Stewart. A model of biofilm detachment [J]. Biotechnol. Bioengi, 1993, 41: 111-117.
    [49] Zhao Q. L. and Kugel G. Thermophilic/mesophilic digestion of sewage sludge and organic waste [J]. J Environ Sci. Health, 1997, A31, 9: 2211-2231.
    [50] B. Gisvold, H. Odegaard and M. Follesdal. Enhanced removal of ammonium by combined nitrification/adsorption in expended clay aggregate filters [J]. Wat. Sci. Tech., 2000, Vol. 41, No.4-5: 409-416.
    [51] V. Lazarova, J. Perera, M. Bowen and P. Sheilds. Application of aerated biofilters for production of high quality water for industrial reuse in West Basin [J]. Wat. Sci. Tech., 2000, Vol.41, No.4-5: 417-424.
    [52] M. Payraudeau, C. Paffoni and M. Gousailles. Tertiary nitrification in an upflow biofilter on floating media [J]. Wat. Sci. Tech., 2000 Vol. 41, No. 4-5: 21-28.
    [53] C. M. Falkentoft, P. Harremoes, H. Mosbak and P. Wilderer. Combined denitrification and phosphorus removal in a biofilter [J]. Wat. Sci. Tech., 2000, Vol. 41, No. 4-5: 493-502.
    [54] Boiler. M, M. Tschui. and W. Gujer. Effects of transient nutrient concentrations in tertiary biofilm reactors [J]. Wat. Sci. Tech., 1997, Vol. 36, No. 1: 101-109.
    [55] 丁忠浩,有机废水处理技术及应用[M],化学工业出版社,2002.5.
    [56] Suzuki, Y., Miyahara, S. and Takeishi, K. Oxygen supply method using gas permeable film for wasterwater treatment [J]. Wat. Sci. Tech., 1993, Vol. 28, No. 7: 243-250.
    [57] Suzuki, Y, N. Hatano, S. Ito and H. Ikeda. Performance of nitrogen removal and biofilm structure of porous gas permeable membrane reactor [J]. Wat. Sci. Tech., 2000, Vol. 41, No. 4-5: 211-217.
    [58] H. Ted Chang, Bruce E. Rittmann, D. Amar, R. Heim, O. Ehlinger, and Lesty. Biofilm Detachment Mechanisms in a Liquid-Fluidized Bed [J]. Biotech Bioengi., 1991, Vol 38: 499-506.
    [59] A. Gjaltema, L. Tijhuis, M. C. M. van Loosdrecht and Heijnen, Detachment of Biomass from Suspended Nongrowing Spherical Biofilms in Airlift Reactors [J]. Biotech Bioeng., 1995, Vol 46: 258-268.
    [60] 钱易,Th.J.Niewstard.采用空气提升循环反应器处理城市废水的中试研究,给水与废水处理国际会议论文集[M],中国建筑工业出版社,1994.7.
    [61] Lazarova V, Nogueira R., and Mannem J. Control of nitrificstion efficiency in a new biofilm reactor [J]. Wat. Sci. Tech., 1997, 36(1): 31-41.
    [62] Frijters, D. H. Eikelboom, A. Mulder and R. Mulder. Treatment of Municipal wastewater in a CIRCOX Airlift reactor with integrated denitrification [J]. Wat. Sci. Tech., 1997, Vol. 36, No. 1: 173-181.
    [63] W. A. J. Van Benthum, M. C. M. van Loosdrecht and J. J. Heijnen. Process design for nitrogen removal using nitrifying biofilm and denitdfying suspended growth in a biofilm airlift suspension reactor [J]. 1997, Vol 36, No 1: 119-128.
    [64] B. Rusten, J. G. Siljudalen, S. Bungun. Moving Bed Biofilm Reactor for Nitrogen Removal: From Initial Pilot Testing to Start-Up of the Lillenhammer WWTP, Water Enviorenment Federation 68th Annual Conference & Exposition [M]. Miami Beach, Florida U. S. A., October. 1995: 21-25.
    [65] Pastorelli, G. Andreottola, R. Canziani, E. et al. Pilot-plant experiments with moving-bed biofilm reactors [J]. Wat. Sci. Tech., 1997, 36 (1): 43-50.
    [66] 2003年全国环境统计公报

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700